[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1009426.html
   My bibliography  Save this article

Machine learning approach for automatic recognition of tomato-pollinating bees based on their buzzing-sounds

Author

Listed:
  • Alison Pereira Ribeiro
  • Nádia Felix Felipe da Silva
  • Fernanda Neiva Mesquita
  • Priscila de Cássia Souza Araújo
  • Thierson Couto Rosa
  • José Neiva Mesquita-Neto
Abstract
Bee-mediated pollination greatly increases the size and weight of tomato fruits. Therefore, distinguishing between the local set of bees–those that are efficient pollinators–is essential to improve the economic returns for farmers. To achieve this, it is important to know the identity of the visiting bees. Nevertheless, the traditional taxonomic identification of bees is not an easy task, requiring the participation of experts and the use of specialized equipment. Due to these limitations, the development and implementation of new technologies for the automatic recognition of bees become relevant. Hence, we aim to verify the capacity of Machine Learning (ML) algorithms in recognizing the taxonomic identity of visiting bees to tomato flowers based on the characteristics of their buzzing sounds. We compared the performance of the ML algorithms combined with the Mel Frequency Cepstral Coefficients (MFCC) and with classifications based solely on the from fundamental frequency, leading to a direct comparison between the two approaches. In fact, some classifiers powered by the MFCC–especially the SVM–achieved better performance compared to the randomized and sound frequency-based trials. Moreover, the buzzing sounds produced during sonication were more relevant for the taxonomic recognition of bee species than analysis based on flight sounds alone. On the other hand, the ML classifiers performed better in recognizing bees genera based on flight sounds. Despite that, the maximum accuracy obtained here (73.39% by SVM) is still low compared to ML standards. Further studies analyzing larger recording samples, and applying unsupervised learning systems may yield better classification performance. Therefore, ML techniques could be used to automate the taxonomic recognition of flower-visiting bees of the cultivated tomato and other buzz-pollinated crops. This would be an interesting option for farmers and other professionals who have no experience in bee taxonomy but are interested in improving crop yields by increasing pollination.Author summary: Bees are the most important pollinators of cultivated tomatoes. We also know that the distinct species of bees have different performances as pollinators, and these performances are directly related to the size and weight of the fruits. Moreover, the characteristics of the buzzing sounds tend to vary between the bee species. However, the buzzing sounds are complex and can widely vary over time, making the analysis of this data difficult using the usual statistical methods in Ecology. In the face of this problem, we proposed to automatically recognize pollinating bees of tomato flowers based on their buzzing sounds using Machine Learning (ML) tools. In fact, we found that the ML algorithms are capable of recognizing bees just based on their buzzing sounds. This could lead to automating the recognition of flower-visiting bees of the cultivated tomato, which would be a nice option for farmers and other professionals who have no experience in bee taxonomy but are interested in improving crop yields. On the other hand, this encourages the farmer to adopt sustainable agricultural practices for the conservation of native tomato pollinators. To achieve this goal, the next step is to develop applications compatible with smartphones capable of recognizing bees by their buzzing sounds.

Suggested Citation

  • Alison Pereira Ribeiro & Nádia Felix Felipe da Silva & Fernanda Neiva Mesquita & Priscila de Cássia Souza Araújo & Thierson Couto Rosa & José Neiva Mesquita-Neto, 2021. "Machine learning approach for automatic recognition of tomato-pollinating bees based on their buzzing-sounds," PLOS Computational Biology, Public Library of Science, vol. 17(9), pages 1-21, September.
  • Handle: RePEc:plo:pcbi00:1009426
    DOI: 10.1371/journal.pcbi.1009426
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1009426
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1009426&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1009426?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Crisci, C. & Ghattas, B. & Perera, G., 2012. "A review of supervised machine learning algorithms and their applications to ecological data," Ecological Modelling, Elsevier, vol. 240(C), pages 113-122.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Beáta Novotná & Ľuboš Jurík & Ján Čimo & Jozef Palkovič & Branislav Chvíla & Vladimír Kišš, 2022. "Machine Learning for Pan Evaporation Modeling in Different Agroclimatic Zones of the Slovak Republic (Macro-Regions)," Sustainability, MDPI, vol. 14(6), pages 1-22, March.
    2. Simidjievski, Nikola & Todorovski, Ljupčo & Džeroski, Sašo, 2015. "Learning ensembles of population dynamics models and their application to modelling aquatic ecosystems," Ecological Modelling, Elsevier, vol. 306(C), pages 305-317.
    3. Hua Shi & George Xian & Roger Auch & Kevin Gallo & Qiang Zhou, 2021. "Urban Heat Island and Its Regional Impacts Using Remotely Sensed Thermal Data—A Review of Recent Developments and Methodology," Land, MDPI, vol. 10(8), pages 1-30, August.
    4. Shen, Jian & Qin, Qubin & Wang, Ya & Sisson, Mac, 2019. "A data-driven modeling approach for simulating algal blooms in the tidal freshwater of James River in response to riverine nutrient loading," Ecological Modelling, Elsevier, vol. 398(C), pages 44-54.
    5. Muñoz-Mas, R. & Martínez-Capel, F. & Alcaraz-Hernández, J.D. & Mouton, A.M., 2015. "Can multilayer perceptron ensembles model the ecological niche of freshwater fish species?," Ecological Modelling, Elsevier, vol. 309, pages 72-81.
    6. Olatunji, Obafemi O. & Akinlabi, Stephen & Madushele, Nkosinathi & Adedeji, Paul A., 2020. "Property-based biomass feedstock grading using k-Nearest Neighbour technique," Energy, Elsevier, vol. 190(C).
    7. Yeeun Shin & Suyeon Kim & Se-Rin Park & Taewoo Yi & Chulgoo Kim & Sang-Woo Lee & Kyungjin An, 2022. "Identifying Key Environmental Factors for Paulownia coreana Habitats: Implementing National On-Site Survey and Machine Learning Algorithms," Land, MDPI, vol. 11(4), pages 1-16, April.
    8. Crisci, Carolina & Terra, Rafael & Pacheco, Juan Pablo & Ghattas, Badih & Bidegain, Mario & Goyenola, Guillermo & Lagomarsino, Juan José & Méndez, Gustavo & Mazzeo, Néstor, 2017. "Multi-model approach to predict phytoplankton biomass and composition dynamics in a eutrophic shallow lake governed by extreme meteorological events," Ecological Modelling, Elsevier, vol. 360(C), pages 80-93.
    9. Zonlehoua Coulibali & Athyna Nancy Cambouris & Serge-Étienne Parent, 2020. "Site-specific machine learning predictive fertilization models for potato crops in Eastern Canada," PLOS ONE, Public Library of Science, vol. 15(8), pages 1-32, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1009426. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.