[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
IDEAS home Printed from https://ideas.repec.org/a/spr/compst/v23y2008i2p337-339.html
   My bibliography  Save this article

Automatic selection of indicators in a fully saturated regression

Author

Listed:
  • David Hendry
  • Søren Johansen
  • Carlos Santos
Abstract
No abstract is available for this item.

Suggested Citation

  • David Hendry & Søren Johansen & Carlos Santos, 2008. "Automatic selection of indicators in a fully saturated regression," Computational Statistics, Springer, vol. 23(2), pages 337-339, April.
  • Handle: RePEc:spr:compst:v:23:y:2008:i:2:p:337-339
    DOI: 10.1007/s00180-008-0112-1
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s00180-008-0112-1
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s00180-008-0112-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Krolzig, Hans-Martin & Hendry, David F., 2001. "Computer automation of general-to-specific model selection procedures," Journal of Economic Dynamics and Control, Elsevier, vol. 25(6-7), pages 831-866, June.
    2. David F. Hendry & Carlos Santos, 2005. "Regression Models with Data‐based Indicator Variables," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 67(5), pages 571-595, October.
    3. Julia Campos & David F. Hendry & Hans‐Martin Krolzig, 2003. "Consistent Model Selection by an Automatic Gets Approach," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 65(s1), pages 803-819, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Søren Johansen & David F. Hendry & Carlos Santos, 2007. "Selecting a Regression Saturated by Indicators," CREATES Research Papers 2007-36, Department of Economics and Business Economics, Aarhus University.
    2. Camila Epprecht & Dominique Guegan & Álvaro Veiga & Joel Correa da Rosa, 2017. "Variable selection and forecasting via automated methods for linear models: LASSO/adaLASSO and Autometrics," Post-Print halshs-00917797, HAL.
    3. Camila Epprecht & Dominique Guegan & Álvaro Veiga & Joel Correa da Rosa, 2017. "Variable selection and forecasting via automated methods for linear models: LASSO/adaLASSO and Autometrics," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-00917797, HAL.
    4. Jennifer Castle & David Hendry, 2010. "Automatic Selection for Non-linear Models," Economics Series Working Papers 473, University of Oxford, Department of Economics.
    5. Jennifer Castle & David Hendry, 2007. "Forecasting UK Inflation: the Roles of Structural Breaks and Time Disaggregation," Economics Series Working Papers 309, University of Oxford, Department of Economics.
    6. Peter Winker & Dietmar Maringer, 2004. "Optimal Lag Structure Selection in VEC-Models," Contributions to Economic Analysis, in: New Directions in Macromodelling, pages 213-234, Emerald Group Publishing Limited.
    7. Carlos Santos & Maria Alberta Oliveira, 2010. "Assessing French inflation persistence with impulse saturation break tests and automatic general-to-specific modelling," Applied Economics, Taylor & Francis Journals, vol. 42(12), pages 1577-1589.
    8. Julia Campos & Neil R. Ericsson & David F. Hendry, 2005. "General-to-specific modeling: an overview and selected bibliography," International Finance Discussion Papers 838, Board of Governors of the Federal Reserve System (U.S.).
    9. Camila Epprecht & Dominique Guegan & Álvaro Veiga, 2013. "Comparing variable selection techniques for linear regression: LASSO and Autometrics," Documents de travail du Centre d'Economie de la Sorbonne 13080, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
    10. SANTOS, Carlos & OLIVEIRA, Maria Alberta, 2007. "Modelling The German Yield Curve And Testing The Lucas Critique, 1975-2001," Applied Econometrics and International Development, Euro-American Association of Economic Development, vol. 7(1).
    11. Dalibor Roháč, 2012. "On economists and garbagemen: Reflections on Šťastný (2010)," The Review of Austrian Economics, Springer;Society for the Development of Austrian Economics, vol. 25(2), pages 173-183, June.
    12. David F. Hendry, 2011. "Empirical Economic Model Discovery and Theory Evaluation," Rationality, Markets and Morals, Frankfurt School Verlag, Frankfurt School of Finance & Management, vol. 2(46), October.
    13. Castle Jennifer L. & Doornik Jurgen A & Hendry David F., 2011. "Evaluating Automatic Model Selection," Journal of Time Series Econometrics, De Gruyter, vol. 3(1), pages 1-33, February.
    14. Costantini, Mauro & Pappalardo, Carmine, 2010. "A hierarchical procedure for the combination of forecasts," International Journal of Forecasting, Elsevier, vol. 26(4), pages 725-743, October.
    15. Kapetanios, George & Marcellino, Massimiliano & Papailias, Fotis, 2016. "Forecasting inflation and GDP growth using heuristic optimisation of information criteria and variable reduction methods," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 369-382.
    16. Banerjee, Anindya & Marcellino, Massimiliano, 2006. "Are there any reliable leading indicators for US inflation and GDP growth?," International Journal of Forecasting, Elsevier, vol. 22(1), pages 137-151.
    17. Caporale, Guglielmo Maria & Matousek, Roman & Stewart, Chris, 2012. "Ratings assignments: Lessons from international banks," Journal of International Money and Finance, Elsevier, vol. 31(6), pages 1593-1606.
    18. Andrew B. Martinez, 2011. "Comparing Government Forecasts of the United States’ Gross Federal Debt," Working Papers 2011-002, The George Washington University, Department of Economics, H. O. Stekler Research Program on Forecasting.
    19. David F. Hendry & Hans-Martin Krolzig, 2005. "The Properties of Automatic "GETS" Modelling," Economic Journal, Royal Economic Society, vol. 115(502), pages 32-61, March.
    20. David F. Hendry & Grayham E. Mizon, 2016. "Improving the teaching of econometrics," Cogent Economics & Finance, Taylor & Francis Journals, vol. 4(1), pages 1170096-117, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:compst:v:23:y:2008:i:2:p:337-339. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.