[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
IDEAS home Printed from https://ideas.repec.org/a/jre/issued/v27n12005p105-136.html
   My bibliography  Save this article

Apartment Rent Prediction Using Spatial Modeling

Author

Listed:
  • James Valente

    (SSR Realty Advisers, Inc.)

  • ShanShan Wu

    (Department of Statistics, University of Connecticut)

  • Alan Gelfand

    (Institute for Statistics and Decision Sciences, Duke University)

  • C.F. Sirmans

    (Director, Center for Real Estate and Urban Economic Studies, University of Connecticut)

Abstract
This paper provides a new model to explain local variation in apartment rents by introducing the notion of a spatial process. This model differs from those in the literature by explicitly specifying spatial association between pairs of locations as a function of distance between them. Data on apartment rents for the eight markets are used to illustrate the spatial model. Results indicate signi?cant prediction improvement over traditional hedonic rent models that only include indicator variables to capture spatial effects.

Suggested Citation

  • James Valente & ShanShan Wu & Alan Gelfand & C.F. Sirmans, 2005. "Apartment Rent Prediction Using Spatial Modeling," Journal of Real Estate Research, American Real Estate Society, vol. 27(1), pages 105-136.
  • Handle: RePEc:jre:issued:v:27:n:1:2005:p:105-136
    as

    Download full text from publisher

    File URL: http://pages.jh.edu/jrer/papers/pdf/past/vol27n01/05.105_136.pdf
    File Function: Full text
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marcus Allen & Ronald Rutherford & Thomas Thomson, 2009. "Residential Asking Rents and Time on the Market," The Journal of Real Estate Finance and Economics, Springer, vol. 38(4), pages 351-365, May.
    2. Rodrigo García Arancibia & Pamela Llop & Mariel Lovatto, 2023. "Nonparametric prediction for univariate spatial data: Methods and applications," Papers in Regional Science, Wiley Blackwell, vol. 102(3), pages 635-672, June.
    3. Juergen Deppner & Marcelo Cajias, 2024. "Accounting for Spatial Autocorrelation in Algorithm-Driven Hedonic Models: A Spatial Cross-Validation Approach," The Journal of Real Estate Finance and Economics, Springer, vol. 68(2), pages 235-273, February.
    4. Takahiro Yoshida & Daisuke Murakami & Hajime Seya, 2024. "Spatial Prediction of Apartment Rent using Regression-Based and Machine Learning-Based Approaches with a Large Dataset," The Journal of Real Estate Finance and Economics, Springer, vol. 69(1), pages 1-28, July.
    5. Eilers, Lea, 2016. "Spatial Dependence in Apartment Offering Prices in Hamburg," VfS Annual Conference 2016 (Augsburg): Demographic Change 145639, Verein für Socialpolitik / German Economic Association.
    6. Lin, Jen-Jia & Cheng, Yu-Chun, 2016. "Access to jobs and apartment rents," Journal of Transport Geography, Elsevier, vol. 55(C), pages 121-128.
    7. Morito Tsutsumi & Hajime Seya, 2009. "Hedonic approaches based on spatial econometrics and spatial statistics: application to evaluation of project benefits," Journal of Geographical Systems, Springer, vol. 11(4), pages 357-380, December.
    8. Füss, Roland & Koller, Jan A., 2016. "The role of spatial and temporal structure for residential rent predictions," International Journal of Forecasting, Elsevier, vol. 32(4), pages 1352-1368.
    9. Löchl, Michael & Axhausen, Kay W., 2010. "Modelling hedonic residential rents for land use and transport simulation while considering spatial effects," The Journal of Transport and Land Use, Center for Transportation Studies, University of Minnesota, vol. 3(2), pages 39-63.
    10. Nakamura, Hiroki, 2020. "Evaluating the value of an entrepreneurial city with a spatial hedonic approach: A case study of London," Socio-Economic Planning Sciences, Elsevier, vol. 71(C).
    11. Beth Wilson & James Frew, 2007. "Apartment Rents and Locations in Portland, Oregon: 1992 – 2002," Journal of Real Estate Research, American Real Estate Society, vol. 29(2), pages 201-218.
    12. Guang Hu & Yue Tang, 2023. "GERPM: A Geographically Weighted Stacking Ensemble Learning-Based Urban Residential Rents Prediction Model," Mathematics, MDPI, vol. 11(14), pages 1-36, July.
    13. Bełej Mirosław, 2018. "Synergistic Network Connectivity among Urban Areas Based on Non-Linear Model of Housing Prices Dynamics," Real Estate Management and Valuation, Sciendo, vol. 26(4), pages 22-34, December.
    14. Bing Zhu & Roland Füss & Nico Rottke, 2011. "The Predictive Power of Anisotropic Spatial Correlation Modeling in Housing Prices," The Journal of Real Estate Finance and Economics, Springer, vol. 42(4), pages 542-565, May.
    15. Morito Tsutsumi & Hajime Seya, 2008. "Measuring the impact of large‐scale transportation projects on land price using spatial statistical models," Papers in Regional Science, Wiley Blackwell, vol. 87(3), pages 385-401, August.
    16. Olivier Parent & Rainer Hofe, 2013. "Understanding the impact of trails on residential property values in the presence of spatial dependence," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 51(2), pages 355-375, October.

    More about this item

    JEL classification:

    • L85 - Industrial Organization - - Industry Studies: Services - - - Real Estate Services

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:jre:issued:v:27:n:1:2005:p:105-136. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: JRER Graduate Assistant/Webmaster (email available below). General contact details of provider: http://www.aresnet.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.