Author
AbstractEl presente trabajo utiliza el enfoque bayesiano de aprendizaje para medir la cantidad de información que un individuo gana sobre su función de utilidad después de consumir una cantidad inicial de algún bien genérico. Para ello, se desarrolla un modelo de aprendizaje bayesiano sobre los parámetros que determinan las preferencias de un individuo racional. En este marco, la información de Fisher (1950) se utiliza como una medida de la cantidad de información que contienen los parámetros del índice de satisfacción del agente después de que éste ha iniciado su consumo. A partir de la información de Fisher se construye la distribución a priori de los parámetros siguiendo la regla de Jeffreys (1961), lo cual permite tratar a la información como una variable./ This paper uses a Bayesian learning model to measure the amount of information that an individual gains on his/her utility function after consuming an initial amount of a generic good. To do so, a learning model on the parameters determining the preferences of a rational individual is developed. In this framework, Fisher’s information (1950) is used to measure the amount of information contained in the parameters of the agent’s satisfaction index once consumption has started. By using Fisher’s information and Jeffreys’ rule (1961) a priori distribution on the parameters is constructed, which allows to treat information as a variable.
Suggested Citation
Sámano-Rodríguez, Miguel Ángel & Venegas-Martínez, Francisco, 2008.
"Aprendizaje e información sobre los parámetros de preferencias,"
eseconomía, Escuela Superior de Economía, Instituto Politécnico Nacional, vol. 0(17), pages 7-23, primer tr.
Handle:
RePEc:ipn:esecon:v:iii:y:2008:i:17:p:7-23
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ipn:esecon:v:iii:y:2008:i:17:p:7-23. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Juan Marroquín-Arreola (email available below). General contact details of provider: https://edirc.repec.org/data/eeipnmx.html .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.