[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v188y2019icp574-583.html
   My bibliography  Save this article

On decision optimality of terrorism risk mitigation measures for iconic bridges

Author

Listed:
  • Thöns, Sebastian
  • Stewart, Mark G.
Abstract
This paper describes the assessment of the cost efficiency of risk mitigation strategies for terrorist attacks with Improvised Explosive Devices (IEDs) for an iconic bridge structure. The assessment is performed with a decision theoretical framework building upon very recent advances in the COST Action TU1402 on Quantifying the Value of Structural Heath Monitoring. The decision scenario is formulated for a decision maker constituting an authority responsible for the societal safety of the infrastructure and consequently the direct risks for the infrastructure owner and the indirect risk due to fatalities and importance of the infrastructure are considered. The mitigation strategies are classified within the decision theoretical context as prior analyses for the assessment of protection strategies and as control strategies requiring a pre-posterior decision analysis. The identification of efficient risk mitigation strategies is based (1) on the risk and expected cost based optimization of actions and information and their combination before implementation, (2) on quantifying and ensuring the significance in risk and expected cost reduction and (3) on quantifying and ensuring a high probability of cost efficiency. These criteria, i.e. the optimality, significance and efficiency ensure the performance of the strategies at the decision point in time before implementation. It is found that the strategies are relying on the identification of the threat level and that control strategies are in favor as their significance and probability of efficiency are higher and their costs are adjustable. However, for high threat levels, both the bridge protection strategies and control strategies are cost efficient.

Suggested Citation

  • Thöns, Sebastian & Stewart, Mark G., 2019. "On decision optimality of terrorism risk mitigation measures for iconic bridges," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 574-583.
  • Handle: RePEc:eee:reensy:v:188:y:2019:i:c:p:574-583
    DOI: 10.1016/j.ress.2019.03.049
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832018304484
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2019.03.049?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nilesh N. Joshi & James H. Lambert, 2011. "Diversification of infrastructure projects for emergent and unknown non-systematic risks," Journal of Risk Research, Taylor & Francis Journals, vol. 14(6), pages 717-733, June.
    2. Robinson Lisa A & Hammitt James K. & Aldy Joseph E. & Krupnick Alan & Baxter Jennifer, 2010. "Valuing the Risk of Death from Terrorist Attacks," Journal of Homeland Security and Emergency Management, De Gruyter, vol. 7(1), pages 1-27, February.
    3. Blomberg S. Brock & Rose Adam Z., 2009. "Editor's Introduction to the Economic Impacts of the September 11, 2001, Terrorist Attacks," Peace Economics, Peace Science, and Public Policy, De Gruyter, vol. 15(2), pages 165-178, July.
    4. Kjell Hausken & Fei He, 2016. "On the Effectiveness of Security Countermeasures for Critical Infrastructures," Risk Analysis, John Wiley & Sons, vol. 36(4), pages 711-726, April.
    5. Grant, Matthew J. & Stewart, Mark G., 2017. "Modelling improvised explosive device attacks in the West – Assessing the hazard," Reliability Engineering and System Safety, Elsevier, vol. 165(C), pages 345-354.
    6. Thorisson, Heimir & Lambert, James H., 2017. "Multiscale identification of emergent and future conditions along corridors of transportation networks," Reliability Engineering and System Safety, Elsevier, vol. 167(C), pages 255-263.
    7. Jason Bram & James A. Orr & Carol Rapaport, 2002. "Measuring the effects of the September 11 attack on New York City," Economic Policy Review, Federal Reserve Bank of New York, vol. 8(Nov), pages 5-20.
    8. Thekdi, Shital A. & Lambert, James H., 2015. "Integrated risk management of safety and development on transportation corridors," Reliability Engineering and System Safety, Elsevier, vol. 138(C), pages 1-12.
    9. He, Xian & Cha, Eun Jeong, 2018. "Modeling the damage and recovery of interdependent critical infrastructure systems from natural hazards," Reliability Engineering and System Safety, Elsevier, vol. 177(C), pages 162-175.
    10. Maria Leung & James H. Lambert & Alexander Mosenthal, 2004. "A Risk‐Based Approach to Setting Priorities in Protecting Bridges Against Terrorist Attacks," Risk Analysis, John Wiley & Sons, vol. 24(4), pages 963-984, August.
    11. Bostick, T.P. & Connelly, E.B. & Lambert, J.H. & Linkov, I., 2018. "Resilience science, policy and investment for civil infrastructure," Reliability Engineering and System Safety, Elsevier, vol. 175(C), pages 19-23.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marks, Nicholas A & Stewart, Mark G. & Netherton, Michael D. & Stirling, Chris G., 2021. "Airblast variability and fatality risks from a VBIED in a complex urban environment," Reliability Engineering and System Safety, Elsevier, vol. 209(C).
    2. Elena Cantatore & Enrico Quagliarini & Fabio Fatiguso, 2022. "European Cities Prone to Terrorist Threats: Phenomenological Analysis of Historical Events towards Risk Matrices and an Early Parameterization of Urban Built Environment Outdoor Areas," Sustainability, MDPI, vol. 14(19), pages 1-26, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiaoge Zhang & Sankaran Mahadevan & Kai Goebel, 2019. "Network Reconfiguration for Increasing Transportation System Resilience Under Extreme Events," Risk Analysis, John Wiley & Sons, vol. 39(9), pages 2054-2075, September.
    2. Mark G. Stewart & John Mueller, 2013. "Terrorism Risks and Cost‐Benefit Analysis of Aviation Security," Risk Analysis, John Wiley & Sons, vol. 33(5), pages 893-908, May.
    3. Pennetti, Cody A. & Fontaine, Michael D. & Jun, Jungwook & Lambert, James H., 2020. "Evaluating capacity of transportation operations with highway travel time reliability," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    4. Chen, Shun & Zhao, Xudong & Chen, Zhilong & Hou, Benwei & Wu, Yipeng, 2022. "A game-theoretic method to optimize allocation of defensive resource to protect urban water treatment plants against physical attacks," International Journal of Critical Infrastructure Protection, Elsevier, vol. 36(C).
    5. J. David Cummins & Michael Suher & George Zanjani, 1975. "Federal Financial Exposure to Natural Catastrophe Risk," NBER Chapters, in: Measuring and Managing Federal Financial Risk, pages 61-92, National Bureau of Economic Research, Inc.
    6. Xiansheng Chen & Ruisong Quan, 2021. "A spatiotemporal analysis of urban resilience to the COVID-19 pandemic in the Yangtze River Delta," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 106(1), pages 829-854, March.
    7. Chen, Chao & Yang, Ming & Reniers, Genserik, 2021. "A dynamic stochastic methodology for quantifying HAZMAT storage resilience," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    8. Marco Percoco, 2006. "A Note on the Inoperability Input‐Output Model," Risk Analysis, John Wiley & Sons, vol. 26(3), pages 589-594, June.
    9. Francis, Royce & Bekera, Behailu, 2014. "A metric and frameworks for resilience analysis of engineered and infrastructure systems," Reliability Engineering and System Safety, Elsevier, vol. 121(C), pages 90-103.
    10. Hausken, Kjell, 2024. "Fifty Years of Operations Research in Defense," European Journal of Operational Research, Elsevier, vol. 318(2), pages 355-368.
    11. Michael Greenberg & Paul Lioy & Birnur Ozbas & Nancy Mantell & Sastry Isukapalli & Michael Lahr & Tayfur Altiok & Joseph Bober & Clifton Lacy & Karen Lowrie & Henry Mayer & Jennifer Rovito, 2013. "Passenger Rail Security, Planning, and Resilience: Application of Network, Plume, and Economic Simulation Models as Decision Support Tools," Risk Analysis, John Wiley & Sons, vol. 33(11), pages 1969-1986, November.
    12. Michael Greenberg, 2012. "Our Deteriorating Physical Structures and Risk Analysis," Risk Analysis, John Wiley & Sons, vol. 32(12), pages 2008-2009, December.
    13. Mark C. Quigley & Januka Attanayake & Andrew King & Fabian Prideaux, 2020. "A multi-hazards earth science perspective on the COVID-19 pandemic: the potential for concurrent and cascading crises," Environment Systems and Decisions, Springer, vol. 40(2), pages 199-215, June.
    14. Jason Bram & Andrew Haughwout & James Orr, 2004. "Has September 11 Affected New York City’s Growth Potential?," Advances in Spatial Science, in: Yasuhide Okuyama & Stephanie E. Chang (ed.), Modeling Spatial and Economic Impacts of Disasters, chapter 4, pages 53-73, Springer.
    15. Patrick Carlin & Brian E. Dixon & Kosali I. Simon & Ryan Sullivan & Coady Wing, 2022. "How Undervalued is the Covid-19 Vaccine? Evidence from Discrete Choice Experiments and VSL Benchmarks," NBER Working Papers 30118, National Bureau of Economic Research, Inc.
    16. repec:spo:wpmain:info:hdl:2441/9286 is not listed on IDEAS
    17. Maureen S. Golan & Laura H. Jernegan & Igor Linkov, 2020. "Trends and applications of resilience analytics in supply chain modeling: systematic literature review in the context of the COVID-19 pandemic," Environment Systems and Decisions, Springer, vol. 40(2), pages 222-243, June.
    18. Graham Bird & S. Brock Blomberg & Gregory D. Hess, 2008. "International Terrorism: Causes, Consequences and Cures," The World Economy, Wiley Blackwell, vol. 31(2), pages 255-274, February.
    19. Zhang, Jing & Wang, Yan & Zhuang, Jun, 2021. "Modeling multi-target defender-attacker games with quantal response attack strategies," Reliability Engineering and System Safety, Elsevier, vol. 205(C).
    20. Robin L. Dillon & William J. Burns & Richard S. John, 2018. "Insights for Critical Alarm-Based Warning Systems from a Risk Analysis of Commercial Aviation Passenger Screening," Decision Analysis, INFORMS, vol. 15(3), pages 154-173, September.
    21. Rana Alabdan, 2020. "Phishing Attacks Survey: Types, Vectors, and Technical Approaches," Future Internet, MDPI, vol. 12(10), pages 1-37, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:188:y:2019:i:c:p:574-583. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.