[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v258y2017i1p372-384.html
   My bibliography  Save this article

European Exchange Trading Funds Trading with Locally Weighted Support Vector Regression

Author

Listed:
  • Sermpinis, Georgios
  • Stasinakis, Charalampos
  • Rosillo, Rafael
  • de la Fuente, David
Abstract
In this paper, two different Locally Weighted Support Vector Regression (wSVR) algorithms are generated and applied to the task of forecasting and trading five European Exchange Traded Funds. The trading application covers the recent European Monetary Union debt crisis. The performance of the proposed models is benchmarked against traditional Support Vector Regression (SVR) models. The Radial Basis Function, the Wavelet and the Mahalanobis kernel are explored and tested as SVR kernels. Finally, a novel statistical SVR input selection procedure is introduced based on a principal component analysis and the Hansen, Lunde, and Nason (2011) model confidence test. The results demonstrate the superiority of the wSVR models over the traditional SVRs and of the v-SVR over the ε-SVR algorithms. We note that the performance of all models varies and considerably deteriorates in the peak of the debt crisis. In terms of the kernels, our results do not confirm the belief that the Radial Basis Function is the optimum choice for financial series.

Suggested Citation

  • Sermpinis, Georgios & Stasinakis, Charalampos & Rosillo, Rafael & de la Fuente, David, 2017. "European Exchange Trading Funds Trading with Locally Weighted Support Vector Regression," European Journal of Operational Research, Elsevier, vol. 258(1), pages 372-384.
  • Handle: RePEc:eee:ejores:v:258:y:2017:i:1:p:372-384
    DOI: 10.1016/j.ejor.2016.09.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221716307354
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2016.09.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. K. S. Chan & H. Tong, 1986. "On Estimating Thresholds In Autoregressive Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 7(3), pages 179-190, May.
    2. Dominique Guégan & Nicolas Huck, 2005. "On the use of Nearest Neighbors in finance," Finance, Presses universitaires de Grenoble, vol. 26(2), pages 67-86.
    3. Hansen, Peter Reinhard, 2005. "A Test for Superior Predictive Ability," Journal of Business & Economic Statistics, American Statistical Association, vol. 23, pages 365-380, October.
    4. Pesaran, M Hashem & Timmermann, Allan, 1992. "A Simple Nonparametric Test of Predictive Performance," Journal of Business & Economic Statistics, American Statistical Association, vol. 10(4), pages 561-565, October.
    5. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    6. Peter R. Hansen & Asger Lunde & James M. Nason, 2011. "The Model Confidence Set," Econometrica, Econometric Society, vol. 79(2), pages 453-497, March.
    7. Yao, Xiao & Crook, Jonathan & Andreeva, Galina, 2015. "Support vector regression for loss given default modelling," European Journal of Operational Research, Elsevier, vol. 240(2), pages 528-538.
    8. Mu-Yen Chen, 2014. "Using a hybrid evolution approach to forecast financial failures for Taiwan-listed companies," Quantitative Finance, Taylor & Francis Journals, vol. 14(6), pages 1047-1058, June.
    9. Li, Baibing & Martin, Elaine B. & Morris, A. Julian, 2002. "On principal component analysis in L1," Computational Statistics & Data Analysis, Elsevier, vol. 40(3), pages 471-474, September.
    10. Sermpinis, Georgios & Stasinakis, Charalampos & Theofilatos, Konstantinos & Karathanasopoulos, Andreas, 2015. "Modeling, forecasting and trading the EUR exchange rates with hybrid rolling genetic algorithms—Support vector regression forecast combinations," European Journal of Operational Research, Elsevier, vol. 247(3), pages 831-846.
    11. Kim, Hong Sik & Sohn, So Young, 2010. "Support vector machines for default prediction of SMEs based on technology credit," European Journal of Operational Research, Elsevier, vol. 201(3), pages 838-846, March.
    12. Shapiro, Arnold F., 2000. "A Hitchhiker's guide to the techniques of adaptive nonlinear models," Insurance: Mathematics and Economics, Elsevier, vol. 26(2-3), pages 119-132, May.
    13. Andrews, Donald W. K., 1991. "Asymptotic optimality of generalized CL, cross-validation, and generalized cross-validation in regression with heteroskedastic errors," Journal of Econometrics, Elsevier, vol. 47(2-3), pages 359-377, February.
    14. Froot, Kenneth A & Scharftstein, David S & Stein, Jeremy C, 1992. "Herd on the Street: Informational Inefficiencies in a Market with Short-Term Speculation," Journal of Finance, American Finance Association, vol. 47(4), pages 1461-1484, September.
    15. Michael H. Breitner & Christian Dunis & Hans-Jörg Mettenheim & Christopher Neely & Georgios Sermpinis & Rafael Rosillo & Javier Giner & David De la Fuente, 2014. "Stock Market Simulation Using Support Vector Machines," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 33(6), pages 488-500, September.
    16. Geng, Ruibin & Bose, Indranil & Chen, Xi, 2015. "Prediction of financial distress: An empirical study of listed Chinese companies using data mining," European Journal of Operational Research, Elsevier, vol. 241(1), pages 236-247.
    17. Zhang, Guoqiang & Eddy Patuwo, B. & Y. Hu, Michael, 1998. "Forecasting with artificial neural networks:: The state of the art," International Journal of Forecasting, Elsevier, vol. 14(1), pages 35-62, March.
    18. Lin, Chien-Fu Jeff & Terasvirta, Timo, 1994. "Testing the constancy of regression parameters against continuous structural change," Journal of Econometrics, Elsevier, vol. 62(2), pages 211-228, June.
    19. Georgios Sermpinis & Thanos Verousis & Konstantinos Theofilatos, 2016. "Adaptive Evolutionary Neural Networks for Forecasting and Trading without a Data‐Snooping Bias," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 35(1), pages 1-12, January.
    20. Teo Jasic & Douglas Wood, 2004. "The profitability of daily stock market indices trades based on neural network predictions: case study for the S&P 500, the DAX, the TOPIX and the FTSE in the period 1965-1999," Applied Financial Economics, Taylor & Francis Journals, vol. 14(4), pages 285-297.
    21. Christian Dunis & Jason Laws & Georgios Sermpinis, 2010. "Modelling and trading the EUR/USD exchange rate at the ECB fixing," The European Journal of Finance, Taylor & Francis Journals, vol. 16(6), pages 541-560.
    22. Allen, Franklin & Karjalainen, Risto, 1999. "Using genetic algorithms to find technical trading rules," Journal of Financial Economics, Elsevier, vol. 51(2), pages 245-271, February.
    23. Bruce E. Hansen, 2007. "Least Squares Model Averaging," Econometrica, Econometric Society, vol. 75(4), pages 1175-1189, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fu, Saiji & Tian, Yingjie & Tang, Long, 2023. "Robust regression under the general framework of bounded loss functions," European Journal of Operational Research, Elsevier, vol. 310(3), pages 1325-1339.
    2. Dimitris Andriosopoulos & Michalis Doumpos & Panos M. Pardalos & Constantin Zopounidis, 2019. "Computational approaches and data analytics in financial services: A literature review," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 70(10), pages 1581-1599, October.
    3. Shang, Han Lin & Kearney, Fearghal, 2022. "Dynamic functional time-series forecasts of foreign exchange implied volatility surfaces," International Journal of Forecasting, Elsevier, vol. 38(3), pages 1025-1049.
    4. Gary S. Anderson & Alena Audzeyeva, 2019. "A Coherent Framework for Predicting Emerging Market Credit Spreads with Support Vector Regression," Finance and Economics Discussion Series 2019-074, Board of Governors of the Federal Reserve System (U.S.).
    5. Ali Taghi-Molla & Masoud Rabbani & Mohammad Hosein Karimi Gavareshki & Ehsan Dehghani, 2020. "Safety improvement in a gas refinery based on resilience engineering and macro-ergonomics indicators: a Bayesian network–artificial neural network approach," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 11(3), pages 641-654, June.
    6. Julien Chevallier & Bangzhu Zhu & Lyuyuan Zhang, 2021. "Forecasting Inflection Points: Hybrid Methods with Multiscale Machine Learning Algorithms," Computational Economics, Springer;Society for Computational Economics, vol. 57(2), pages 537-575, February.
    7. Bangzhu Zhu & Shunxin Ye & Ping Wang & Julien Chevallier & Yi‐Ming Wei, 2022. "Forecasting carbon price using a multi‐objective least squares support vector machine with mixture kernels," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(1), pages 100-117, January.
    8. Filipa Fernandes & Charalampos Stasinakis & Zivile Zekaite, 2019. "Forecasting government bond spreads with heuristic models: evidence from the Eurozone periphery," Annals of Operations Research, Springer, vol. 282(1), pages 87-118, November.
    9. Miriyala, Srinivas Soumitri & Subramanian, Venkat & Mitra, Kishalay, 2018. "TRANSFORM-ANN for online optimization of complex industrial processes: Casting process as case study," European Journal of Operational Research, Elsevier, vol. 264(1), pages 294-309.
    10. Li-Chen Cheng & Yu-Hsiang Huang & Ming-Hua Hsieh & Mu-En Wu, 2021. "A Novel Trading Strategy Framework Based on Reinforcement Deep Learning for Financial Market Predictions," Mathematics, MDPI, vol. 9(23), pages 1-16, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sermpinis, Georgios & Stasinakis, Charalampos & Theofilatos, Konstantinos & Karathanasopoulos, Andreas, 2015. "Modeling, forecasting and trading the EUR exchange rates with hybrid rolling genetic algorithms—Support vector regression forecast combinations," European Journal of Operational Research, Elsevier, vol. 247(3), pages 831-846.
    2. Sermpinis, Georgios & Stasinakis, Charalampos & Dunis, Christian, 2014. "Stochastic and genetic neural network combinations in trading and hybrid time-varying leverage effects," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 30(C), pages 21-54.
    3. Charalampos Stasinakis & Georgios Sermpinis & Konstantinos Theofilatos & Andreas Karathanasopoulos, 2016. "Forecasting US Unemployment with Radial Basis Neural Networks, Kalman Filters and Support Vector Regressions," Computational Economics, Springer;Society for Computational Economics, vol. 47(4), pages 569-587, April.
    4. Sermpinis, Georgios & Stasinakis, Charalampos & Hassanniakalager, Arman, 2017. "Reverse adaptive krill herd locally weighted support vector regression for forecasting and trading exchange traded funds," European Journal of Operational Research, Elsevier, vol. 263(2), pages 540-558.
    5. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    6. Hassanniakalager, Arman & Sermpinis, Georgios & Stasinakis, Charalampos, 2021. "Trading the foreign exchange market with technical analysis and Bayesian Statistics," Journal of Empirical Finance, Elsevier, vol. 63(C), pages 230-251.
    7. Sermpinis, Georgios & Theofilatos, Konstantinos & Karathanasopoulos, Andreas & Georgopoulos, Efstratios F. & Dunis, Christian, 2013. "Forecasting foreign exchange rates with adaptive neural networks using radial-basis functions and Particle Swarm Optimization," European Journal of Operational Research, Elsevier, vol. 225(3), pages 528-540.
    8. Filipa Fernandes & Charalampos Stasinakis & Zivile Zekaite, 2019. "Forecasting government bond spreads with heuristic models: evidence from the Eurozone periphery," Annals of Operations Research, Springer, vol. 282(1), pages 87-118, November.
    9. Fu, Sibao & Li, Yongwu & Sun, Shaolong & Li, Hongtao, 2019. "Evolutionary support vector machine for RMB exchange rate forecasting," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 521(C), pages 692-704.
    10. LeBaron, Blake, 2003. "Non-Linear Time Series Models in Empirical Finance,: Philip Hans Franses and Dick van Dijk, Cambridge University Press, Cambridge, 2000, 296 pp., Paperback, ISBN 0-521-77965-0, $33, [UK pound]22.95, [," International Journal of Forecasting, Elsevier, vol. 19(4), pages 751-752.
    11. Franses,Philip Hans & Dijk,Dick van, 2000. "Non-Linear Time Series Models in Empirical Finance," Cambridge Books, Cambridge University Press, number 9780521779654.
    12. Jayawardena, Nirodha I. & Todorova, Neda & Li, Bin & Su, Jen-Je, 2020. "Volatility forecasting using related markets’ information for the Tokyo stock exchange," Economic Modelling, Elsevier, vol. 90(C), pages 143-158.
    13. Sun, Yuying & Hong, Yongmiao & Lee, Tae-Hwy & Wang, Shouyang & Zhang, Xinyu, 2021. "Time-varying model averaging," Journal of Econometrics, Elsevier, vol. 222(2), pages 974-992.
    14. Wang, Lu & Ma, Feng & Hao, Jianyang & Gao, Xinxin, 2021. "Forecasting crude oil volatility with geopolitical risk: Do time-varying switching probabilities play a role?," International Review of Financial Analysis, Elsevier, vol. 76(C).
    15. Wei, Yu & Wang, Yizhi & Lucey, Brian M. & Vigne, Samuel A., 2023. "Cryptocurrency uncertainty and volatility forecasting of precious metal futures markets," Journal of Commodity Markets, Elsevier, vol. 29(C).
    16. Psaradellis, Ioannis & Sermpinis, Georgios, 2016. "Modelling and trading the U.S. implied volatility indices. Evidence from the VIX, VXN and VXD indices," International Journal of Forecasting, Elsevier, vol. 32(4), pages 1268-1283.
    17. Dunis, Christian & Kellard, Neil M. & Snaith, Stuart, 2013. "Forecasting EUR–USD implied volatility: The case of intraday data," Journal of Banking & Finance, Elsevier, vol. 37(12), pages 4943-4957.
    18. Herrera, Ana María & Hu, Liang & Pastor, Daniel, 2018. "Forecasting crude oil price volatility," International Journal of Forecasting, Elsevier, vol. 34(4), pages 622-635.
    19. Firat Melih Yilmaz & Ozer Arabaci, 2021. "Should Deep Learning Models be in High Demand, or Should They Simply be a Very Hot Topic? A Comprehensive Study for Exchange Rate Forecasting," Computational Economics, Springer;Society for Computational Economics, vol. 57(1), pages 217-245, January.
    20. Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & Stéphane Surprenant, 2022. "How is machine learning useful for macroeconomic forecasting?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(5), pages 920-964, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:258:y:2017:i:1:p:372-384. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.