0. The solution is strictly stationary and ergodic, and the causal expansion of the family of GARCH processes is also established. Furthermore, the necessary and sufficient condition for the existence of the moments is obtained. The technique used in this paper for the moment conditions is different to that used in He and Terasvirta (1999a), and avoids the assumption that the process started at some finite value infinitely many periods ago. Moreover, the conditions for the strict stationarity of the model and the existence of its moments are simple to check and should prove useful in practice.
(This abstract was borrowed from another version of this item.)"> 0. The solution is strictly stationary and ergodic, and the causal expansion of the family of GARCH processes is also established. Furthermore, the necessary and sufficient condition for the existence of the moments is obtained. The technique used in this paper for the moment conditions is different to that used in He and Terasvirta (1999a), and avoids the assumption that the process started at some finite value infinitely many periods ago. Moreover, the conditions for the strict stationarity of the model and the existence of its moments are simple to check and should prove useful in practice.
(This abstract was borrowed from another version of this item.)">
[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
IDEAS home Printed from https://ideas.repec.org/a/eee/econom/v106y2002i1p109-117.html
   My bibliography  Save this article

Stationarity and the existence of moments of a family of GARCH processes

Author

Listed:
  • Ling, Shiqing
  • McAleer, Michael
Abstract
This paper investigates some structural properties of a family of GARCH processes. A simple sufficient condition for the existence of the alpha delta-order stationary solution of the processes is derived, where alpha belongs to (0,1] and delta > 0. The solution is strictly stationary and ergodic, and the causal expansion of the family of GARCH processes is also established. Furthermore, the necessary and sufficient condition for the existence of the moments is obtained. The technique used in this paper for the moment conditions is different to that used in He and Terasvirta (1999a), and avoids the assumption that the process started at some finite value infinitely many periods ago. Moreover, the conditions for the strict stationarity of the model and the existence of its moments are simple to check and should prove useful in practice.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Ling, Shiqing & McAleer, Michael, 2002. "Stationarity and the existence of moments of a family of GARCH processes," Journal of Econometrics, Elsevier, vol. 106(1), pages 109-117, January.
  • Handle: RePEc:eee:econom:v:106:y:2002:i:1:p:109-117
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304-4076(01)00090-2
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Yang, Minxian & Bewley, Ronald, 1995. "Moving average conditional heteroskedastic processes," Economics Letters, Elsevier, vol. 49(4), pages 367-372, October.
    2. Ding, Zhuanxin & Granger, Clive W. J. & Engle, Robert F., 1993. "A long memory property of stock market returns and a new model," Journal of Empirical Finance, Elsevier, vol. 1(1), pages 83-106, June.
    3. Ling, Shiqing & McAleer, Michael, 2002. "NECESSARY AND SUFFICIENT MOMENT CONDITIONS FOR THE GARCH(r,s) AND ASYMMETRIC POWER GARCH(r,s) MODELS," Econometric Theory, Cambridge University Press, vol. 18(3), pages 722-729, June.
    4. He, Changli & Teräsvirta, Timo, 1999. "FOURTH MOMENT STRUCTURE OF THE GARCH(p,q) PROCESS," Econometric Theory, Cambridge University Press, vol. 15(6), pages 824-846, December.
    5. repec:bla:jfinan:v:44:y:1989:i:5:p:1115-53 is not listed on IDEAS
    6. Zakoian, Jean-Michel, 1994. "Threshold heteroskedastic models," Journal of Economic Dynamics and Control, Elsevier, vol. 18(5), pages 931-955, September.
    7. Fornari, Fabio & Mele, Antonio, 1997. "Sign- and Volatility-Switching ARCH Models: Theory and Applications to International Stock Markets," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 12(1), pages 49-65, Jan.-Feb..
    8. Glosten, Lawrence R & Jagannathan, Ravi & Runkle, David E, 1993. "On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks," Journal of Finance, American Finance Association, vol. 48(5), pages 1779-1801, December.
    9. Enrique Sentana, 1995. "Quadratic ARCH Models," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 62(4), pages 639-661.
    10. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    11. Bougerol, Philippe & Picard, Nico, 1992. "Stationarity of Garch processes and of some nonnegative time series," Journal of Econometrics, Elsevier, vol. 52(1-2), pages 115-127.
    12. Engle, Robert F, 1990. "Stock Volatility and the Crash of '87: Discussion," The Review of Financial Studies, Society for Financial Studies, vol. 3(1), pages 103-106.
    13. He, Changli & Terasvirta, Timo, 1999. "Properties of moments of a family of GARCH processes," Journal of Econometrics, Elsevier, vol. 92(1), pages 173-192, September.
    14. Karanasos, Menelaos, 1999. "The second moment and the autocovariance function of the squared errors of the GARCH model," Journal of Econometrics, Elsevier, vol. 90(1), pages 63-76, May.
    15. Nelson, Daniel B., 1990. "Stationarity and Persistence in the GARCH(1,1) Model," Econometric Theory, Cambridge University Press, vol. 6(3), pages 318-334, September.
    16. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stelios Arvanitis & Antonis Demos, 2004. "Time Dependence and Moments of a Family of Time‐Varying Parameter Garch in Mean Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 25(1), pages 1-25, January.
    2. Franses,Philip Hans & Dijk,Dick van, 2000. "Non-Linear Time Series Models in Empirical Finance," Cambridge Books, Cambridge University Press, number 9780521779654.
    3. He, Changli & Terasvirta, Timo, 1999. "Properties of moments of a family of GARCH processes," Journal of Econometrics, Elsevier, vol. 92(1), pages 173-192, September.
    4. Carol Alexander & Emese Lazar & Silvia Stanescu, 2010. "Analytic Moments for GARCH Processes," ICMA Centre Discussion Papers in Finance icma-dp2011-07, Henley Business School, University of Reading, revised Apr 2011.
    5. W. K. Li & Shiqing Ling & Michael McAleer, 2001. "A Survey of Recent Theoretical Results for Time Series Models with GARCH Errors," ISER Discussion Paper 0545, Institute of Social and Economic Research, Osaka University.
    6. Tim Bollerslev, 2008. "Glossary to ARCH (GARCH)," CREATES Research Papers 2008-49, Department of Economics and Business Economics, Aarhus University.
    7. Dominique Guegan & Bertrand K. Hassani, 2019. "Risk Measurement," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-02119256, HAL.
    8. LeBaron, Blake, 2003. "Non-Linear Time Series Models in Empirical Finance,: Philip Hans Franses and Dick van Dijk, Cambridge University Press, Cambridge, 2000, 296 pp., Paperback, ISBN 0-521-77965-0, $33, [UK pound]22.95, [," International Journal of Forecasting, Elsevier, vol. 19(4), pages 751-752.
    9. Degiannakis, Stavros & Xekalaki, Evdokia, 2004. "Autoregressive Conditional Heteroskedasticity (ARCH) Models: A Review," MPRA Paper 80487, University Library of Munich, Germany.
    10. Liang Peng & Rainer Schulz, 2013. "Does the Diversification Potential of Securitized Real Estate Vary Over Time and Should Investors Care?," The Journal of Real Estate Finance and Economics, Springer, vol. 47(2), pages 310-340, August.
    11. Felix Chan & Michael McAleer, 2002. "Maximum likelihood estimation of STAR and STAR-GARCH models: theory and Monte Carlo evidence," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(5), pages 509-534.
    12. Lee, O. & Shin, D.W., 2005. "On stationarity and [beta]-mixing property of certain nonlinear GARCH(p,q) models," Statistics & Probability Letters, Elsevier, vol. 73(1), pages 25-35, June.
    13. Li, Ming-Yuan Leon, 2008. "Clarifying the dynamics of the relationship between option and stock markets using the threshold vector error correction model," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(3), pages 511-520.
    14. Carnero, María Ángeles, 2001. "Outliers and conditional autoregressive heteroscedasticity in time series," DES - Working Papers. Statistics and Econometrics. WS ws010704, Universidad Carlos III de Madrid. Departamento de Estadística.
    15. Alexander, Carol & Lazar, Emese & Stanescu, Silvia, 2021. "Analytic moments for GJR-GARCH (1, 1) processes," International Journal of Forecasting, Elsevier, vol. 37(1), pages 105-124.
    16. Köksal, Bülent, 2009. "A Comparison of Conditional Volatility Estimators for the ISE National 100 Index Returns," MPRA Paper 30510, University Library of Munich, Germany.
    17. Dennis Kristensen, 2009. "On stationarity and ergodicity of the bilinear model with applications to GARCH models," Journal of Time Series Analysis, Wiley Blackwell, vol. 30(1), pages 125-144, January.
    18. Carol Alexander & Emese Lazar, 2009. "Modelling Regime‐Specific Stock Price Volatility," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 71(6), pages 761-797, December.
    19. Bildirici, Melike & Ersin, Özgür, 2012. "Nonlinear volatility models in economics: smooth transition and neural network augmented GARCH, APGARCH, FIGARCH and FIAPGARCH models," MPRA Paper 40330, University Library of Munich, Germany, revised May 2012.
    20. Alistair Mees & Berndt Pilgram, 2000. "Non-Linear Markov Modelling Using Canonical Variate Analysis: Forecasting Exchange Rate Volatility," Econometric Society World Congress 2000 Contributed Papers 1162, Econometric Society.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:econom:v:106:y:2002:i:1:p:109-117. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jeconom .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.