[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i8p1237-d790120.html
   My bibliography  Save this article

Comparison of HP Filter and the Hamilton’s Regression

Author

Listed:
  • Melina Dritsaki

    (Department of Economics, University of Western Macedonia, 52100 Kastoria, Greece)

  • Chaido Dritsaki

    (Department of Accounting and Finance, University of Western Macedonia, 50100 Kozani, Greece)

Abstract
In this paper we examine if the use of Hamilton’s regression filter significantly modifies the cyclical components concerning unemployment in Greece compared with those using the Hodrick–Prescott double filter (HP). Hamilton suggested the use of a regression filter in order to overcome some of the drawbacks of the HP filter, which contains the presence of false cycles, the bias in the end of the sample, and the ad-hoc assumptions for the parameters’ smoothing. Thus, our paper examines two widely used detrending methods for the extraction of cyclical components, including techniques of deterministic detrending as well as stochastic detrending. Using quarterly data for the unemployment of Greece in a macroeconomic model decomposition, we indicate that trend components and cycle components of Hamilton’s filter regression led to significantly larger cycle volatilities than those from the HP filter. The dynamic forecasting in the sample, occurred both with autoregressive forecasting, that yields steady forecasts for a wide variety of non-stationary procedures, and with the HP filter, along with its constraints at the end of the time series. The results of the paper showed that the dynamic forecasting of the HP filter is better than that of Hamilton’s in all assessment measures.

Suggested Citation

  • Melina Dritsaki & Chaido Dritsaki, 2022. "Comparison of HP Filter and the Hamilton’s Regression," Mathematics, MDPI, vol. 10(8), pages 1-18, April.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:8:p:1237-:d:790120
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/8/1237/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/8/1237/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Peter C. B. Phillips & Zhentao Shi, 2021. "Boosting: Why You Can Use The Hp Filter," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 62(2), pages 521-570, May.
    2. Peter R. Winters, 1960. "Forecasting Sales by Exponentially Weighted Moving Averages," Management Science, INFORMS, vol. 6(3), pages 324-342, April.
    3. Marianne Baxter & Robert G. King, 1999. "Measuring Business Cycles: Approximate Band-Pass Filters For Economic Time Series," The Review of Economics and Statistics, MIT Press, vol. 81(4), pages 575-593, November.
    4. Nelson, Charles R & Kang, Heejoon, 1981. "Spurious Periodicity in Inappropriately Detrended Time Series," Econometrica, Econometric Society, vol. 49(3), pages 741-751, May.
    5. Milton Friedman, 1957. "Introduction to "A Theory of the Consumption Function"," NBER Chapters, in: A Theory of the Consumption Function, pages 1-6, National Bureau of Economic Research, Inc.
    6. Backus, David K & Kehoe, Patrick J, 1992. "International Evidence of the Historical Properties of Business Cycles," American Economic Review, American Economic Association, vol. 82(4), pages 864-888, September.
    7. Hodrick, Robert J & Prescott, Edward C, 1997. "Postwar U.S. Business Cycles: An Empirical Investigation," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 29(1), pages 1-16, February.
    8. Lucas, Robert E, Jr, 1980. "Methods and Problems in Business Cycle Theory," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 12(4), pages 696-715, November.
    9. Harvey, A C & Jaeger, A, 1993. "Detrending, Stylized Facts and the Business Cycle," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 8(3), pages 231-247, July-Sept.
    10. Òscar Jordà & Moritz Schularick & Alan M. Taylor, 2016. "The great mortgaging: housing finance, crises and business cycles," Economic Policy, CEPR, CESifo, Sciences Po;CES;MSH, vol. 31(85), pages 107-152.
    11. Moritz Schularick & Alan Taylor & Oscar Jorda, 2016. "The Great Mortgaging," 2016 Meeting Papers 185, Society for Economic Dynamics.
    12. Josefine Quast & Maik H. Wolters, 2022. "Reliable Real-Time Output Gap Estimates Based on a Modified Hamilton Filter," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 40(1), pages 152-168, January.
    13. Pedersen, Torben Mark, 2001. "The Hodrick-Prescott filter, the Slutzky effect, and the distortionary effect of filters," Journal of Economic Dynamics and Control, Elsevier, vol. 25(8), pages 1081-1101, August.
    14. Mathias Drehmann & James Yetman, 2021. "Which Credit Gap Is Better at Predicting Financial Crises? A Comparison of Univariate Filters," International Journal of Central Banking, International Journal of Central Banking, vol. 17(70), pages 1-31, October.
    15. Mohr, Matthias, 2001. "Ein disaggregierter Ansatz zur Berechnung konjunkturbereinigter Budgetsalden für Deutschland: Methoden und Ergebnisse," Discussion Paper Series 1: Economic Studies 2001,13, Deutsche Bundesbank.
    16. den Haan, Wouter J., 2000. "The comovement between output and prices," Journal of Monetary Economics, Elsevier, vol. 46(1), pages 3-30, August.
    17. James D. Hamilton, 2018. "Why You Should Never Use the Hodrick-Prescott Filter," The Review of Economics and Statistics, MIT Press, vol. 100(5), pages 831-843, December.
    18. Robert J. Hodrick, 2020. "An Exploration of Trend-Cycle Decomposition Methodologies in Simulated Data," NBER Working Papers 26750, National Bureau of Economic Research, Inc.
    19. King, Robert G. & Rebelo, Sergio T., 1993. "Low frequency filtering and real business cycles," Journal of Economic Dynamics and Control, Elsevier, vol. 17(1-2), pages 207-231.
    20. Milton Friedman, 1957. "A Theory of the Consumption Function," NBER Books, National Bureau of Economic Research, Inc, number frie57-1.
    21. Robert M. de Jong & Neslihan Sakarya, 2016. "The Econometrics of the Hodrick-Prescott Filter," The Review of Economics and Statistics, MIT Press, vol. 98(2), pages 310-317, May.
    22. Cogley, Timothy & Nason, James M., 1995. "Effects of the Hodrick-Prescott filter on trend and difference stationary time series Implications for business cycle research," Journal of Economic Dynamics and Control, Elsevier, vol. 19(1-2), pages 253-278.
    23. Nelson, Charles R. & Plosser, Charles I., 1982. "Trends and random walks in macroeconmic time series : Some evidence and implications," Journal of Monetary Economics, Elsevier, vol. 10(2), pages 139-162.
    24. Kristian Jönsson, 2020. "Real-time US GDP gap properties using Hamilton’s regression-based filter," Empirical Economics, Springer, vol. 59(1), pages 307-314, July.
    25. Chantal Dupasquier & Alain Guay & Pierre St-Amant, 1997. "A Comparison of Alternative Methodologies for Estimating Potential Output and the Output Gap," Staff Working Papers 97-5, Bank of Canada.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pablo Pincheira-Brown & Andrea Bentancor & Nicolás Hardy, 2023. "An Inconvenient Truth about Forecast Combinations," Mathematics, MDPI, vol. 11(18), pages 1-24, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hall, Viv B & Thomson, Peter, 2022. "A boosted HP filter for business cycle analysis: evidence from New Zealand’s small open economy," Working Paper Series 9473, Victoria University of Wellington, School of Economics and Finance.
    2. Viv B. Hall & Peter Thomson, 2022. "A boosted HP filter for business cycle analysis:evidence from New Zealand's small open economy," CAMA Working Papers 2022-45, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    3. Viv B. Hall & Peter Thomson, 2021. "Does Hamilton’s OLS Regression Provide a “better alternative” to the Hodrick-Prescott Filter? A New Zealand Business Cycle Perspective," Journal of Business Cycle Research, Springer;Centre for International Research on Economic Tendency Surveys (CIRET), vol. 17(2), pages 151-183, November.
    4. Robert J. Hodrick, 2020. "An Exploration of Trend-Cycle Decomposition Methodologies in Simulated Data," NBER Working Papers 26750, National Bureau of Economic Research, Inc.
    5. Aadland, David, 2005. "Detrending time-aggregated data," Economics Letters, Elsevier, vol. 89(3), pages 287-293, December.
    6. King, Robert G. & Rebelo, Sergio T., 1999. "Resuscitating real business cycles," Handbook of Macroeconomics, in: J. B. Taylor & M. Woodford (ed.), Handbook of Macroeconomics, edition 1, volume 1, chapter 14, pages 927-1007, Elsevier.
    7. Roberto Iannaccone & Edoardo Otranto, 2003. "Signal Extraction in Continuous Time and the Generalized Hodrick- Prescott Filter," Econometrics 0311002, University Library of Munich, Germany.
    8. Carnazza, Giovanni & Liberati, Paolo & Sacchi, Agnese, 2020. "The cyclically-adjusted primary balance: A novel approach for the euro area," Journal of Policy Modeling, Elsevier, vol. 42(5), pages 1123-1145.
    9. Sergey Sinelnikov-Murylev & Sergey Drobyshevsky & Maria Kazakova & Michael Alexeev, 2016. "Decomposition of Russia's GDP Growth Rates," Research Paper Series, Gaidar Institute for Economic Policy, issue 167P, pages 123-123.
    10. Yves Schueler, 2024. "Filtering economic time series: On the cyclical properties of Hamilton’s regression filter and the Hodrick-Prescott filter," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 54, October.
    11. Tawadros, George B., 2011. "The stylised facts of Australia's business cycle," Economic Modelling, Elsevier, vol. 28(1), pages 549-556.
    12. Alain Guay & Pierre St-Amant, 1996. "Do Mechanical Filters Provide a Good Approximation of Business Cycles?," Technical Reports 78, Bank of Canada.
    13. Biolsi, Christopher, 2023. "Do the Hamilton and Beveridge–Nelson filters provide the same information about output gaps? An empirical comparison for practitioners," Journal of Macroeconomics, Elsevier, vol. 75(C).
    14. Michaelides, Panayotis G. & Papageorgiou, Theofanis & Vouldis, Angelos T., 2013. "Business cycles and economic crisis in Greece (1960–2011): A long run equilibrium analysis in the Eurozone," Economic Modelling, Elsevier, vol. 31(C), pages 804-816.
    15. Maravall, A. & del Rio, A., 2007. "Temporal aggregation, systematic sampling, and the Hodrick-Prescott filter," Computational Statistics & Data Analysis, Elsevier, vol. 52(2), pages 975-998, October.
    16. Morana, Claudio, 2024. "A new macro-financial condition index for the euro area," Econometrics and Statistics, Elsevier, vol. 29(C), pages 64-87.
    17. Woitek, Ulrich, 2003. "Height cycles in the 18th and 19th centuries," Economics & Human Biology, Elsevier, vol. 1(2), pages 243-257, June.
    18. João Sousa Andrade & António Portugal Duarte, 2014. "Output-gaps in the PIIGS Economies: An Ingredient of a Greek Tragedy," GEMF Working Papers 2014-06, GEMF, Faculty of Economics, University of Coimbra.
    19. Ziwei Mei & Zhentao Shi & Peter C. B. Phillips, 2022. "The boosted HP filter is more general than you might think," Cowles Foundation Discussion Papers 2348, Cowles Foundation for Research in Economics, Yale University.
    20. Joël CARIOLLE, 2012. "Measuring macroeconomic volatility - Applications to export revenue data, 1970-2005," Working Papers I14, FERDI.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:8:p:1237-:d:790120. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.