Modelling volatility dependence with score copula models
Author
Suggested Citation
DOI: 10.1515/snde-2022-0006
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Robert F. Engle & Jose Gonzalo Rangel, 2008. "The Spline-GARCH Model for Low-Frequency Volatility and Its Global Macroeconomic Causes," The Review of Financial Studies, Society for Financial Studies, vol. 21(3), pages 1187-1222, May.
- Dungey, Mardi & Fry, Renee A. & Gonzalez-Hermosillo, Brenda & Martin, Vance L., 2011. "Transmission of Financial Crises and Contagion: A Latent Factor Approach," OUP Catalogue, Oxford University Press, number 9780199739837.
- Jacquier, Eric & Polson, Nicholas G & Rossi, Peter E, 2002.
"Bayesian Analysis of Stochastic Volatility Models,"
Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 69-87, January.
- Jacquier, Eric & Polson, Nicholas G & Rossi, Peter E, 1994. "Bayesian Analysis of Stochastic Volatility Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 12(4), pages 371-389, October.
- Opschoor, Anne & Lucas, André, 2021. "Observation-driven models for realized variances and overnight returns applied to Value-at-Risk and Expected Shortfall forecasting," International Journal of Forecasting, Elsevier, vol. 37(2), pages 622-633.
- Jacquier, Eric & Polson, Nicholas G & Rossi, Peter E, 1994. "Bayesian Analysis of Stochastic Volatility Models: Comments: Reply," Journal of Business & Economic Statistics, American Statistical Association, vol. 12(4), pages 413-417, October.
- Anne Opschoor & André Lucas & István Barra & Dick van Dijk, 2021.
"Closed-Form Multi-Factor Copula Models With Observation-Driven Dynamic Factor Loadings,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 39(4), pages 1066-1079, October.
- Anne Opschoor & André Lucas & Istvan Barra & Dick van Dijk, 2019. "Closed-Form Multi-Factor Copula Models with Observation-Driven Dynamic Factor Loadings," Tinbergen Institute Discussion Papers 19-013/IV, Tinbergen Institute, revised 23 Oct 2019.
- Mensah, Jones Odei & Alagidede, Paul, 2017.
"How are Africa's emerging stock markets related to advanced markets? Evidence from copulas,"
Economic Modelling, Elsevier, vol. 60(C), pages 1-10.
- Jones O. Mensah & Paul Alagidede, 2016. "How are Africa’s emerging stock markets related to advanced markets? Evidence from copulas," Working Papers 624, Economic Research Southern Africa.
- Bollerslev, Tim, 1986.
"Generalized autoregressive conditional heteroskedasticity,"
Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
- Tim Bollerslev, 1986. "Generalized autoregressive conditional heteroskedasticity," EERI Research Paper Series EERI RP 1986/01, Economics and Econometrics Research Institute (EERI), Brussels.
- Astrid Ayala & Szabolcs Blazsek & Adrian Licht, 2022. "Score-driven stochastic seasonality of the Russian rouble: an application case study for the period of 1999 to 2020," Empirical Economics, Springer, vol. 62(5), pages 2179-2203, May.
- Diebold, Francis X & Mariano, Roberto S, 2002.
"Comparing Predictive Accuracy,"
Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
- Diebold, Francis X & Mariano, Roberto S, 1995. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(3), pages 253-263, July.
- Francis X. Diebold & Roberto S. Mariano, 1994. "Comparing Predictive Accuracy," NBER Technical Working Papers 0169, National Bureau of Economic Research, Inc.
- Janus, Paweł & Koopman, Siem Jan & Lucas, André, 2014.
"Long memory dynamics for multivariate dependence under heavy tails,"
Journal of Empirical Finance, Elsevier, vol. 29(C), pages 187-206.
- Pawel Janus & Siem Jan Koopman & André Lucas, 2011. "Long Memory Dynamics for Multivariate Dependence under Heavy Tails," Tinbergen Institute Discussion Papers 11-175/2/DSF28, Tinbergen Institute.
- Szabolcs Blazsek & Han-Chiang Ho & Su-Ping Liu, 2018. "Score-driven Markov-switching EGARCH models: an application to systematic risk analysis," Applied Economics, Taylor & Francis Journals, vol. 50(56), pages 6047-6060, December.
- Glosten, Lawrence R & Jagannathan, Ravi & Runkle, David E, 1993.
"On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks,"
Journal of Finance, American Finance Association, vol. 48(5), pages 1779-1801, December.
- Lawrence R. Glosten & Ravi Jagannathan & David E. Runkle, 1993. "On the relation between the expected value and the volatility of the nominal excess return on stocks," Staff Report 157, Federal Reserve Bank of Minneapolis.
- Harvey, Andrew & Sucarrat, Genaro, 2014.
"EGARCH models with fat tails, skewness and leverage,"
Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 320-338.
- Harvey, A. & Sucarrat, G., 2012. "EGARCH models with fat tails, skewness and leverage," Cambridge Working Papers in Economics 1236, Faculty of Economics, University of Cambridge.
- Alanya-Beltran, Willy, 2022. "Modelling stock returns volatility with dynamic conditional score models and random shifts," Finance Research Letters, Elsevier, vol. 45(C).
- Astrid Ayala & Szabolcs Blazsek, 2018. "Score-driven copula models for portfolios of two risky assets," The European Journal of Finance, Taylor & Francis Journals, vol. 24(18), pages 1861-1884, December.
- De Lira Salvatierra, Irving & Patton, Andrew J., 2015.
"Dynamic copula models and high frequency data,"
Journal of Empirical Finance, Elsevier, vol. 30(C), pages 120-135.
- Irving Arturo De Lira Salvatierra & Andrew J. Patton, 2013. "Dynamic Copula Models and High Frequency Data," Working Papers 13-28, Duke University, Department of Economics.
- Amisano, Gianni & Giacomini, Raffaella, 2007.
"Comparing Density Forecasts via Weighted Likelihood Ratio Tests,"
Journal of Business & Economic Statistics, American Statistical Association, vol. 25, pages 177-190, April.
- Gianni Amisano & Raffaella Giacomini, 2005. "Comparing Density Forecsts via Weighted Likelihood Ratio Tests," Working Papers ubs0504, University of Brescia, Department of Economics.
- Mauro Bernardi & Leopoldo Catania, 2019. "Switching generalized autoregressive score copula models with application to systemic risk," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 34(1), pages 43-65, January.
- Linton, Oliver & Wu, Jianbin, 2020. "A coupled component DCS-EGARCH model for intraday and overnight volatility," Journal of Econometrics, Elsevier, vol. 217(1), pages 176-201.
- Drew Creal & Siem Jan Koopman & André Lucas, 2013. "Generalized Autoregressive Score Models With Applications," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 28(5), pages 777-795, August.
- Siem Jan Koopman & Rutger Lit & André Lucas & Anne Opschoor, 2018. "Dynamic discrete copula models for high‐frequency stock price changes," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 33(7), pages 966-985, November.
- Andrew J. Patton, 2006. "Modelling Asymmetric Exchange Rate Dependence," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 47(2), pages 527-556, May.
- Niţoi, Mihai & Pochea, Maria Miruna, 2020. "Time-varying dependence in European equity markets: A contagion and investor sentiment driven analysis," Economic Modelling, Elsevier, vol. 86(C), pages 133-147.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Ardia, David & Bluteau, Keven & Boudt, Kris & Catania, Leopoldo, 2018. "Forecasting risk with Markov-switching GARCH models:A large-scale performance study," International Journal of Forecasting, Elsevier, vol. 34(4), pages 733-747.
- Avdulaj, Krenar & Barunik, Jozef, 2015.
"Are benefits from oil–stocks diversification gone? New evidence from a dynamic copula and high frequency data,"
Energy Economics, Elsevier, vol. 51(C), pages 31-44.
- Krenar Avdulaj & Jozef Barunik, 2013. "Are benefits from oil - stocks diversification gone? New evidence from a dynamic copula and high frequency data," Papers 1307.5981, arXiv.org, revised Feb 2015.
- Avdulaj, Krenar & Barunik, Jozef, 2015. "Are benefits from oil-stocks diversification gone? New evidence from a dynamic copula and high frequency data," FinMaP-Working Papers 32, Collaborative EU Project FinMaP - Financial Distortions and Macroeconomic Performance: Expectations, Constraints and Interaction of Agents.
- Virbickaitė, Audronė & Nguyen, Hoang & Tran, Minh-Ngoc, 2023.
"Bayesian predictive distributions of oil returns using mixed data sampling volatility models,"
Resources Policy, Elsevier, vol. 86(PA).
- Virbickaite, Audrone & Nguyen, Hoang & Tran, Minh-Ngoc, 2023. "Bayesian Predictive Distributions of Oil Returns Using Mixed Data Sampling Volatility Models," Working Papers 2023:7, Örebro University, School of Business.
- Charles, Amélie & Darné, Olivier, 2017.
"Forecasting crude-oil market volatility: Further evidence with jumps,"
Energy Economics, Elsevier, vol. 67(C), pages 508-519.
- Amélie Charles & Olivier Darné, 2017. "Forecasting crude-oil market volatility: Further evidence with jumps," Post-Print hal-01598141, HAL.
- Blasques, Francisco & van Brummelen, Janneke & Koopman, Siem Jan & Lucas, André, 2022.
"Maximum likelihood estimation for score-driven models,"
Journal of Econometrics, Elsevier, vol. 227(2), pages 325-346.
- Francisco Blasques & Siem Jan Koopman & Andre Lucas, 2014. "Maximum Likelihood Estimation for Score-Driven Models," Tinbergen Institute Discussion Papers 14-029/III, Tinbergen Institute, revised 23 Oct 2017.
- Giovanni Bonaccolto & Massimiliano Caporin, 2016. "The Determinants of Equity Risk and Their Forecasting Implications: A Quantile Regression Perspective," JRFM, MDPI, vol. 9(3), pages 1-25, July.
- Mauro Bernardi & Leopoldo Catania, 2015. "Switching-GAS Copula Models With Application to Systemic Risk," Papers 1504.03733, arXiv.org, revised Jan 2016.
- Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022.
"Forecasting: theory and practice,"
International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
- Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
- Roy Cerqueti & Massimiliano Giacalone & Raffaele Mattera, 2020. "Skewed non-Gaussian GARCH models for cryptocurrencies volatility modelling," Papers 2004.11674, arXiv.org.
- Catania, Leopoldo & Proietti, Tommaso, 2020.
"Forecasting volatility with time-varying leverage and volatility of volatility effects,"
International Journal of Forecasting, Elsevier, vol. 36(4), pages 1301-1317.
- Leopoldo Catania & Tommaso Proietti, 2019. "Forecasting Volatility with Time-Varying Leverage and Volatility of Volatility Effects," CEIS Research Paper 450, Tor Vergata University, CEIS, revised 06 Feb 2019.
- Harvey,Andrew C., 2013.
"Dynamic Models for Volatility and Heavy Tails,"
Cambridge Books,
Cambridge University Press, number 9781107034723, September.
- Harvey,Andrew C., 2013. "Dynamic Models for Volatility and Heavy Tails," Cambridge Books, Cambridge University Press, number 9781107630024, September.
- Mohamed CHIKHI & Claude DIEBOLT & Tapas MISHRA, 2019.
"Memory that Drives! New Insights into Forecasting Performance of Stock Prices from SEMIFARMA-AEGAS Model,"
Working Papers
07-19, Association Française de Cliométrie (AFC).
- Mohamed Chikhi & Claude Diebolt & Tapas Mishra, 2019. "Memory that Drives! New Insights into Forecasting Performance of Stock Prices from SEMIFARMA-AEGAS Model," Working Papers of BETA 2019-24, Bureau d'Economie Théorique et Appliquée, UDS, Strasbourg.
- Krenar AVDULAJ & Jozef BARUNIK, 2013.
"Can We Still Benefit from International Diversification? The Case of the Czech and German Stock Markets,"
Czech Journal of Economics and Finance (Finance a uver), Charles University Prague, Faculty of Social Sciences, vol. 63(5), pages 425-442, November.
- Krenar Avdulaj & Jozef Barunik, 2013. "Can we still benefit from international diversification? The case of the Czech and German stock markets," Papers 1308.6120, arXiv.org, revised Sep 2013.
- Astrid Ayala & Szabolcs Blazsek, 2018. "Equity market neutral hedge funds and the stock market: an application of score-driven copula models," Applied Economics, Taylor & Francis Journals, vol. 50(37), pages 4005-4023, August.
- Chang, Kuang-Liang, 2023. "The low-magnitude and high-magnitude asymmetries in tail dependence structures in international equity markets and the role of bilateral exchange rate," Journal of International Money and Finance, Elsevier, vol. 133(C).
- De Lira Salvatierra, Irving & Patton, Andrew J., 2015.
"Dynamic copula models and high frequency data,"
Journal of Empirical Finance, Elsevier, vol. 30(C), pages 120-135.
- Irving Arturo De Lira Salvatierra & Andrew J. Patton, 2013. "Dynamic Copula Models and High Frequency Data," Working Papers 13-28, Duke University, Department of Economics.
- Catania, Leopoldo & Grassi, Stefano, 2022. "Forecasting cryptocurrency volatility," International Journal of Forecasting, Elsevier, vol. 38(3), pages 878-894.
- Franses,Philip Hans & Dijk,Dick van, 2000.
"Non-Linear Time Series Models in Empirical Finance,"
Cambridge Books,
Cambridge University Press, number 9780521779654.
- Franses,Philip Hans & Dijk,Dick van, 2000. "Non-Linear Time Series Models in Empirical Finance," Cambridge Books, Cambridge University Press, number 9780521770415, September.
- Mohamed CHIKHI & Claude DIEBOLT & Tapas MISHRA, 2019. "Does Predictive Ability of an Asset Price Rest in 'Memory'? Insights from a New Approach," Working Papers of BETA 2019-43, Bureau d'Economie Théorique et Appliquée, UDS, Strasbourg.
- Torben G. Andersen & Tim Bollerslev & Peter F. Christoffersen & Francis X. Diebold, 2005.
"Volatility Forecasting,"
PIER Working Paper Archive
05-011, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
- Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2005. "Volatility forecasting," CFS Working Paper Series 2005/08, Center for Financial Studies (CFS).
- Torben G. Andersen & Tim Bollerslev & Peter F. Christoffersen & Francis X. Diebold, 2005. "Volatility Forecasting," NBER Working Papers 11188, National Bureau of Economic Research, Inc.
More about this item
Keywords
emerging markets; score-driven copulas; stock returns; two-components;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:sndecm:v:27:y:2023:i:5:p:649-668:n:5. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.