[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
IDEAS home Printed from https://ideas.repec.org/a/aea/aecrev/v97y2007i3p890-915.html
   My bibliography  Save this article

Meeting Strangers and Friends of Friends: How Random Are Social Networks?

Author

Listed:
  • Matthew O. Jackson
  • Brian W. Rogers
Abstract
We present a dynamic model of network formation where nodes find other nodes with whom to form links in two ways: some are found uniformly at random, while others are found by searching locally through the current structure of the network (e.g., meeting friends of friends). This combination of meeting processes results in a spectrum of features exhibited by large social networks, including the presence of more high- and low-degree nodes than when links are formed independently at random, having low distances between nodes in the network, and having high clustering of links on a local level. We fit the model to data from six networks and impute the relative ratio of random to network-based meetings in link formation, which turns out to vary dramatically across applications. We show that as the random/network-based meeting ratio varies, the resulting degree distributions can be ordered in the sense of stochastic dominance, which allows us to infer how the formation process affects average utility in the network. (JEL D85, Z13)

Suggested Citation

  • Matthew O. Jackson & Brian W. Rogers, 2007. "Meeting Strangers and Friends of Friends: How Random Are Social Networks?," American Economic Review, American Economic Association, vol. 97(3), pages 890-915, June.
  • Handle: RePEc:aea:aecrev:v:97:y:2007:i:3:p:890-915
    Note: DOI: 10.1257/aer.97.3.890
    as

    Download full text from publisher

    File URL: http://www.aeaweb.org/articles.php?doi=10.1257/aer.97.3.890
    Download Restriction: no

    File URL: http://www.aeaweb.org/aer/data/june07/20050069_data.zip
    Download Restriction: Access to full text is restricted to AEA members and institutional subscribers.
    ---><---

    References listed on IDEAS

    as
    1. Réka Albert & Hawoong Jeong & Albert-László Barabási, 1999. "Diameter of the World-Wide Web," Nature, Nature, vol. 401(6749), pages 130-131, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohd-Zaid, Fairul & Kabban, Christine M. Schubert & Deckro, Richard F. & White, Edward D., 2017. "Parameter specification for the degree distribution of simulated Barabási–Albert graphs," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 465(C), pages 141-152.
    2. Chen, Shu-Heng & Chang, Chia-Ling & Wen, Ming-Chang, 2014. "Social networks and macroeconomic stability," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 8, pages 1-40.
    3. Zhang, Wen-Yao & Wei, Zong-Wen & Wang, Bing-Hong & Han, Xiao-Pu, 2016. "Measuring mixing patterns in complex networks by Spearman rank correlation coefficient," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 451(C), pages 440-450.
    4. Pi, Xiaochen & Tang, Longkun & Chen, Xiangzhong, 2021. "A directed weighted scale-free network model with an adaptive evolution mechanism," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 572(C).
    5. He, He & Yang, Bo & Hu, Xiaoming, 2016. "Exploring community structure in networks by consensus dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 450(C), pages 342-353.
    6. Long Ma & Xiao Han & Zhesi Shen & Wen-Xu Wang & Zengru Di, 2015. "Efficient Reconstruction of Heterogeneous Networks from Time Series via Compressed Sensing," PLOS ONE, Public Library of Science, vol. 10(11), pages 1-12, November.
    7. Blagus, Neli & Šubelj, Lovro & Bajec, Marko, 2012. "Self-similar scaling of density in complex real-world networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(8), pages 2794-2802.
    8. Elias Carroni & Paolo Pin & Simone Righi, 2020. "Bring a Friend! Privately or Publicly?," Management Science, INFORMS, vol. 66(5), pages 2269-2290, May.
    9. Kaihao Liang & Shuliang Li & Wenfeng Zhang & Zhuokui Wu & Jiaying He & Mengmeng Li & Yuling Wang, 2024. "Evolution of Complex Network Topology for Chinese Listed Companies Under the COVID-19 Pandemic," Computational Economics, Springer;Society for Computational Economics, vol. 63(3), pages 1121-1136, March.
    10. Biggiero, Lucio & Angelini, Pier Paolo, 2015. "Hunting scale-free properties in R&D collaboration networks: Self-organization, power-law and policy issues in the European aerospace research area," Technological Forecasting and Social Change, Elsevier, vol. 94(C), pages 21-43.
    11. Duan, Shuyu & Wen, Tao & Jiang, Wen, 2019. "A new information dimension of complex network based on Rényi entropy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 516(C), pages 529-542.
    12. Dávid Csercsik & Sándor Imre, 2017. "Cooperation and coalitional stability in decentralized wireless networks," Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 64(4), pages 571-584, April.
    13. Baek, Seung Ki & Kim, Tae Young & Kim, Beom Jun, 2008. "Testing a priority-based queue model with Linux command histories," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(14), pages 3660-3668.
    14. Jing Yang & Yingwu Chen, 2011. "Fast Computing Betweenness Centrality with Virtual Nodes on Large Sparse Networks," PLOS ONE, Public Library of Science, vol. 6(7), pages 1-5, July.
    15. Freddy Hernán Cepeda López, 2008. "La topología de redes como herramienta de seguimiento en el Sistema de Pagos de Alto Valor en Colombia," Borradores de Economia 513, Banco de la Republica de Colombia.
    16. Chung-Yuan Huang & Chuen-Tsai Sun & Hsun-Cheng Lin, 2005. "Influence of Local Information on Social Simulations in Small-World Network Models," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 8(4), pages 1-8.
    17. Xiang, Wang, 2023. "Strong ties or structural holes? A distance distribution perspective," Economics Letters, Elsevier, vol. 229(C).
    18. Xue Guo & Hu Zhang & Tianhai Tian, 2019. "Multi-Likelihood Methods for Developing Stock Relationship Networks Using Financial Big Data," Papers 1906.08088, arXiv.org.
    19. Chang, Chia-ling & Chen, Shu-heng, 2011. "Interactions in DSGE models: The Boltzmann-Gibbs machine and social networks approach," Economics Discussion Papers 2011-25, Kiel Institute for the World Economy (IfW Kiel).
    20. Lin, Yi & Zhang, Jianwei & Yang, Bo & Liu, Hong & Zhao, Liping, 2019. "An optimal routing strategy for transport networks with minimal transmission cost and high network capacity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 521(C), pages 551-561.

    More about this item

    JEL classification:

    • D85 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Network Formation
    • Z13 - Other Special Topics - - Cultural Economics - - - Economic Sociology; Economic Anthropology; Language; Social and Economic Stratification

    Lists

    This item is featured on the following reading lists, Wikipedia, or ReplicationWiki pages:
    1. Meeting Strangers and Friends of Friends: How Random Are Social Networks? (AER 2007) in ReplicationWiki

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aea:aecrev:v:97:y:2007:i:3:p:890-915. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Michael P. Albert (email available below). General contact details of provider: https://edirc.repec.org/data/aeaaaea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.