[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
IDEAS home Printed from https://ideas.repec.org/a/cup/jfinqa/v37y2002i02p271-295_00.html
   My bibliography  Save this article

Asset Pricing under the Quadratic Class

Author

Listed:
  • Leippold, Markus
  • Wu, Liuren
Abstract
We identify and characterize a class of term structure models where bond yields are quadratic functions of the state vector. We label this class the quadratic class and aim to lay a solid theoretical foundation for its future empirical application. We consider asset pricing in general and derivative pricing in particular under the quadratic class. We provide two general transform methods in pricing a wide variety of fixed income derivatives in closed or semi-closed form. We further illustrate how the quadratic model and the transform methods can be applied to more general settings.

Suggested Citation

  • Leippold, Markus & Wu, Liuren, 2002. "Asset Pricing under the Quadratic Class," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 37(2), pages 271-295, June.
  • Handle: RePEc:cup:jfinqa:v:37:y:2002:i:02:p:271-295_00
    as

    Download full text from publisher

    File URL: https://www.cambridge.org/core/product/identifier/S0022109000001460/type/journal_article
    File Function: link to article abstract page
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Ait-Sahalia, Yacine, 1996. "Testing Continuous-Time Models of the Spot Interest Rate," The Review of Financial Studies, Society for Financial Studies, vol. 9(2), pages 385-426.
    2. David A. Chapman & Neil D. Pearson, 2000. "Is the Short Rate Drift Actually Nonlinear?," Journal of Finance, American Finance Association, vol. 55(1), pages 355-388, February.
    3. Tomas Björk & Bent Jesper Christensen, 1999. "Interest Rate Dynamics and Consistent Forward Rate Curves," Mathematical Finance, Wiley Blackwell, vol. 9(4), pages 323-348, October.
    4. David A. Chapman & Neil D. Pearson, 1998. "Is the Short Rate Drift Actually Nonlinear?," Finance 9808005, University Library of Munich, Germany.
    5. Darrell Duffie & Jun Pan & Kenneth Singleton, 2000. "Transform Analysis and Asset Pricing for Affine Jump-Diffusions," Econometrica, Econometric Society, vol. 68(6), pages 1343-1376, November.
    6. Dong-Hyun Ahn & Robert F. Dittmar, 2002. "Quadratic Term Structure Models: Theory and Evidence," The Review of Financial Studies, Society for Financial Studies, vol. 15(1), pages 243-288, March.
    7. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    8. Conley, Timothy G, et al, 1997. "Short-Term Interest Rates as Subordinated Diffusions," The Review of Financial Studies, Society for Financial Studies, vol. 10(3), pages 525-577.
    9. Farshid Jamshidian, 1996. "Bond, futures and option evaluation in the quadratic interest rate model," Applied Mathematical Finance, Taylor & Francis Journals, vol. 3(2), pages 93-115.
    10. David K. Backus & Chris I. Telmer & Liuren Wu, 1999. "Design and Estimation of Affine Yield Models," GSIA Working Papers 5, Carnegie Mellon University, Tepper School of Business.
    11. Constantinides, George M, 1992. "A Theory of the Nominal Term Structure of Interest Rates," The Review of Financial Studies, Society for Financial Studies, vol. 5(4), pages 531-552.
    12. Bates, David S, 1996. "Jumps and Stochastic Volatility: Exchange Rate Processes Implicit in Deutsche Mark Options," The Review of Financial Studies, Society for Financial Studies, vol. 9(1), pages 69-107.
    13. Pfann, Gerard A. & Schotman, Peter C. & Tschernig, Rolf, 1996. "Nonlinear interest rate dynamics and implications for the term structure," Journal of Econometrics, Elsevier, vol. 74(1), pages 149-176, September.
    14. Markus Leippold & Liuren Wu, 1999. "The Potential Approach to Bond and Currency Pricing," Finance 9903004, University Library of Munich, Germany.
    15. Backus, David & Foresi, Silverio & Mozumdar, Abon & Wu, Liuren, 2001. "Predictable changes in yields and forward rates," Journal of Financial Economics, Elsevier, vol. 59(3), pages 281-311, March.
    16. Qiang Dai & Kenneth J. Singleton, 2001. "Expectation Puzzles, Time-varying Risk Premia, and Dynamic Models of the Term Structure," NBER Working Papers 8167, National Bureau of Economic Research, Inc.
    17. David K. Backus & Silverio Foresi & Chris I. Telmer, 2001. "Affine Term Structure Models and the Forward Premium Anomaly," Journal of Finance, American Finance Association, vol. 56(1), pages 279-304, February.
    18. Michael W. Brandt & Amir Yaron, 2003. "Time-Consistent No-Arbitrage Models of the Term Structure," NBER Working Papers 9458, National Bureau of Economic Research, Inc.
    19. Markus Leippold & Liuren Wu, 2003. "Design and Estimation of Quadratic Term Structure Models," Review of Finance, European Finance Association, vol. 7(1), pages 47-73.
    20. Gregory R. Duffee, 2002. "Term Premia and Interest Rate Forecasts in Affine Models," Journal of Finance, American Finance Association, vol. 57(1), pages 405-443, February.
    21. L. C. G. Rogers, 1997. "The Potential Approach to the Term Structure of Interest Rates and Foreign Exchange Rates," Mathematical Finance, Wiley Blackwell, vol. 7(2), pages 157-176, April.
    22. Bates, David S., 2000. "Post-'87 crash fears in the S&P 500 futures option market," Journal of Econometrics, Elsevier, vol. 94(1-2), pages 181-238.
    23. Chacko, George & Viceira, Luis M., 2003. "Spectral GMM estimation of continuous-time processes," Journal of Econometrics, Elsevier, vol. 116(1-2), pages 259-292.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Peng Cheng & Olivier Scaillet, 2002. "Linear-Quadratic Jump-Diffusion Modeling with Application to Stochastic Volatility," FAME Research Paper Series rp67, International Center for Financial Asset Management and Engineering.
    2. Enlin Pan & Liuren Wu, 2006. "Taking Positive Interest Rates Seriously," World Scientific Book Chapters, in: Cheng-Few Lee (ed.), Advances In Quantitative Analysis Of Finance And Accounting, chapter 14, pages 327-356, World Scientific Publishing Co. Pte. Ltd..
    3. Markus Leippold & Liuren Wu, 2003. "Design and Estimation of Quadratic Term Structure Models," Review of Finance, European Finance Association, vol. 7(1), pages 47-73.
    4. Peter Feldhütter & Christian Heyerdahl-Larsen & Philipp Illeditsch, 2018. "Risk Premia and Volatilities in a Nonlinear Term Structure Model [Quadratic term structure models: theory and evidence]," Review of Finance, European Finance Association, vol. 22(1), pages 337-380.
    5. Chen, Bin & Hong, Yongmiao, 2011. "Generalized spectral testing for multivariate continuous-time models," Journal of Econometrics, Elsevier, vol. 164(2), pages 268-293, October.
    6. repec:wyi:journl:002108 is not listed on IDEAS
    7. Zongwu Cai & Yongmiao Hong, 2013. "Some Recent Developments in Nonparametric Finance," Working Papers 2013-10-14, Wang Yanan Institute for Studies in Economics (WISE), Xiamen University.
    8. repec:wyi:journl:002109 is not listed on IDEAS
    9. Qiang Dai & Kenneth Singleton, 2003. "Term Structure Dynamics in Theory and Reality," The Review of Financial Studies, Society for Financial Studies, vol. 16(3), pages 631-678, July.
    10. H. Bertholon & A. Monfort & F. Pegoraro, 2008. "Econometric Asset Pricing Modelling," Journal of Financial Econometrics, Oxford University Press, vol. 6(4), pages 407-458, Fall.
    11. Duffie, Darrell, 2003. "Intertemporal asset pricing theory," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, edition 1, volume 1, chapter 11, pages 639-742, Elsevier.
    12. Torben G. Andersen & Luca Benzoni & Jesper Lund, 2002. "An Empirical Investigation of Continuous‐Time Equity Return Models," Journal of Finance, American Finance Association, vol. 57(3), pages 1239-1284, June.
    13. Cai, Lili & Swanson, Norman R., 2011. "In- and out-of-sample specification analysis of spot rate models: Further evidence for the period 1982-2008," Journal of Empirical Finance, Elsevier, vol. 18(4), pages 743-764, September.
    14. Satoshi Yamashita & Toshinao Yoshiba, 2013. "A collateralized loan's loss under a quadratic Gaussian default intensity process," Quantitative Finance, Taylor & Francis Journals, vol. 13(12), pages 1935-1946, December.
    15. Monica Gentile & Roberto Renò, 2002. "Which Model for the Italian Interest Rates?," LEM Papers Series 2002/02, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    16. Ngoc-Khanh Tran, 2019. "The Functional Stochastic Discount Factor," Quarterly Journal of Finance (QJF), World Scientific Publishing Co. Pte. Ltd., vol. 9(04), pages 1-49, December.
    17. MEDDAHI, Nour, 2001. "An Eigenfunction Approach for Volatility Modeling," Cahiers de recherche 2001-29, Universite de Montreal, Departement de sciences economiques.
    18. Cai, Zongwu & Hong, Yongmiao, 2003. "Nonparametric Methods in Continuous-Time Finance: A Selective Review," SFB 373 Discussion Papers 2003,15, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
    19. Kaeck, Andreas & Rodrigues, Paulo & Seeger, Norman J., 2017. "Equity index variance: Evidence from flexible parametric jump–diffusion models," Journal of Banking & Finance, Elsevier, vol. 83(C), pages 85-103.
    20. Ang, Andrew & Bekaert, Geert, 2002. "Short rate nonlinearities and regime switches," Journal of Economic Dynamics and Control, Elsevier, vol. 26(7-8), pages 1243-1274, July.
    21. Sanjay K. Nawalkha & Xiaoyang Zhuo, 2022. "A Theory of Equivalent Expectation Measures for Contingent Claim Returns," Journal of Finance, American Finance Association, vol. 77(5), pages 2853-2906, October.
    22. Chen, Bin & Song, Zhaogang, 2013. "Testing whether the underlying continuous-time process follows a diffusion: An infinitesimal operator-based approach," Journal of Econometrics, Elsevier, vol. 173(1), pages 83-107.

    More about this item

    JEL classification:

    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates
    • G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing
    • E43 - Macroeconomics and Monetary Economics - - Money and Interest Rates - - - Interest Rates: Determination, Term Structure, and Effects

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:jfinqa:v:37:y:2002:i:02:p:271-295_00. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kirk Stebbing (email available below). General contact details of provider: https://www.cambridge.org/jfq .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.