Fraens’ New Loom And The Limits Of 3D Printing

[Fraens] has been re-making industrial machines in fantastic 3D-printable versions for a few years now, and we’ve loved watching his creations get progressively more intricate. But with this nearly completely 3D-printable needle loom, he’s pushing right up against the edge of the possible.

The needle loom is a lot like the flying shuttle loom that started the Industrial Revolution, except for making belts or ribbons. It’s certainly among the most complex 3D-printed machines that we’ve ever seen, and [Fraens] himself says that it is pushing the limits of what’s doable in plastic — for more consistent webbing, he’d make some parts out of metal. But that’s quibbling; this thing is amazing.

There are mechanical details galore here. For instance, check out the cam-chain that raises, holds, and lowers arms to make the pattern. Equally important are the adjustable friction brakes on the rollers that hold the warp, that create a controlled constant tension on the strings.  (Don’t ask us, we had to Wikipedia it!) We can see that design coming in handy in some of our own projects.

On the aesthetic front, the simple but consistent choice of three colors for gears, arms, and frame make the build look super tidy. And the accents of two-color printing on the end caps is just the cherry on the top.

This is no small project, with eight-beds-worth of printed parts, plus all the screws, bearings, washers, etc. The models are for pay, but if you’re going to actually make this, that’s just a tiny fraction of the investment, and we think it’s going to a good home.

We are still thinking of making [Fraens]’s vibratory rock tumbler design, but check out all of his work if you’re interested in nice 3D-printed mechanical designs.

Continue reading “Fraens’ New Loom And The Limits Of 3D Printing”

Hackaday Links Column Banner

Hackaday Links: July 16, 2023

Last week, we noted an attempt to fix a hardware problem with software, which backfired pretty dramatically for Ford when they tried to counter the tendency for driveshafts to fall out of certain of their cars by automatically applying the electric parking brake.

This week, the story is a little different, but still illustrates how software and hardware can interact unpredictably, especially in the automotive space. The story centers on a 2015 Optima recall for a software update for the knock sensor detection system. We can’t find the specifics, but if this recall on a similar Kia model in the same model year range and a class-action lawsuit are any indication, the update looks like it would have made the KSDS more sensitive to worn connecting rod damage, and forced the car into “limp home mode” to limit damage to the engine if knocking is detected.

A clever solution to a mechanical problem? Perhaps, but because the Kia owner in the story claims not to have received the snail-mail recall notice, she got no warning when her bearings started wearing out. Result: a $6,000 bill for a new engine, which she was forced to cover out of pocket. Granted, this software fix isn’t quite as egregious as Ford’s workaround for weak driveshaft mounting bolts, and there may very well have been a lack of maintenance by the car’s owner. But if you’re a Kia mechanical engineer, wouldn’t your first instinct have been to fix the problem causing the rod bearings to wear out, rather than papering over the problem with software?

Continue reading “Hackaday Links: July 16, 2023”

An Open-Source 4-Shaft Portable Loom

Part of writing for Hackaday involves doing the rounds of our community’s events in search of amazing projects for your delectation. This weekend it was a trip to Maker Faire Delft, thanks to the wonders of the European Interail scheme. Once on the site, [Aslı Aydın Aksan]’s 4-shaft weaving loom immediately caught our eye. This is an open-source portable folding loom design. In weaving terms, shafts are sliding vertical frames. As the name implies, this loom has four, which allow different sets of warp threads to be brought to the surface of the weave at different times. This feature makes it capable of weaving complex patterns in the fabric and thus makes it a very interesting project indeed.

The frame of the loom is laser-cut ply, cunningly designed such that when not in use it can be folded into a compact unit. The attachments are all 3D-printed PLA in the prototypes, the comb is laser-cut acrylic, and the heddles are 3D printed in a flexible material. These last components conceal a further trick, they’re designed to be extra-easy to move between shafts on the fly, allowing even more complex patterns to be created.

All in all this is one of those special projects that comes out of the blue and raises the bar on all in its class. If there’s another 4-shaft loom this accessible, we’ve yet to hear of it.

It’s not the first loom we’ve covered, however, this one wasn’t nearly as accomplished.

An automatic loom

Desktop-Sized Fully Automatic Loom Is An Electromechanical Marvel

Weaving is one of the oldest crafts in the world, and was also among the first to be automated: the Industrial Revolution was in large part driven by developments in loom technology. [Roger de Meester] decided to recreate that part of the industry’s history, in a way, by building his own desktop-sized, fully automatic loom. After a long career in the textiles industry he’s quite the expert when it comes to weaving, and as you’ll see he’s also an expert machine builder.

[Roger]’s loom is of a specific type called a dobby loom, which means that the vertical threads (the warp) can be moved up and down in various ways to create different patterns in the fabric. The horizontal wires (the weft) are created by a shuttle moving left and right, carrying a bobbin that unspools as it travels. A comb-shaped plate (the reed) then fixes the fresh weft in its place. [Roger]’s videos (embedded below) clearly show this mechanism in action, as well as the loom’s overall design.

A detail of an automatic loom, showing the end of the weft being clamped as the shuttle starts its run
A clamp hold the end of the weft as the shuttle starts its run

The 3D printed shuttle is moved back and forth through the warp by a belt-driven system that grabs the magnetic end of the shuttle. Revolving storage drums on either side of the machine enable the use of different thread colors for each shuttle run. Shuttles are exchanged by a robotic arm that picks them up and places them onto the track; there’s a clamp that grabs the end of the thread as the shuttle starts its run, and a wire cutter to detach it when the shuttle is up for replacement.

This intricate mechanical dance is controlled by a set of Arduino Megas and Nanos. They drive all the servos, DC motors, and steppers while reading out an array of sensors and switches. The system can even detect several faults: the weft is checked for proper tension after each cycle, shuttles with empty bobbins are automatically discarded, while a laser keeps an eye on the warp to ensure none of the threads have snapped.

The entire machine is of [Roger]’s own design; apart from 3D-printed and CNC-machined parts, he also re-used components from various pieces of discarded machinery. His ultimate purpose is to use this machine to make specialized fabrics for medical or industrial use: for example, it can use conductive threads to make fabrics with built-in sensors.

Although this isn’t the first DIY automatic loom we’ve featured, it’s definitely the most advanced. Previous examples, like this 3D-printed miniature version or this neat computer-controlled one can’t really compare to [Roger]’s 26 cm reed width and wide customizability. If you prefer to keep things a bit simpler, you can also use a 3D-printer to directly print certain fabrics.

Continue reading “Desktop-Sized Fully Automatic Loom Is An Electromechanical Marvel”

The Surprisingly Manual Process Of Building Automotive Wire Harnesses

Even from the very earliest days of the automobile age, cars and trucks have been hybrids of mechanical and electrical design. For every piston sliding up and down in a cylinder, there’s a spark plug that needs to be fired at just the right time to make the engine work, and stepping on the brake pedal had better cause the brake lights to come on at the same time hydraulic pressure pinches the wheel rotors between the brake pads.

Without electrical connections, a useful motor vehicle is a practical impossibility. Even long before electricity started becoming the fuel of choice for vehicles, the wires that connect the computers, sensors, actuators, and indicators needed to run a vehicle’s systems were getting more and more complicated by the year. After the engine and the frame, a car’s wiring and electronics are its third most expensive component, and it’s estimated that by 2030, fully half of the average vehicle’s cost will be locked in its electrical system, up from 30% in 2010.

Making sure all those signals get where they’re going, and doing so in a safe and reliable way is the job of a vehicle’s wire harnesses, the bundles of wires that seemingly occupy every possible area of a modern car. The design and manufacturing of wire harnesses is a complex process that relies on specialized software, a degree of automation, and a surprising amount of people-power.

Continue reading “The Surprisingly Manual Process Of Building Automotive Wire Harnesses”

3D-Printed Power Loom Shows How Complex Weaving Really Is

The seemingly humble flying-shuttle loom, originally built to make the weaving of wide cloth faster and easier, stood at the threshold between the largely handcrafted world of the past and the automated world that followed. And judging by how much work went into this miniature 3D-printed power loom, not to mention how fussy it is, it’s a wonder that we’re not all still wearing homespun cloth.

Dealing with the warp and the weft of it all isn’t easy, as [Fraens] discovered with this build. The main idea with weaving is to raise alternate warp threads, which run with the length of the fabric, to create a virtual space, called the shed, through which a shuttle carrying the weft thread is passed. The weft thread is then pressed in place by a comb-like device called the reed, the heddles carrying the warp threads shift position, and the process is repeated.

[Fraens]’ version of the flying-shuttle loom is built mostly from 3D-printed parts, with a smattering of aluminum and acrylic. There are levers, shafts, and cams galore, not to mention the gears and sprockets that drive the mechanism via a 12-volt gear motor. The mechanism that moves the shuttle back and forth in the shed is particularly interesting; it uses cams to release the tension stored in elastic bands to flick the shuttle left and right. Shuttle timing is critical, as a few of the fails later in the video show. [Fraens] had to play with cam shape and lever arm length to get the timing right, not to mention having to resort to a chain drive to get enough torque to move the shuttle.

We’ve seen power looms before, but mainly those that operate at a somewhat more stately pace than this one. Hats off to [Fraens] for showing the true complexity involved in automating weaving.

Continue reading “3D-Printed Power Loom Shows How Complex Weaving Really Is”

The $50 Ham: Going Mobile

So far in this series, everything we’ve covered has been geared around the cheapest and easiest possible means of getting on the air: getting your Technician license, buying your first low-end portable transceiver, and checking in on the local repeater nets. That’s all good stuff, and chances are you can actually take all three of those steps and still have change left over from your $50 bill. Like I said, amateur radio doesn’t have to be expensive to be fun.

But at some point, every new ham is going to yearn for that first “real” rig, something with a little more oomph in terms of power, and perhaps with a few more features. For many Technicians, the obvious choice is a mobile rig, something that can be used to chat with fellow hams on the way to work, or to pass the time while on long road trips. Whatever your motivation is, once you buy a radio, you have to install it, and therein lie challenges galore, both electrical and mechanical.

I recently took the plunge on a mobile rig, and while the radio and antenna were an order of magnitude more expensive than $50, the process of installing it was pretty cheap. But it’s not the price of the thing that’s important in this series; rather, it’s to show that ham radio is all about doing it yourself, even when that means tearing your car apart from the inside out and rebuilding it around a radio.

Continue reading “The $50 Ham: Going Mobile”