10000 check base to decide whether singular supports the ring by mantepse · Pull Request #39112 · sagemath/sage · GitHub
[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to content

check base to decide whether singular supports the ring #39112

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
25 changes: 19 additions & 6 deletions src/sage/rings/polynomial/polynomial_singular_interface.py
Original file line number Diff line number Diff line change
Expand Up @@ -424,7 +424,20 @@ def can_convert_to_singular(R):
sage: R.<x,y> = Zmod(10^20 + 1)[]
sage: R._has_singular
True

Check that :issue:`39106` is fixed::

sage: s = SymmetricFunctions(QQ).s()
sage: R.<x> = PolynomialRing(s.fraction_field())
sage: can_convert_to_singular(R)
False
sage: R.<x, y> = PolynomialRing(s.fraction_field())
sage: can_convert_to_singular(R)
False
"""
from sage.rings.polynomial.multi_polynomial_ring import MPolynomialRing_base
from sage.rings.polynomial.polynomial_ring import PolynomialRing_general

if R.ngens() == 0:
return False

Expand All @@ -435,18 +448,18 @@ def can_convert_to_singular(R):
sage.rings.abc.RealField, sage.rings.abc.ComplexField,
sage.rings.abc.RealDoubleField, sage.rings.abc.ComplexDoubleField))):
return True
elif isinstance(base_ring, FiniteField):
if isinstance(base_ring, FiniteField):
return base_ring.characteristic() <= 2147483647
elif isinstance(base_ring, NumberField):
if isinstance(base_ring, NumberField):
return base_ring.is_absolute()
elif isinstance(base_ring, sage.rings.fraction_field.FractionField_generic):
if (isinstance(base_ring, sage.rings.fraction_field.FractionField_generic)
and isinstance(base_ring.base(), (PolynomialRing_general, MPolynomialRing_base))):
B = base_ring.base_ring()
return (B.is_prime_field() or B is ZZ
or (isinstance(B, FiniteField) and B.characteristic() <= 2147483647))
elif isinstance(base_ring, RationalFunctionField):
if isinstance(base_ring, RationalFunctionField):
return base_ring.constant_field().is_prime_field()
else:
return False
return False


class Polynomial_singular_repr:
Expand Down
Loading
0