8000 Open3D TSDF fusion and color map optimization by ahojnnes · Pull Request #1870 · colmap/colmap · GitHub
[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to content

Open3D TSDF fusion and color map optimization #1870

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Draft
wants to merge 1 commit into
base: main
Choose a base branch
from
Draft
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
146 changes: 146 additions & 0 deletions scripts/python/o3d_dense_fusion.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,146 @@
import os
import argparse

import numpy as np

from skimage.io import imsave

import open3d as o3d
from open3d.io import read_image, write_triangle_mesh
from open3d.camera import (
PinholeCameraIntrinsic,
PinholeCameraParameters,
PinholeCameraTrajectory,
)
from open3d.geometry import RGBDImage
from open3d.pipelines import integration, color_map

from read_write_model import read_model
from read_write_dense import read_array


# COLMAP models are normalized to [-10, 10] in x/y/z. Open3D expects depth maps
# discretized to 16 bits.
DEPTH_SCALE = 1000


def convert_depth_maps(dense_path, dense_type, images):
for i, image in enumerate(images.values()):
depth_map_path = os.path.join(dense_path, "stereo/depth_maps", image.name)
orig_path = f"{depth_map_path}.{dense_type}.bin"
converted_path = f"{depth_map_path}.{dense_type}.bin.png"
if os.path.exists(converted_path):
continue
print(f"Converting depth map for image: {image.name} [{i+1}/{len(images)}]")
depth_map = np.round(read_array(orig_path) * DEPTH_SCALE).astype(np.uint16)
depth_map[depth_map == 0] = np.iinfo(np.uint16).max
imsave(converted_path, depth_map)


def convert_to_o3d_camera_params(image, camera):
assert camera.model == "PINHOLE"
params = PinholeCameraParameters()
params.intrinsic = PinholeCameraIntrinsic(
width=camera.width,
height=camera.height,
fx=camera.params[0],
fy=camera.params[1],
cx=camera.params[2],
cy=camera.params[3],
)
extrinsic = np.eye(4)
extrinsic[:3, :3] = image.qvec2rotmat()
extrinsic[:3, 3] = image.tvec
params.extrinsic = extrinsic
return params


def run_o3d_texture_mapping(mesh, rgbd_images, camera_trajectory, max_depth):
with o3d.utility.VerbosityContextManager(o3d.utility.VerbosityLevel.Debug) as cm:
option = color_map.NonRigidOptimizerOption(
maximum_iteration=100, maximum_allowable_depth=max_depth,
)
optimized_mesh, _ = color_map.run_non_rigid_optimizer(
mesh, rgbd_images, camera_trajectory, option
)
return optimized_mesh


def main():
parser = argparse.ArgumentParser()
parser.add_argument("--dense_path", required=True)
parser.add_argument(
"--dense_type", default="photometric", choices=["photometric", "geometric"]
)
parser.add_argument("--voxel_length", type=float, default=0.03)
parser.add_argument("--sdf_trunc", type=float, default=0.1)
parser.add_argument("--max_depth", type=float, default=np.sqrt(10**3))
parser.add_argument("--debug", type=bool, default=False)
args = parser.parse_args()

cameras, images, _ = read_model(path=os.path.join(args.dense_path, "sparse"))
print(f"Loaded COLMAP dense model with {len(images)} images")

convert_depth_maps(args.dense_path, args.dense_type, images)

tsdf = integration.ScalableTSDFVolume(
voxel_length=args.voxel_length,
sdf_trunc=args.sdf_trunc,
color_type=integration.TSDFVolumeColorType.RGB8,
depth_sampling_stride=1,
)
camera_params_list = []
rgbd_images = []
for i, image in enumerate(images.values()):
print(f"Integrating {image.name} into TSDF volume [{i+1}/{len(images)}]")
rgb = read_image(os.path.join(args.dense_path, "images", image.name))
depth = read_image(
os.path.join(
args.dense_path,
"stereo/depth_maps",
f"{image.name}.{args.dense_type}.bin.png",
)
)
rgbd_image = RGBDImage.create_from_color_and_depth(
rgb,
depth,
depth_scale=DEPTH_SCALE,
depth_trunc=args.max_depth,
convert_rgb_to_intensity=False,
)
camera_params = convert_to_o3d_camera_params(image, cameras[image.camera_id])

tsdf.integrate(
rgbd_image,
camera_params.intrinsic,
camera_params.extrinsic,
)

camera_params_list.append(camera_params)
rgbd_images.append(rgbd_image)

if args.debug:
pcd = o3d.geometry.PointCloud.create_from_rgbd_image(
rgbd_image, camera_params.intrinsic
)
o3d.visualization.draw_geometries([pcd])

camera_trajectory = PinholeCameraTrajectory()
camera_trajectory.parameters = camera_params_list

print("Extracting mesh")
mesh = tsdf.extract_triangle_mesh()
write_triangle_mesh(os.path.join(args.dense_path, "o3d.tsdf.ply"), mesh)

print("Running texture mapping")
print(camera_trajectory.parameters)
optimized_mesh = run_o3d_texture_mapping(
mesh, rgbd_images, camera_trajectory, args.max_depth
)
write_triangle_mesh(
os.path.join(args.dense_path, "o3d.optimized.ply"), optimized_mesh
)


if __name__ == "__main__":
main()
0