You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Describe the bug
The new clipping filter function uses an XGBoost model bundled with rdtools. Recent CI runs in #300 and #297 are failing due to some error related to that model (example): AttributeError: 'XGBModel' object has no attribute 'enable_categorical'
I suspect it is caused by some incompatibility between the version of xgboost that stored the model file and the version of xgboost used to read it back into memory. The last passing CI run used xgboost==1.4.2 (link) and the failing runs are using 1.5.1. I can reproduce the same behavior locally (fails on xgboost==1.5.0 and 1.5.1, works on 1.4.2).
Full error message and traceback
Full pytest output
$ pytest rdtools\test\filtering_test.py::test_xgboost_clip_filter
================================================= test session starts =================================================
platform win32 -- Python 3.7.7, pytest-6.2.3, py-1.10.0, pluggy-0.13.1 -- c:\users\kanderso\software\anaconda3\envs\rdtools-dev\python.exe
cachedir: .pytest_cache
rootdir: C:\Users\KANDERSO\projects\rdtools, configfile: setup.cfg
plugins: nbval-0.9.6, mock-3.6.1
collected 1 item
rdtools/test/filtering_test.py::test_xgboost_clip_filter FAILED [100%]
====================================================== FAILURES =======================================================
______________________________________________ test_xgboost_clip_filter _______________________________________________
generate_power_time_series_no_clipping = (0 1
1 2
2 3
3 4
4 5
...
95 96
96 97
97 98
98 99
99 100
Length:...0:00 97
2016-12-06 12:00:00 98
2016-12-06 13:00:00 99
2016-12-06 14:00:00 100
Length: 100, dtype: int32)
generate_power_time_series_clipping = (0 2
1 4
2 6
3 8
4 10
..
95 10
96 8
97 6
98 4
99 2
Length: 100, dtype...2:00:00+00:00 6
2016-12-06 13:00:00+00:00 4
2016-12-06 14:00:00+00:00 2
Freq: H, Length: 100, dtype: int32)
generate_power_time_series_one_min_intervals = 2016-12-02 11:00:00+00:00 1
2016-12-02 11:01:00+00:00 2
2016-12-02 11:02:00+00:00 3
2016-12-02 11:03:00+00:00...02 12:37:00+00:00 3
2016-12-02 12:38:00+00:00 2
2016-12-02 12:39:00+00:00 1
Freq: T, Length: 100, dtype: int32
generate_power_time_series_irregular_intervals = 2016-12-02 11:00:00+00:00 1
2016-12-02 11:01:00+00:00 2
2016-12-02 11:02:00+00:00 3
2016-12-02 11:03:00...12-03 20:50:00+00:00 102
2016-12-03 20:55:00+00:00 101
2016-12-03 21:00:00+00:00 100
Length: 259, dtype: int64
def test_xgboost_clip_filter(generate_power_time_series_no_clipping,
generate_power_time_series_clipping,
generate_power_time_series_one_min_intervals,
generate_power_time_series_irregular_intervals):
''' Unit tests for XGBoost clipping filter.'''
# Test the time series where the data isn't clipped
power_no_datetime_index_nc, power_datetime_index_nc, power_nc_tz_naive = \
generate_power_time_series_no_clipping
# Test that a Type Error is raised when a pandas series
# without a datetime index is used.
pytest.raises(TypeError, xgboost_clip_filter,
power_no_datetime_index_nc)
# Test that an error is thrown when we don't include the correct
# mounting configuration input
pytest.raises(ValueError, xgboost_clip_filter,
power_datetime_index_nc, 'not_fixed')
# Test that an error is thrown when there are 10 or fewer readings
# in the time series
pytest.raises(Exception, xgboost_clip_filter,
power_datetime_index_nc[:9])
# Test that a warning is thrown when the time series is tz-naive
warnings.simplefilter("always")
with warnings.catch_warnings(record=True) as w:
> xgboost_clip_filter(power_nc_tz_naive)
rdtools\test\filtering_test.py:227:
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
..\..\software\anaconda3\envs\rdtools-dev\lib\site-packages\rdtools\filtering.py:697: in xgboost_clip_filter
power_ac_df).astype(bool))
..\..\software\anaconda3\envs\rdtools-dev\lib\site-packages\xgboost\sklearn.py:1290: in predict
iteration_range=iteration_range,
..\..\software\anaconda3\envs\rdtools-dev\lib\site-packages\xgboost\sklearn.py:879: in predict
if self._can_use_inplace_predict():
..\..\software\anaconda3\envs\rdtools-dev\lib\site-packages\xgboost\sklearn.py:811: in _can_use_inplace_predict
predictor = self.get_params().get("predictor", None)
..\..\software\anaconda3\envs\rdtools-dev\lib\site-packages\xgboost\sklearn.py:505: in get_params
params.update(cp.__class__.get_params(cp, deep))
..\..\software\anaconda3\envs\rdtools-dev\lib\site-packages\xgboost\sklearn.py:502: in get_params
params = super().get_params(deep)
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
self = <[AttributeError("'XGBModel' object has no attribute 'enable_categorical'") raised in repr()] XGBModel object at 0x1d6eac40648>
deep = True
def get_params(self, deep=True):
"""
Get parameters for this estimator.
Parameters
----------
deep : bool, default=True
If True, will return the parameters for this estimator and
contained subobjects that are estimators.
Returns
-------
params : dict
Parameter names mapped to their values.
"""
out = dict()
for key in self._get_param_names():
> value = getattr(self, key)
E AttributeError: 'XGBModel' object has no attribute 'enable_categorical'
..\..\software\anaconda3\envs\rdtools-dev\lib\site-packages\sklearn\base.py:195: AttributeError
Restrict the allowed range of xgboost versions to those that are known to work with our model. This might cause problems down the road, for example if the aging version of xgboost we require doesn't work on new versions of python.
Something else?
The text was updated successfully, but these errors were encountered:
Using save_model to save in JSON sounds appealing. The article notes that this is experimental, but perhaps worth a shot? What do you think @kperrynrel ?
@mdeceglie @kanderso-nrel I do like the sound of the JSON, since I'd have to regenerate the model each time we change the version. I can do some digging on how well this works
Describe the bug
The new clipping filter function uses an XGBoost model bundled with rdtools. Recent CI runs in #300 and #297 are failing due to some error related to that model (example):
AttributeError: 'XGBModel' object has no attribute 'enable_categorical'
I suspect it is caused by some incompatibility between the version of xgboost that stored the model file and the version of xgboost used to read it back into memory. The last passing CI run used
xgboost==1.4.2
(link) and the failing runs are using1.5.1
. I can reproduce the same behavior locally (fails onxgboost==1.5.0
and1.5.1
, works on1.4.2
).Full error message and traceback
Full pytest output
To Reproduce
Additional context
dmlc/xgboost#7423 seems relevant. It seems like we can't rely on a pickled model to work across different versions of xgboost.
Possible solutions:
The text was updated successfully, but these errors were encountered: