7156 results sorted by ID
Possible spell-corrected query: for
Signatures with Tight Adaptive Corruptions from Search Assumptions
Keitaro Hashimoto, Wakaha Ogata, Yusuke Sakai
Public-key cryptography
We construct the first tightly secure signature schemes in the multi-user setting with adaptive corruptions from classical discrete logarithm, RSA, factoring, or post-quantum group action discrete logarithm assumption. In contrast to our scheme, the previous tightly secure schemes are based on the decisional assumption (e.g., (group action) DDH) or interactive search assumptions (e.g., one-more CDH).
The security of our schemes is independent of the number of users, signing queries, and...
Better Codes for the HQC Cryptosystem
Cyrius Nugier, Jean-Christophe Deneuville
Public-key cryptography
In the HQC cryptosystem, the length $n$ of the code determines several concrete parameters such as the bandwidth usage, the memory consumption, or the decoding efficiency. In this paper, we show that currently known methods to explicitly generate asymptotically good (especially with high relative distances), binary codes with efficient associated procedures cannot be used to improve $n$. We also show that concatenated codes are currently better suited, and by exhausting small codes, find a...
On the structure of the Schur squares of Twisted Generalized Reed-Solomon codes and application to cryptanalysis
Alain Couvreur, Rakhi Pratihar, Nihan Tanisali, Ilaria Zappatore
Attacks and cryptanalysis
Twisted generalized Reed-Solomon (TGRS) codes constitute an interesting family of evaluation codes, containing a large class of maximum distance separable codes non-equivalent to generalized Reed-Solomon (GRS) ones.
Moreover, the Schur squares of TGRS codes may be much larger than those of GRS codes with same dimension.
Exploiting these structural differences, in 2018, Beelen, Bossert, Puchinger and Rosenkilde proposed a subfamily of Maximum Distance Separable (MDS) Twisted Reed--Solomon...
A Formal Treatment of Homomorphic Encryption Based Outsourced Computation in the Universal Composability Framework
Wasilij Beskorovajnov, Sarai Eilebrecht, Yufan Jiang, Jörn Mueller-Quade
Cryptographic protocols
The adoption of Homomorphic Encryption (HE) and Secure
Function Evaluation (SFE) applications in the real world remains lim-
ited, even nearly 50 years after the introduction of HE. This is particu-
larly unfortunate given the strong privacy and confidentiality guarantees
these tools can offer to modern digital life.
While attempting to incorporate a simple straw-man PSI protocol into
a web service for matching individuals based on their profiles, we en-
countered several shortcomings...
Twist and Shout: Faster memory checking arguments via one-hot addressing and increments
Srinath Setty, Justin Thaler
Cryptographic protocols
A memory checking argument enables a prover to prove to a verifier that it is correctly processing reads and writes to memory. They are used widely in modern SNARKs, especially in zkVMs, where the prover proves the correct execution of a CPU including the correctness of memory operations.
We describe a new approach for memory checking, which we call the method of one-hot addressing and increments. We instantiate this method via two different families of protocols, called Twist and Shout....
Zero-Knowledge Proofs of Quantumness
Duong Hieu Phan, Weiqiang Wen, Xingyu Yan, Jinwei Zheng
Cryptographic protocols
With the rapid development of quantum computers, proofs of quantumness have recently become an interesting and intriguing research direction. However, in all current schemes for proofs of quantumness, quantum provers almost invariably face the risk of being maliciously exploited by classical verifiers. In fact, through malicious strategies in interaction with quantum provers, classical verifiers could solve some instances of hard problems that arise from the specific scheme in use. In other...
Fast, private and regulated payments in asynchronous networks
Maxence Brugeres, Victor Languille, Petr Kuznetsov, Hamza Zarfaoui
Applications
We propose a decentralized asset-transfer system that enjoys full privacy: no party can learn the details of a transaction, except for its issuer and its recipient. Furthermore, the recipient is only aware of the amount of the transaction. Our system does not rely on consensus or synchrony assumptions, and therefore, it is responsive, since it runs at the actual network speed. Under the hood, every transaction creates a consumable coin equipped with a non-interactive zero-knowledge proof...
Available Attestation: Towards a Reorg-Resilient Solution for Ethereum Proof-of-Stake
Mingfei Zhang, Rujia Li, Xueqian Lu, Sisi Duan
Cryptographic protocols
Ethereum transitioned from Proof-of-Work consensus to Proof-of-Stake (PoS) consensus in September 2022. While this upgrade brings significant improvements (e.g., lower energy costs and higher throughput), it also introduces new vulnerabilities. One notable example is the so-called malicious \textit{reorganization attack}. Malicious reorganization denotes an attack in which the Byzantine faulty validators intentionally manipulate the canonical chain so the blocks by honest validators are...
Simultaneous-Message and Succinct Secure Computation
Elette Boyle, Abhishek Jain, Sacha Servan-Schreiber, Akshayaram Srinivasan
Cryptographic protocols
We put forth and instantiate a new primitive we call simultaneous-message and succinct (SMS) secure computation. An SMS scheme enables a minimal communication pattern for secure computation in the following scenario: Alice has a large private input X, Bob has a small private input y, and Charlie wants to learn $f(X, y)$ for some public function $f$.
Given a common reference string (CRS) setup phase, an SMS scheme for a function f is instantiated with two parties holding inputs $X$ and...
Non-Interactive Distributed Point Functions
Elette Boyle, Lalita Devadas, Sacha Servan-Schreiber
Cryptographic protocols
Distributed Point Functions (DPFs) are a useful cryptographic primitive enabling a dealer to distribute short keys to two parties, such that the keys encode additive secret shares of a secret point function. However, in many applications of DPFs, no single dealer entity has full knowledge of the secret point function, necessitating the parties to run an interactive protocol to emulate the setup. Prior works have aimed to minimize complexity metrics of such distributed setup protocols, e.g.,...
Multi-Key Homomorphic Secret Sharing
Geoffroy Couteau, Lalita Devadas, Aditya Hegde, Abhishek Jain, Sacha Servan-Schreiber
Cryptographic protocols
Homomorphic secret sharing (HSS) is a distributed analogue of fully homomorphic encryption (FHE) where following an input-sharing phase, two or more parties can locally compute a function over their private inputs to obtain shares of the function output.
Over the last decade, HSS schemes have been constructed from an array of different assumptions. However, all existing HSS schemes, except ones based on assumptions known to imply multi-key FHE, require a public-key infrastructure (PKI) or...
An Introduction to Protein Cryptography
Hayder Tirmazi, Tien Phuoc Tran
Applications
We introduce protein cryptography, a recently proposed method that encodes data into the amino acid sequences of proteins. Unlike traditional digital encryption, this approach relies on the inherent diversity, complexity, and replication resistance of biological macromolecules, making them highly secure against duplication or tampering. The experimental realization of protein cryptography remains an open problem. To accelerate experimental progress in this area, we provide an accessible and...
ICT: Insured Cryptocurrency Transactions
Aydin Abadi, Amirreza Sarencheh, Henry Skeoch, Thomas Zacharias
Cryptographic protocols
Cryptocurrencies have emerged as a critical medium for digital financial transactions, driving widespread adoption while simultaneously exposing users to escalating fraud risks. The irreversible nature of cryptocurrency transactions, combined with the absence of consumer protection mechanisms, leaves users vulnerable to substantial financial losses and emotional distress. To address these vulnerabilities, we introduce Insured Cryptocurrency Transactions (ICT), a novel decentralized insurance...
Artificial Results From Hardware Synthesis
Ahmed Alharbi, Charles Bouillaguet
Implementation
In this paper, we revisit venerable lower-bounds on the $AT$ or $AT^2$
performance metric of hardware circuits. A series of works started in the late 1970's has established that if a hardware circuit of area $A$ computes a function $f : \{0, 1\}^n \rightarrow \{0, 1\}^m$ in $T$ clock cycles, then $AT^2$ is asymptotically larger than (a form of) the communication complexity of $f$. These lower-bounds ignore the active component of the circuit such as the logic gates and only take into...
Enhancing Threshold Group Action Signature Schemes: Adaptive Security and Scalability Improvements
Michele Battagliola, Giacomo Borin, Giovanni Di Crescenzo, Alessio Meneghetti, Edoardo Persichetti
Public-key cryptography
Designing post-quantum digital signatures is a very active research area at present, with several protocols being developed, based on a variety of mathematical assumptions. Many of these signatures schemes can be used as a basis to define more advanced schemes, such as ring or threshold signatures, where multiple parties are involved in the signing process. Unfortunately, the majority of these protocols only considers a static adversary, that must declare which parties to corrupt at the...
Arbitrary-Threshold Fully Homomorphic Encryption with Lower Complexity
Yijia Chang, Songze Li
Cryptographic protocols
Threshold fully homomorphic encryption (ThFHE) enables multiple parties to compute functions over their sensitive data without leaking data privacy. Most of existing ThFHE schemes are restricted to full threshold and require the participation of all parties to output computing results. Compared with these full-threshold schemes, arbitrary threshold (ATh)-FHE schemes are robust to non-participants and can be a promising solution to many real-world applications. However, existing AThFHE...
Breaking verifiability and vote privacy in CHVote
Véronique Cortier, Alexandre Debant, Pierrick Gaudry
Applications
Abstract. CHVote is one of the two main electronic voting systems developed in the context of political elections in Switzerland, where the regulation requires a specific setting and specific trust assumptions. We show that actually, CHVote fails to achieve vote secrecy and individual verifiability (here, recorded-as-intended), as soon as one of the online components is dishonest, contradicting the security claims of CHVote. In total, we found 9 attacks or variants against CHVote, 2 of...
Uncovering Security Vulnerabilities in Intel Trust Domain Extensions
Upasana Mandal, Shubhi Shukla, Nimish Mishra, Sarani Bhattacharya, Paritosh Saxena, Debdeep Mukhopadhyay
Attacks and cryptanalysis
Intel Trust Domain Extensions (TDX) has emerged as a crucial technology aimed at strengthening the isolation and security guarantees of virtual machines, especially as the demand for secure computation is growing largely. Despite the protections offered by TDX, in this work, we dig deep into the security claims and uncover an intricate observation in TDX. These findings undermine TDX's core security guarantees by breaching the isolation between the Virtual Machine Manager (VMM) and Trust...
Decompose and conquer: ZVP attacks on GLV curves
Vojtěch Suchánek, Vladimír Sedláček, Marek Sýs
Attacks and cryptanalysis
While many side-channel attacks on elliptic curve cryptography can be avoided by coordinate randomization, this is not the case for the zero-value point (ZVP) attack. This attack can recover a prefix of static ECDH key but requires solving an instance of the dependent coordinates problem (DCP), which is open in general. We design a new method for solving the DCP on GLV curves, including the Bitcoin secp256k1 curve, outperforming previous approaches. This leads to a new type of ZVP attack on...
Further Improvements in AES Execution over TFHE: Towards Breaking the 1 sec Barrier
Sonia Belaïd, Nicolas Bon, Aymen Boudguiga, Renaud Sirdey, Daphné Trama, Nicolas Ye
Implementation
Making the most of TFHE advanced capabilities such as programmable or circuit bootstrapping and their generalizations for manipulating data larger than the native plaintext domain of the scheme is a very active line of research. In this context, AES is a particularly interesting benchmark, as an example of a nontrivial algorithm which has eluded "practical" FHE execution performances for years, as well as the fact that it will most likely be selected by NIST as a flagship reference in its...
XBOOT: Free-XOR Gates for CKKS with Applications to Transciphering
Chao Niu, Zhicong Huang, Zhaomin Yang, Yi Chen, Liang Kong, Cheng Hong, Tao Wei
Applications
The CKKS scheme is traditionally recognized for approximate homomorphic encryption of real numbers, but BLEACH (Drucker et al., JoC 2024) extends its capabilities to handle exact computations on binary or small integer numbers.
Despite this advancement, BLEACH's approach of simulating XOR gates via $(a-b)^2$ incurs one multiplication per gate, which is computationally expensive in homomorphic encryption. To this end, we introduce XBOOT, a new framework built upon BLEACH's blueprint but...
PSMT: Private Segmented Membership Test for Distributed Record Linkage
Nirajan Koirala, Jonathan Takeshita, Jeremy Stevens, Sam Martin, Taeho Jung
Cryptographic protocols
In various real-world situations, a client may need to verify whether specific data elements they possess are part of a set segmented among numerous data holders.
To maintain user privacy, it’s essential that both the client’s data elements and the data holders’ sets remain encrypted throughout the process.
Existing approaches like Private Set Intersection (PSI), Multi-Party PSI (MPSI), Private Segmented Membership Test (PSMT), and Oblivious RAM (ORAM) face challenges in these...
Constant latency and finality for dynamically available DAG
Hans Schmiedel, Runchao Han, Qiang Tang, Ron Steinfeld, Jiangshan Yu
Cryptographic protocols
Directed Acyclic Graph (DAG) based protocols have shown great promise to improve the performance of blockchains. The CAP theorem shows that it is impossible to have a single system that achieves both liveness (known as dynamic availability) and safety under network partition.This paper explores two types of DAG-based protocols prioritizing liveness or safety, named structured dissemination and Graded Common Prefix (GCP), respectively.
For the former, we introduce the first...
Efficient Homomorphic Integer Computer from CKKS
Jaehyung Kim
Public-key cryptography
As Fully Homomorphic Encryption (FHE) enables computation over encrypted data, it is a natural question of how efficiently it handles standard integer computations like $64$-bit arithmetic. It has long been believed that the CGGI/DM family or the BGV/BFV family are the best options, depending on the size of the parallelism. The Cheon-Kim-Kim-Song (CKKS) scheme, although being widely used in many applications like machine learning, was not considered a good option as it is more focused on...
Treating dishonest ciphertexts in post-quantum KEMs -- explicit vs. implicit rejection in the FO transform
Kathrin Hövelmanns, Mikhail Kudinov
Public-key cryptography
We revisit a basic building block in the endeavor to migrate to post-quantum secure cryptography, Key Encapsulation Mechanisms (KEMs). KEMs enable the establishment of a shared secret key, using only public communication. When targeting chosen-ciphertext security against quantum attackers, the go-to method is to design a Public-Key Encryption (PKE) scheme and then apply a variant of the PKE-to-KEM conversion known as the Fujisaki-Okamoto (FO) transform, which we revisit in this work....
CAPSS: A Framework for SNARK-Friendly Post-Quantum Signatures
Thibauld Feneuil, Matthieu Rivain
Cryptographic protocols
In this paper, we present a general framework for constructing SNARK-friendly post-quantum signature schemes based on minimal assumptions, specifically the security of an arithmetization-oriented family of permutations. The term "SNARK-friendly" here refers to the efficiency of the signature verification process in terms of SNARK constraints, such as R1CS or AIR constraints used in STARKs. Within the CAPSS framework, signature schemes are designed as proofs of knowledge of a secret preimage...
Doubly Efficient Fuzzy Private Set Intersection for High-dimensional Data with Cosine Similarity
Hyunjung Son, Seunghun Paik, Yunki Kim, Sunpill Kim, Heewon Chung, Jae Hong Seo
Cryptographic protocols
Fuzzy private set intersection (Fuzzy PSI) is a cryptographic protocol for privacy-preserving similarity matching, which is one of the essential operations in various real-world applications such as facial authentication, information retrieval, or recommendation systems. Despite recent advancements in fuzzy PSI protocols, still a huge barrier remains in deploying them for these applications. The main obstacle is the high dimensionality, e.g., from 128 to 512, of data; lots of existing...
Founding Zero-Knowledge Proofs of Training on Optimum Vicinity
Gefei Tan, Adrià Gascón, Sarah Meiklejohn, Mariana Raykova, Xiao Wang, Ning Luo
Foundations
Zero-knowledge proofs of training (zkPoT) allow a party to prove that a model is trained correctly on a committed dataset without revealing any additional information about the model or the dataset. Existing zkPoT protocols prove the entire training process in zero knowledge; i.e., they prove that the final model was obtained in an iterative fashion starting from the training data and a random seed (and potentially other parameters) and applying the correct algorithm at each iteration. This...
ABLE: Optimizing Mixed Arithmetic and Boolean Garbled Circuit
Jianqiao Cambridge Mo, Brandon Reagen
Implementation
Privacy and security have become critical priorities in many scenarios. Privacy-preserving computation (PPC) is a powerful solution that allows functions to be computed directly on encrypted data. Garbled circuit (GC) is a key PPC technology that enables secure, confidential computing. GC comes in two forms: Boolean GC supports all operations by expressing functions as logic circuits; arithmetic GC is a newer technique to efficiently compute a set of arithmetic operations like addition and...
The Meta-Complexity of Secret Sharing
Benny Applebaum, Oded Nir
Cryptographic protocols
A secret-sharing scheme allows the distribution of a secret $s$ among $n$ parties, such that only certain predefined “authorized” sets of parties can reconstruct the secret, while all other “unauthorized” sets learn nothing about $s$. The collection of authorized/unauthorized sets is defined by a monotone function $f: \{0,1\}^n \rightarrow \{0,1\}$. It is known that any monotone function can be realized by a secret-sharing scheme; thus, the smallest achievable \emph{total share size},...
IND-CPA$^{\text{C}}$: A New Security Notion for Conditional Decryption in Fully Homomorphic Encryption
Bhuvnesh Chaturvedi, Anirban Chakraborty, Nimish Mishra, Ayantika Chatterjee, Debdeep Mukhopadhyay
Attacks and cryptanalysis
Fully Homomorphic Encryption (FHE) allows a server to perform computations directly over the encrypted data. In general FHE protocols, the client is tasked with decrypting the computation result using its secret key. However, certain FHE applications benefit from the server knowing this result, especially without the aid of the client. Providing the server with the secret key allows it to decrypt all the data, including the client's private input. Protocols such as Goldwasser et. al....
Registered ABE and Adaptively-Secure Broadcast Encryption from Succinct LWE
Jeffrey Champion, Yao-Ching Hsieh, David J. Wu
Public-key cryptography
Registered attribute-based encryption (ABE) is a generalization of public-key encryption that enables fine-grained access control to encrypted data (like standard ABE), but without needing a central trusted authority. In a key-policy registered ABE scheme, users choose their own public and private keys and then register their public keys together with a decryption policy with an (untrusted) key curator. The key curator aggregates all of the individual public keys into a short master public...
Structural Results for Maximal Quaternion Orders and Connecting Ideals of Prime Power Norm in $B_{p,\infty}$
James Clements
Foundations
Fix odd primes $p, \ell$ with $p \equiv 3 \mod 4$ and $\ell \neq p$. Consider the rational quaternion algebra ramified at $p$ and $\infty$ with a fixed maximal order $\mathcal{O}_{1728}$. We give explicit formulae for bases of all cyclic norm $\ell^n$ ideals of $\mathcal{O}_{1728}$ and their right orders, in Hermite Normal Form (HNF). Further, in the case $\ell \mid p+1$, or more generally, $-p$ is a square modulo $\ell$, we derive a parametrization of these bases along paths of the...
Bundled Authenticated Key Exchange: A Concrete Treatment of (Post-Quantum) Signal's Handshake Protocol
Keitaro Hashimoto, Shuichi Katsumata, Thom Wiggers
Cryptographic protocols
The Signal protocol relies on a special handshake protocol, formerly X3DH and now PQXDH, to set up secure conversations. Prior analyses of these protocols (or proposals for post-quantum alternatives) have all used highly tailored models to the individual protocols and generally made ad-hoc adaptations to "standard" AKE definitions, making the concrete security attained unclear and hard to compare between similar protocols. Indeed, we observe that some natural Signal handshake protocols...
VDORAM: Towards a Random Access Machine with Both Public Verifiability and Distributed Obliviousness
Huayi Qi, Minghui Xu, Xiaohua Jia, Xiuzhen Cheng
Cryptographic protocols
Verifiable random access machines (vRAMs) serve as a foundational model for expressing complex computations with provable security guarantees, serving applications in areas such as secure electronic voting, financial auditing, and privacy-preserving smart contracts. However, no existing vRAM provides distributed obliviousness, a critical need in scenarios where multiple provers seek to prevent disclosure against both other provers and the verifiers.
Implementing a publicly verifiable...
Forking the RANDAO: Manipulating Ethereum's Distributed Randomness Beacon
Ábel Nagy, János Tapolcai, István András Seres, Bence Ladóczki
Applications
Proof-of-stake consensus protocols often rely on distributed randomness beacons (DRBs) to generate randomness for leader selection. This work analyses the manipulability of Ethereum's DRB implementation, RANDAO, in its current consensus mechanism. Even with its efficiency, RANDAO remains vulnerable to manipulation through the deliberate omission of blocks from the canonical chain. Previous research has shown that economically rational players can withhold blocks --~known as a block...
Scalable Post-Quantum Oblivious Transfers for Resource-Constrained Receivers
Aydin Abadi, Yvo Desmedt
Cryptographic protocols
It is imperative to modernize traditional core cryptographic primitives, such as Oblivious Transfer (OT), to address the demands of the new digital era, where privacy-preserving computations are executed on low-power devices. This modernization is not merely an enhancement but a necessity to ensure security, efficiency, and continued relevance in an ever-evolving technological landscape.
This work introduces two scalable OT schemes: (1) Helix OT, a $1$-out-of-$n$ OT, and (2) Priority OT,...
ZODA: Zero-Overhead Data Availability
Alex Evans, Nicolas Mohnblatt, Guillermo Angeris
We introduce ZODA, short for 'zero-overhead data availability,' which is a protocol for proving that symbols received from an encoding (for tensor codes) were correctly constructed. ZODA has optimal overhead for both the encoder and the samplers. Concretely, the ZODA scheme incurs essentially no incremental costs (in either computation or size) beyond those of the tensor encoding itself. In particular, we show that a slight modification to the encoding scheme for tensor codes allows sampled...
Delegated Multi-party Private Set Intersection from Secret Sharing
Jingwei Hu, Zhiqi Liu, Cong Zuo
Cryptographic protocols
In this work, we address the problem of Delegated PSI (D-PSI), where a cloud server is introduced to handle most computational and communication tasks. D-PSI enables users to securely delegate their private sets to the cloud, ensuring the privacy of their data while allowing efficient computation of the intersection. The cloud operates under strict security requirements, learning nothing about the individual sets or the intersection result. Moreover, D-PSI minimizes user-to-user...
Extending Groth16 for Disjunctive Statements
Xudong Zhu, Xinxuan Zhang, Xuyang Song, Yi Deng, Yuanju Wei, Liuyu Yang
Cryptographic protocols
Two most common ways to design non-interactive zero knowledge (NIZK) proofs are based on Sigma ($\Sigma$)-protocols (an efficient way to prove algebraic statements) and zero-knowledge succinct non-interactive arguments of knowledge (zk-SNARK) protocols (an efficient way to prove arithmetic statements). However, in the applications of cryptocurrencies such as privacy-preserving credentials, privacy-preserving audits, and blockchain-based voting systems, the zk-SNARKs for general statements...
Chosen-Ciphertext Security for Inner Product FE: Multi-Client and Multi-Input, Generically
Ky Nguyen
Cryptographic protocols
Functional Encryption is a powerful cryptographic primitive that allows for fine-grained access control over encrypted data. In the multi-user setting, especially Multi-Client and Multi-Input, a plethora of works have been proposed to study on concrete function classes, improving security, and more. However, the CCA-security for such schemes is still an open problem, where the only known works are on Public-Key Single-Client FE ($\mathit{e.g.}$ Benhamouda, Bourse, and Lipmaa, PKC'17).
...
Foundations of Platform-Assisted Auctions
Hao Chung, Ke Wu, Elaine Shi
Foundations
Today, many auctions are carried out with the help of intermediary platforms like Google and eBay. These platforms serve as a rendezvous point for the buyers and sellers, and charge a fee for its service. We refer to such auctions as platform-assisted auctions. Traditionally, the auction theory literature mainly focuses on designing auctions that incentivize the buyers to bid truthfully, assuming that the platform always faithfully implements the auction. In practice, however, the platforms...
A New Method for Solving Discrete Logarithm Based on Index Calculus
Jianjun HU
Attacks and cryptanalysis
Index Calculus (IC) algorithm is the most effective probabilistic algorithm for solving discrete logarithms over finite fields of prime numbers, and it has been widely applied to cryptosystems based on elliptic curves. Since the IC algorithm was proposed in 1920, the research on it has never stopped, especially discretization of prime numbers on the finite fields, both the algorithm itself and its application have been greatly developed. Of course, there has been some research on elliptic...
What is "legal" and "illegal?": Social Norms, Current Practices and Perceived Risks among the Cryptocurrency Users in Bangladesh
Tanusree Sharma, Atm Mizanur Rahman, Silvia Sandhi, Yang Wang, Rifat Shahriyar, S M Taiabul Haque
Applications
Cryptocurrency practices worldwide are seen as innovative, yet they navigate a fragmented regulatory environment. Many local authorities aim to balance promoting innovation, safeguarding consumers, and managing potential threats. In particular, it is unclear how people deal with cryptocurrencies in the regions where trading or mining is prohibited. This insight is crucial in conveying the risk reduction strategies. To address this, we conducted semi-structured interviews with 28...
Post-Quantum DNSSEC with Faster TCP Fallbacks
Aditya Singh Rawat, Mahabir Prasad Jhanwar
Cryptographic protocols
In classical DNSSEC, a drop-in replacement with quantum-safe cryptography would increase DNS query resolution times by $\textit{at least}$ a factor of $2\times$. Since a DNS response containing large post-quantum signatures is likely to get marked truncated ($\texttt{TC}$) by a nameserver (resulting in a wasted UDP round-trip), the client (here, the resolver) would have to retry its query over TCP, further incurring a $\textit{minimum}$ of two round-trips due to the three-way TCP...
A Note on the Minimality of One-Way Functions in Post-Quantum Cryptography
Sam Buxbaum, Mohammad Mahmoody
Foundations
In classical cryptography, one-way functions (OWFs) play a central role as the minimal primitive that (almost) all primitives imply. The situation is more complicated in quantum cryptography, in which honest parties and adversaries can use quantum computation and communication, and it is known that analogues of OWFs in the quantum setting might not be minimal.
In this work we ask whether OWFs are minimal for the intermediate setting of post-quantum cryptography, in which the protocols...
Secure Vault scheme in the Cloud Operating Model
Rishiraj Bhattacharyya, Avradip Mandal, Meghna Sengupta
Cryptographic protocols
The rising demand for data privacy in cloud-based environments has led to the development of advanced mechanisms for securely managing sensitive information. A prominent solution in this domain is the "Data Privacy Vault," a concept that is being provided commercially by companies such as Hashicorp, Basis Theory, Skyflow Inc., VGS, Evervault, Protegrity, Anonomatic, and BoxyHQ. However, no existing work has rigorously defined the security notions required for a Data Privacy Vault or proven...
PQConnect: Automated Post-Quantum End-to-End Tunnels
Daniel J. Bernstein, Tanja Lange, Jonathan Levin, Bo-Yin Yang
Applications
This paper introduces PQConnect, a post-quantum end-to-end tunneling protocol that automatically protects all packets between clients that have installed PQConnect and servers that have installed and configured PQConnect.
Like VPNs, PQConnect does not require any changes to higher-level protocols and application software. PQConnect adds cryptographic protection to unencrypted applications, works in concert with existing pre-quantum applications to add post-quantum protection, and adds a...
Encrypted Multi-map that Hides Query, Access, and Volume Patterns
Alexandra Boldyreva, Tianxin Tang
We present an encrypted multi-map, a fundamental data structure underlying
searchable encryption/structured encryption. Our protocol supports updates and
is designed for applications demanding very strong data security. Not only it
hides the information about queries and data, but also the query, access, and
volume patterns. Our protocol utilizes a position-based ORAM and an encrypted
dictionary. We provide two instantiations of the protocol, along with their
operation-type-revealing...
An Embedded Domain-Specific Language for Using One-Hot Vectors and Binary Matrices in Secure Computation Protocols
Andrei Lapets
Implementation
The use of secure computation protocols within production software systems and applications is complicated by the fact that such protocols sometimes rely upon -- or are most compatible with -- unusual or restricted models of computation. We employ the features of a contemporary and widely used programming language to create an embedded domain-specific language for working with user-defined functions as binary matrices that operate on one-hot vectors. At least when working with small finite...
Zero Knowledge Memory-Checking Techniques for Stacks and Queues
Alexander Frolov
Cryptographic protocols
There are a variety of techniques for implementing read/write memory inside of zero-knowledge proofs and validating consistency of memory accesses. These techniques are generally implemented with the goal of implementing a RAM or ROM. In this paper, we present memory techniques for more specialized data structures: queues and stacks. We first demonstrate a technique for implementing queues in arithmetic circuits that requires 3 multiplication gates and 1 advice value per read and 2...
Fully Hybrid TLSv1.3 in WolfSSL on Cortex-M4
Mila Anastasova, Reza Azarderakhsh, Mehran Mozaffari Kermani
Cryptographic protocols
To provide safe communication across an unprotected medium such as the internet, network protocols are being established. These protocols employ public key techniques to perform key exchange and authentication. Transport Layer Security (TLS) is a widely used network protocol that enables secure communication between a server and a client. TLS is employed in billions of transactions per second. Contemporary protocols depend on traditional methods that utilize the computational complexity of...
Solving AES-SAT Using Side-Channel Hints: A Practical Assessment
Elena Dubrova
Attacks and cryptanalysis
Side-channel attacks exploit information leaked through non-primary channels, such as power consumption, electromagnetic emissions, or timing, to extract sensitive data from cryptographic devices. Over the past three decades, side-channel analysis has evolved into a mature research field with well-established methodologies for analyzing standard cryptographic algorithms like the Advanced Encryption Standard (AES). However, the integration of side-channel analysis with formal methods remains...
Blind Signatures from Proofs of Inequality
Michael Klooß, Michael Reichle
Public-key cryptography
Blind signatures are an important primitive for privacy-preserving technologies. To date, highly efficient pairing-free constructions rely on the random oracle model, and additionally, a strong assumption, such as interactive assumptions or the algebraic group model.
In contrast, for signatures we know many efficient constructions that rely on the random oracle model and standard assumptions. In this work, we develop techniques to close this gap. Compared to the most efficient...
Tightly-Secure Blind Signatures in Pairing-Free Groups
Nicholas Brandt, Dennis Hofheinz, Michael Klooß, Michael Reichle
Public-key cryptography
We construct the first blind signature scheme that achieves all of the following properties simultaneously:
- it is tightly secure under a standard (i.e., non-interactive,
non-\(q\)-type) computational assumption,
- it does not require pairings,
- it does not rely on generic, non-black-box techniques (like generic NIZK
proofs).
The third property enables a reasonably efficient solution, and in fact signatures in our scheme comprise 10 group elements and 29...
Succinct Partial Garbling from Groups and Applications
Yuval Ishai, Hanjun Li, Huijia Lin
Foundations
A garbling scheme transforms a program (e.g., circuit) $C$ into a garbled program $\hat{C}$, along with a pair of short keys $(k_{i,0},k_{i,1})$ for each input bit $x_i$, such that $(C,\hat{C}, \{k_{i,x_i}\})$ can be used to recover the output $z = C(x)$ while revealing nothing else about the input $x$. This can be naturally generalized to partial garbling, where part of the input is public, and a computation $z = C(x, y)$ is decomposed into a public part $C_{\text{pub}}(x)$, depending only...
Perfectly Secure Fluid MPC with Abort and Linear Communication Complexity
Alexander Bienstock, Daniel Escudero, Antigoni Polychroniadou
Cryptographic protocols
The \emph{Fluid} multiparty computation (MPC) model, introduced in (Choudhuri \emph{et al.} CRYPTO 2021), addresses dynamic scenarios where participants can join or leave computations between rounds. Communication complexity initially stood at $\Omega(n^2)$ elements per gate, where $n$ is the number of parties in a committee online at a time. This held for both statistical security (honest majority) and computational security (dishonest majority) in (Choudhuri \emph{et al.}~CRYPTO'21) and...
COCO: Coconuts and Oblivious Computations for Orthogonal Authentication
Yamya Reiki
Cryptographic protocols
Authentication often bridges real-world individuals and their virtual public identities, like usernames, user IDs and e-mails, exposing vulnerabilities that threaten user privacy. This research introduces COCO (Coconuts and Oblivious Computations for Orthogonal Authentication), a framework that segregates roles among Verifiers, Authenticators, and Clients to achieve privacy-preserving authentication.
COCO eliminates the need for Authenticators to directly access virtual public identifiers...
"These results must be false": A usability evaluation of constant-time analysis tools
Marcel Fourné, Daniel De Almeida Braga, Jan Jancar, Mohamed Sabt, Peter Schwabe, Gilles Barthe, Pierre-Alain Fouque, Yasemin Acar
Applications
Cryptography secures our online interactions, transactions, and trust. To achieve this goal, not only do the cryptographic primitives and protocols need to be secure in theory, they also need to be securely implemented by cryptographic library developers in practice.
However, implementing cryptographic algorithms securely is challenging, even for skilled professionals, which can lead to vulnerable implementations, especially to side-channel attacks. For timing attacks, a severe class of...
Simulation Secure Multi-Input Quadratic Functional Encryption: Applications to Differential Privacy
Ferran Alborch Escobar, Sébastien Canard, Fabien Laguillaumie
Applications
Multi-input functional encryption is a primitive that allows for the evaluation of an $\ell$-ary function over multiple ciphertexts, without learning any information about the underlying plaintexts. This type of computation is useful in many cases where one has to compute over encrypted data, such as privacy-preserving cloud services, federated learning, or more generally delegation of computation from multiple clients. It has recently been shown by Alborch et al. in PETS '24 to be useful to...
How to Compress Garbled Circuit Input Labels, Efficiently
Marian Dietz, Hanjun Li, Huijia Lin
Foundations
Garbled Circuits are essential building blocks in cryptography, and extensive research has explored their construction from both applied and theoretical perspectives. However, a challenge persists: While theoretically designed garbled circuits offer optimal succinctness--remaining constant in size regardless of the underlying circuit’s complexit--and are reusable for multiple evaluations, their concrete computational costs are prohibitively high. On the other hand, practically efficient...
Breaking and Provably Restoring Authentication: A Formal Analysis of SPDM 1.2 including Cross-Protocol Attacks
Cas Cremers, Alexander Dax, Aurora Naska
Cryptographic protocols
The SPDM (Security Protocol and Data Model) protocol is a standard under development by the DMTF consortium, and supported by major industry players including Broadcom, Cisco, Dell, Google, HP, IBM, Intel, and NVIDIA. SPDM 1.2 is a complex protocol that aims to provide platform security, for example for communicating hardware components or cloud computing scenarios.
In this work, we provide the first holistic, formal analysis of SPDM 1.2: we model the full protocol flow of SPDM considering...
Efficient Error-tolerant Side-channel Attacks on GPV Signatures Based on Ordinary Least Squares Regression
Jaesang Noh, Dongwoo Han, Dong-Joon Shin
Attacks and cryptanalysis
The Gentry-Peikert-Vaikuntanathan (GPV) framework is utilized for constructing digital signatures, which is proven to be secure in the classical/quantum random-oracle model. Falcon is such a signature scheme, recognized as a compact and efficient signature among NIST-standardized signature schemes. Although a signature scheme based on the GPV framework is theoretically highly secure, it could be vulnerable to side-channel attacks and hence further research on physical attacks is required to...
SeaSearch: Secure and Efficient Selection Queries
Shantanu Sharma, Yin Li, Sharad Mehrotra, Nisha Panwar, Komal Kumari, Swagnik Roychoudhury
Applications
Information-theoretic or unconditional security provides the highest level of security --- independent of the computational capability of an adversary. Secret-sharing techniques achieve information-theoretic security by splitting a secret into multiple parts (called shares) and storing the shares across non-colluding servers. However, secret-sharing-based solutions suffer from high overheads due to multiple communication rounds among servers and/or information leakage due to access-patterns...
Adaptive Special Soundness: Improved Knowledge Extraction by Adaptive Useful Challenge Sampling
Thomas Attema, Michael Klooß, Russell W. F. Lai, Pavlo Yatsyna
Cryptographic protocols
Proving knowledge soundness of an interactive proof from scratch is often a challenging task. This has motivated the evelopment of various special soundness frameworks which, in a nutshell, separate knowledge extractors into two parts: (1) an extractor to produce a set of accepting transcripts conforming to some structure; (2) a witness recovery algorithm to recover a witness from a set of transcripts with said structure. These frameworks take care of (1), so it suffices for a protocol...
Multilateral Trade Credit Set-off in MPC via Graph Anonymization and Network Simplex
Enrico Bottazzi, Chan Nam Ngo, Masato Tsutsumi
Applications
Multilateral Trade Credit Set-off (MTCS) is a process run by a service provider that collects trade credit data (i.e. obligations from a firm to pay another firm) from a network of firms and detects cycles of debts that can be removed from the system. The process yields liquidity savings for the participants, who can discharge their debts without relying on expensive loans. We propose an MTCS protocol that protects firms' sensitive data, such as the obligation amount or the identity of the...
A Heuristic Proof of P $\neq$ NP
Ping Wang
Foundations
The question of whether the complexity class P equals NP is a major unsolved problem in theoretical computer science. In this paper, we introduce a new language, the Add/XNOR problem, which has the simplest structure and perfect randomness, by extending the subset sum problem. We prove that P $\neq$ NP as it shows that the square-root complexity is necessary to solve the Add/XNOR problem. That is, problems that are verifiable in polynomial time are not necessarily solvable in polynomial...
Carousel: Fully Homomorphic Encryption from Slot Blind Rotation Technique
Seonhong Min, Yongsoo Song
Public-key cryptography
Fully Homomorphic Encryption (FHE) enables secure computation of functions on ciphertexts without requiring decryption. Specifically, AP-like HE schemes exploit an intrinsic bootstrapping method called blind rotation. In blind rotation, a look-up table is homomorphically evaluated on the input ciphertext through the iterative multiplication of monomials. However, the algebraic structure of the multiplicative group of monomials imposes certain limitations on the input and output plaintext...
Qubit Optimized Quantum Implementation of SLIM
Hasan Ozgur Cildiroglu, Oguz Yayla
Implementation
The advent of quantum computing has profound implications for current technologies, offering advancements in optimization while posing significant threats to cryptographic algorithms. Public-key cryptosystems relying on prime factorization or discrete logarithms are particularly vulnerable, whereas block ciphers (BCs) remain secure through increased key lengths. In this study, we introduce a novel quantum implementation of SLIM, a lightweight block cipher optimized for 32-bit plaintext and...
Hash-Prune-Invert: Improved Differentially Private Heavy-Hitter Detection in the Two-Server Model
Borja Balle, James Bell, Albert Cheu, Adria Gascon, Jonathan Katz, Mariana Raykova, Phillipp Schoppmann, Thomas Steinke
Cryptographic protocols
Differentially private (DP) heavy-hitter detection is an important primitive for data analysis. Given a threshold $t$ and a dataset of $n$ items from a domain of size $d$, such detection algorithms ignore items occurring fewer than $t$ times while identifying items occurring more than $t+\Delta$ times; we call $\Delta$ the error margin. In the central model where a curator holds the entire dataset, $(\varepsilon,\delta)$-DP algorithms can achieve error margin $\Theta(\frac 1 \varepsilon...
On the BUFF Security of ECDSA with Key Recovery
Keita Emura
Public-key cryptography
In the usual syntax of digital signatures, the verification algorithm takes a verification key in addition to a signature and a message, whereas in ECDSA with key recovery, which is used in Ethereum, no verification key is input to the verification algorithm. Instead, a verification key is recovered from a signature and a message. In this paper, we explore BUFF security of ECDSA with key recovery (KR-ECDSA), where BUFF stands for Beyond UnForgeability Features (Cremers et al., IEEE S&P...
Universal SNARGs for NP from Proofs of Correctness
Zhengzhong Jin, Yael Tauman Kalai, Alex Lombardi, Surya Mathialagan
Cryptographic protocols
We give new constructions of succinct non-interactive arguments ($\mathsf{SNARG}$s) for $\mathsf{NP}$ in the settings of both non-adaptive and adaptive soundness.
Our construction of non-adaptive $\mathsf{SNARG}$ is universal assuming the security of a (leveled or unleveled) fully homomorphic encryption ($\mathsf{FHE}$) scheme as well as a batch argument ($\mathsf{BARG}$) scheme. Specifically, for any choice of parameters $\ell$ and $L$, we construct a candidate $\mathsf{SNARG}$ scheme...
Anonymous credentials from ECDSA
Matteo Frigo, abhi shelat
Cryptographic protocols
Anonymous digital credentials allow a user to prove possession of an attribute that has been asserted by an identity issuer without revealing any extra information about themselves. For example, a user who has received a digital passport credential can prove their “age is $>18$” without revealing any other attributes such as their name or date of birth.
Despite inherent value for privacy-preserving authentication, anonymous credential schemes have been difficult to deploy at scale. ...
Xiezhi: Toward Succinct Proofs of Solvency
Youwei Deng, Jeremy Clark
Cryptographic protocols
A proof of solvency (or proof of reserves) is a zero-knowledge proof conducted by centralized cryptocurrency exchange to offer evidence that the exchange owns enough cryptocurrency to settle each of its users' balances. The proof seeks to reveal nothing about the finances of the exchange or its users, only the fact that it is solvent. The literature has already started to explore how to make proof size and verifier time independent of the number of (i) users on the exchange, and (ii)...
A Framework for Generating S-Box Circuits with Boyar-Peralta Algorithm-Based Heuristics, and Its Applications to AES, SNOW3G, and Saturnin
Yongjin Jeon, Seungjun Baek, Giyoon Kim, Jongsung Kim
Secret-key cryptography
In many lightweight cryptography applications, low area and latency are required for efficient implementation. The gate count in the cipher and the circuit depth must be low to minimize these two metrics. Many optimization strategies have been developed for the linear layer, led by the Boyar-Peralta (BP) algorithm. The Advanced Encryption Standard (AES) has been a focus of extensive research in this area. However, while the linear layer uses only XOR gates, the S-box, which is an essential...
BitVM: Quasi-Turing Complete Computation on Bitcoin
Lukas Aumayr, Zeta Avarikioti, Robin Linus, Matteo Maffei, Andrea Pelosi, Christos Stefo, Alexei Zamyatin
Cryptographic protocols
A long-standing question in the blockchain community is which class of computations are efficiently expressible in cryptocurrencies with limited scripting languages, such as Bitcoin Script. Such languages expose a reduced trusted computing base, thereby being less prone to hacks and vulnerabilities, but have long been believed to support only limited classes of payments.
In this work, we confute this long-standing belief by showing for the first time that arbitrary computations can be...
Token-Based Key Exchange - Non-Interactive Key Exchange meets Attribute-Based Encryption
Elsie Mestl Fondevik, Kristian Gjøsteen
Cryptographic protocols
In this paper we define the novel concept token-based key exchange (TBKE), which can be considered a cross between non-interactive key exchange (NIKE) and attribute-based encryption (ABE). TBKE is a scheme that allows users within an organization to generate shared keys for a subgroup of users through the use of personal tokens and secret key. The shared key generation is performed locally and no interaction between users or with a server is needed.
The personal tokens are derived from a...
How To Scale Multi-Party Computation
Marcel Keller
Cryptographic protocols
We propose a solution for optimized scaling of multi-party computation using the MP-SPDZ framework (CCS’20). It does not use manual optimization but extends the compiler and the virtual machine of the framework, thus providing an improvement for any user. We found that our solution improves timings four-fold for a simple example in MP-SPDZ, and it improves an order of magnitude on every framework using secret sharing considered by Hastings et al. (S&P’19) either in terms of time or RAM...
Garbled Circuits with 1 Bit per Gate
Hanlin Liu, Xiao Wang, Kang Yang, Yu Yu
Applications
We present a garbling scheme for Boolean circuits with 1 bit per gate communication based on either ring learning with errors (RLWE) or NTRU assumption, with key-dependent message security. The garbling consists of 1) a homomorphically encrypted seed that can be expanded to encryption of many pseudo-random bits and 2) one-bit stitching information per gate to reconstruct garbled tables from the expanded ciphertexts. By using low-complexity PRGs, both the garbling and evaluation of each...
Endomorphisms for Faster Cryptography on Elliptic Curves of Moderate CM Discriminants
Dimitri Koshelev, Antonio Sanso
Implementation
This article generalizes the widely-used GLV decomposition for scalar multiplication to a broader range of elliptic curves with moderate CM discriminant \( D < 0 \) (up to a few thousand in absolute value). Previously, it was commonly believed that this technique could only be applied efficiently for small \( D \) values (e.g., up to \( 100 \)). In practice, curves with \( j \)-invariant \( 0 \) are most frequently employed, as they have the smallest possible \( D = -3 \). This article...
Shutter Network: Private Transactions from Threshold Cryptography
Stefan Dziembowski, Sebastian Faust, Jannik Luhn
Applications
With the emergence of DeFi, attacks based on re-ordering transactions have become an essential problem for public blockchains. Such attacks include front-running or sandwiching transactions, where the adversary places transactions at a particular place within a block to influence a financial asset’s market price. In the Ethereum space, the value extracted by such attacks is often referred to as miner/maximal extractable value (MEV), which to date is estimated to have reached a value of more...
Sonikku: Gotta Speed, Keed! A Family of Fast and Secure MACs
Amit Singh Bhati, Elena Andreeva, Simon Müller, Damian Vizar
Secret-key cryptography
A message authentication code (MAC) is a symmetric-key cryptographic function used to authenticate a message by assigning it a tag. This tag is a short string that is difficult to reproduce without knowing the key. The tag ensures both the authenticity and integrity of the message, enabling the detection of any modifications.
A significant number of existing message authentication codes (MACs) are based on block ciphers (BCs) and tweakable block ciphers (TBCs). These MACs offer various...
On the Security of LWE-based KEMs under Various Distributions: A Case Study of Kyber
Mingyao Shao, Yuejun Liu, Yongbin Zhou, Yan Shao
Public-key cryptography
Evaluating the security of LWE-based KEMs involves two crucial metrics: the hardness of the underlying LWE problem and resistance to decryption failure attacks, both significantly influenced by the secret key and error distributions. To mitigate the complexity and timing vulnerabilities of Gaussian sampling, modern LWE-based schemes often adopt either the uniform or centered binomial distribution (CBD).
This work focuses on Kyber to evaluate its security under both distributions. Compared...
µLAM: A LLM-Powered Assistant for Real-Time Micro-architectural Attack Detection and Mitigation
Upasana Mandal, Shubhi Shukla, Ayushi Rastogi, Sarani Bhattacharya, Debdeep Mukhopadhyay
Implementation
The rise of microarchitectural attacks has necessitated robust detection and mitigation strategies to secure computing systems. Traditional tools, such as static and dynamic code analyzers and attack detectors, often fall short due to their reliance on predefined patterns and heuristics that lack the flexibility to adapt to new or evolving attack vectors. In this paper, we introduce for the first time a microarchitecture security assistant, built on OpenAI's GPT-3.5, which we refer to as...
RoK, Paper, SISsors – Toolkit for Lattice-based Succinct Arguments
Michael Klooß, Russell W. F. Lai, Ngoc Khanh Nguyen, Michał Osadnik
Cryptographic protocols
Lattice-based succinct arguments allow to prove bounded-norm satisfiability of relations, such as $f(\vec{s}) = \vec{t} \bmod q$ and $\|\vec{s}\|\leq \beta$, over specific cyclotomic rings $\mathcal{O}_\mathcal{K}$, with proof size polylogarithmic in the witness size. However, state-of-the-art protocols require either 1) a super-polynomial size modulus $q$ due to a soundness gap in the security argument, or 2) a verifier which runs in time linear in the witness size. Furthermore,...
Further Connections Between Isogenies of Supersingular Curves and Bruhat-Tits Trees
Steven Galbraith, Valerie Gilchrist, Shai Levin, Ari Markowitz
Foundations
We further explore the explicit connections between supersingular curve isogenies and Bruhat-Tits trees. By identifying a supersingular elliptic curve $E$ over $\mathbb{F}_p$ as the root of the tree, and a basis for the Tate module $T_\ell(E)$; our main result is that given a vertex $M$ of the Bruhat-Tits tree one can write down a generator of the ideal $I \subseteq \text{End}(E)$ directly, using simple linear algebra, that defines an isogeny corresponding to the path in the Bruhat-Tits tree...
Onion Franking: Abuse Reports for Mix-Based Private Messaging
Matthew Gregoire, Margaret Pierce, Saba Eskandarian
Applications
The fast-paced development and deployment of private messaging applications demands mechanisms to protect against the concomitant potential for abuse. While widely used end-to-end encrypted (E2EE) messaging systems have deployed mechanisms for users to verifiably report abusive messages without compromising the privacy of unreported messages, abuse reporting schemes for systems that additionally protect message metadata are still in their infancy. Existing solutions either focus on a...
uKNIT: Breaking Round-alignment for Cipher Design -- Featuring uKNIT-BC, an Ultra Low-Latency Block Cipher
Kai Hu, Mustafa Khairallah, Thomas Peyrin, Quan Quan Tan
Secret-key cryptography
Automated cryptanalysis has seen a lot of attraction and success in the past decade, leading to new distinguishers or key-recovery attacks against various ciphers. We argue that the improved efficiency and usability of these new tools have been undervalued, especially for design processes. In this article, we break for the first time the classical iterative design paradigm for symmetric-key primitives, where constructions are built around the repetition of a round function. We propose...
NICE-PAKE: On the Security of KEM-Based PAKE Constructions without Ideal Ciphers
Nouri Alnahawi, Jacob Alperin-Sheriff, Daniel Apon, Alexander Wiesmaier
Cryptographic protocols
The interest in realizing generic PQC KEM-based PAKEs has increased significantly in the last few years. One such PAKE is the CAKE protocol, proposed by Beguinet et al. (ACNS ’23). However, despite its simple design based on the well-studied PAKE protocol EKE by Bellovin and Merritt (IEEE S&P ’92), both CAKE and its variant OCAKE do not fully protect against quantum adversaries, as they rely on the Ideal Cipher (IC) model. Related and follow-up works, including Pan and Zeng (ASIACRYPT ’23),...
ARK: Adaptive Rotation Key Management for Fully Homomorphic Encryption Targeting Memory Efficient Deep Learning Inference
Jia-Lin Chan, Wai-Kong Lee, Denis C.-K Wong, Wun-She Yap, Bok-Min Goi
Implementation
Advancements in deep learning (DL) not only revolutionized many aspects in our lives, but also introduced privacy concerns, because it processed vast amounts of information that was closely related to our daily life. Fully Homomorphic Encryption (FHE) is one of the promising solutions to this privacy issue, as it allows computations to be carried out directly on the encrypted data. However, FHE requires high computational cost, which is a huge barrier to its widespread adoption. Many prior...
Machine Learning-Based Detection of Glitch Attacks in Clock Signal Data
Asier Gambra, Durba Chatterjee, Unai Rioja, Igor Armendariz, Lejla Batina
Attacks and cryptanalysis
Voltage fault injection attacks are a particularly powerful threat to secure embedded devices because they exploit brief, hard-to-detect power fluctuations causing errors or bypassing security mechanisms. To counter these attacks, various detectors are employed, but as defenses strengthen, increasingly elusive glitches continue to emerge. Artificial intelligence, with its inherent ability to learn and adapt to complex patterns, presents a promising solution. This research presents an...
Algebraic Zero Knowledge Contingent Payment
Javier Gomez-Martinez, Dimitrios Vasilopoulos, Pedro Moreno-Sanchez, Dario Fiore
Cryptographic protocols
In this work, we introduce Modular Algebraic Proof Contingent Payment (MAPCP), a novel zero-knowledge contingent payment (ZKCP) construction. Unlike previous approaches, MAPCP is the first that simultaneously avoids using zk-SNARKs as the tool for zero-knowledge proofs and HTLC contracts to atomically exchange a secret for a payment. As a result, MAPCP sidesteps the common reference string (crs) creation problem and is compatible with virtually any cryptocurrency, even those with limited or...
Implementation analysis of index calculus method on elliptic curves over prime finite fields
Jianjun HU
Public-key cryptography
In 2016,Petit et al. first studied the implementation of the index calculus method on elliptic curves in prime finite fields, and in 2018, Momonari and Kudo et al. improved algorithm of Petit et al. This paper analyzes the research results of Petit, Momonari and Kudo, and points out the existing problems of the algorithm. Therefore, with the help of sum polynomial function and index calculus, a pseudo-index calculus algorithm for elliptic curves discrete logarithm problem over prime finite...
PASTA on Edge: Cryptoprocessor for Hybrid Homomorphic Encryption
Aikata Aikata, Daniel Sanz Sobrino, Sujoy Sinha Roy
Implementation
Fully Homomorphic Encryption (FHE) enables privacy-preserving computation but imposes significant computational and communication overhead on the client for the public-key encryption. To alleviate this burden, previous works have introduced the Hybrid Homomorphic Encryption (HHE) paradigm, which combines symmetric encryption with homomorphic decryption to enhance performance for the FHE client. While early HHE schemes focused on binary data, modern versions now support integer prime fields,...
MUTLISS: a protocol for long-term secure distributed storage over multiple remote QKD networks
Thomas Prévost, Olivier Alibart, Anne Marin, Marc Kaplan
Cryptographic protocols
We introduce MULTISS, a new distributed storage protocol over multiple remote Quantum Key Distribution (QKD) networks that ensures long-term data confidentiality. Our protocol extends LINCOS, a secure storage protocol that uses Shamir secret sharing to distribute data in a single QKD network. Instead MULTISS uses a hierarchical secret scheme that makes certain shares mandatory for the reconstruction of the original secret. We prove that MULTISS ensures that the stored data remain secure even...
Deletions and Dishonesty: Probabilistic Data Structures in Adversarial Settings
Mia Filić, Keran Kocher, Ella Kummer, Anupama Unnikrishnan
Applications
Probabilistic data structures (PDS) are compact representations of high-volume data that provide approximate answers to queries about the data. They are commonplace in today's computing systems, finding use in databases, networking and more. While PDS are designed to perform well under benign inputs, they are frequently used in applications where inputs may be adversarially chosen. This may lead to a violation of their expected behaviour, for example an increase in false positive rate.
In...
OPL4GPT: An Application Space Exploration of Optimal Programming Language for Hardware Design by LLM
Kimia Tasnia, Sazadur Rahman
Implementation
Despite the emergence of Large Language Models (LLMs) as potential tools for automating hardware design, the optimal programming language to describe hardware functions remains unknown. Prior works extensively explored optimizing Verilog-based HDL design, which often overlooked the potential capabilities of alternative programming languages for hardware designs. This paper investigates the efficacy of C++ and Verilog as input languages in extensive application space exploration, tasking an...
ZK-SNARKs for Ballot Validity: A Feasibility Study
Nicolas Huber, Ralf Kuesters, Julian Liedtke, Daniel Rausch
Cryptographic protocols
Electronic voting (e-voting) systems have become more prevalent in recent years, but security concerns have also increased, especially regarding the privacy and verifiability of votes. As an essential ingredient for constructing secure e-voting systems, designers often employ zero-knowledge proofs (ZKPs), allowing voters to prove their votes are valid without revealing them. Invalid votes can then be discarded to protect verifiability without compromising the privacy of valid...
On the Insecurity of Bloom Filter-Based Private Set Intersections
Jelle Vos, Jorrit van Assen, Tjitske Koster, Evangelia Anna Markatou, Zekeriya Erkin
Attacks and cryptanalysis
Private set intersections are cryptographic protocols that compute the intersection of multiple parties' private sets without revealing elements that are not in the intersection. These protocols become less efficient when the number of parties grows, or the size of the sets increases. For this reason, many protocols are based on Bloom filters, which speed up the protocol by approximating the intersections, introducing false positives with a small but non-negligible probability. These false...
Opening the Blackbox: Collision Attacks on Round-Reduced Tip5, Tip4, Tip4' and Monolith
Fukang Liu, Katharina Koschatko, Lorenzo Grassi, Hailun Yan, Shiyao Chen, Subhadeep Banik, Willi Meier
Attacks and cryptanalysis
A new design strategy for ZK-friendly hash functions has emerged since the proposal of $\mathsf{Reinforced Concrete}$ at CCS 2022, which is based on the hybrid use of two types of nonlinear transforms: the composition of some small-scale lookup tables (e.g., 7-bit or 8-bit permutations) and simple power maps over $\mathbb{F}_p$. Following such a design strategy, some new ZK-friendly hash functions have been recently proposed, e.g., $\mathsf{Tip5}$, $\mathsf{Tip4}$, $\mathsf{Tip4}'$ and the...
We construct the first tightly secure signature schemes in the multi-user setting with adaptive corruptions from classical discrete logarithm, RSA, factoring, or post-quantum group action discrete logarithm assumption. In contrast to our scheme, the previous tightly secure schemes are based on the decisional assumption (e.g., (group action) DDH) or interactive search assumptions (e.g., one-more CDH). The security of our schemes is independent of the number of users, signing queries, and...
In the HQC cryptosystem, the length $n$ of the code determines several concrete parameters such as the bandwidth usage, the memory consumption, or the decoding efficiency. In this paper, we show that currently known methods to explicitly generate asymptotically good (especially with high relative distances), binary codes with efficient associated procedures cannot be used to improve $n$. We also show that concatenated codes are currently better suited, and by exhausting small codes, find a...
Twisted generalized Reed-Solomon (TGRS) codes constitute an interesting family of evaluation codes, containing a large class of maximum distance separable codes non-equivalent to generalized Reed-Solomon (GRS) ones. Moreover, the Schur squares of TGRS codes may be much larger than those of GRS codes with same dimension. Exploiting these structural differences, in 2018, Beelen, Bossert, Puchinger and Rosenkilde proposed a subfamily of Maximum Distance Separable (MDS) Twisted Reed--Solomon...
The adoption of Homomorphic Encryption (HE) and Secure Function Evaluation (SFE) applications in the real world remains lim- ited, even nearly 50 years after the introduction of HE. This is particu- larly unfortunate given the strong privacy and confidentiality guarantees these tools can offer to modern digital life. While attempting to incorporate a simple straw-man PSI protocol into a web service for matching individuals based on their profiles, we en- countered several shortcomings...
A memory checking argument enables a prover to prove to a verifier that it is correctly processing reads and writes to memory. They are used widely in modern SNARKs, especially in zkVMs, where the prover proves the correct execution of a CPU including the correctness of memory operations. We describe a new approach for memory checking, which we call the method of one-hot addressing and increments. We instantiate this method via two different families of protocols, called Twist and Shout....
With the rapid development of quantum computers, proofs of quantumness have recently become an interesting and intriguing research direction. However, in all current schemes for proofs of quantumness, quantum provers almost invariably face the risk of being maliciously exploited by classical verifiers. In fact, through malicious strategies in interaction with quantum provers, classical verifiers could solve some instances of hard problems that arise from the specific scheme in use. In other...
We propose a decentralized asset-transfer system that enjoys full privacy: no party can learn the details of a transaction, except for its issuer and its recipient. Furthermore, the recipient is only aware of the amount of the transaction. Our system does not rely on consensus or synchrony assumptions, and therefore, it is responsive, since it runs at the actual network speed. Under the hood, every transaction creates a consumable coin equipped with a non-interactive zero-knowledge proof...
Ethereum transitioned from Proof-of-Work consensus to Proof-of-Stake (PoS) consensus in September 2022. While this upgrade brings significant improvements (e.g., lower energy costs and higher throughput), it also introduces new vulnerabilities. One notable example is the so-called malicious \textit{reorganization attack}. Malicious reorganization denotes an attack in which the Byzantine faulty validators intentionally manipulate the canonical chain so the blocks by honest validators are...
We put forth and instantiate a new primitive we call simultaneous-message and succinct (SMS) secure computation. An SMS scheme enables a minimal communication pattern for secure computation in the following scenario: Alice has a large private input X, Bob has a small private input y, and Charlie wants to learn $f(X, y)$ for some public function $f$. Given a common reference string (CRS) setup phase, an SMS scheme for a function f is instantiated with two parties holding inputs $X$ and...
Distributed Point Functions (DPFs) are a useful cryptographic primitive enabling a dealer to distribute short keys to two parties, such that the keys encode additive secret shares of a secret point function. However, in many applications of DPFs, no single dealer entity has full knowledge of the secret point function, necessitating the parties to run an interactive protocol to emulate the setup. Prior works have aimed to minimize complexity metrics of such distributed setup protocols, e.g.,...
Homomorphic secret sharing (HSS) is a distributed analogue of fully homomorphic encryption (FHE) where following an input-sharing phase, two or more parties can locally compute a function over their private inputs to obtain shares of the function output. Over the last decade, HSS schemes have been constructed from an array of different assumptions. However, all existing HSS schemes, except ones based on assumptions known to imply multi-key FHE, require a public-key infrastructure (PKI) or...
We introduce protein cryptography, a recently proposed method that encodes data into the amino acid sequences of proteins. Unlike traditional digital encryption, this approach relies on the inherent diversity, complexity, and replication resistance of biological macromolecules, making them highly secure against duplication or tampering. The experimental realization of protein cryptography remains an open problem. To accelerate experimental progress in this area, we provide an accessible and...
Cryptocurrencies have emerged as a critical medium for digital financial transactions, driving widespread adoption while simultaneously exposing users to escalating fraud risks. The irreversible nature of cryptocurrency transactions, combined with the absence of consumer protection mechanisms, leaves users vulnerable to substantial financial losses and emotional distress. To address these vulnerabilities, we introduce Insured Cryptocurrency Transactions (ICT), a novel decentralized insurance...
In this paper, we revisit venerable lower-bounds on the $AT$ or $AT^2$ performance metric of hardware circuits. A series of works started in the late 1970's has established that if a hardware circuit of area $A$ computes a function $f : \{0, 1\}^n \rightarrow \{0, 1\}^m$ in $T$ clock cycles, then $AT^2$ is asymptotically larger than (a form of) the communication complexity of $f$. These lower-bounds ignore the active component of the circuit such as the logic gates and only take into...
Designing post-quantum digital signatures is a very active research area at present, with several protocols being developed, based on a variety of mathematical assumptions. Many of these signatures schemes can be used as a basis to define more advanced schemes, such as ring or threshold signatures, where multiple parties are involved in the signing process. Unfortunately, the majority of these protocols only considers a static adversary, that must declare which parties to corrupt at the...
Threshold fully homomorphic encryption (ThFHE) enables multiple parties to compute functions over their sensitive data without leaking data privacy. Most of existing ThFHE schemes are restricted to full threshold and require the participation of all parties to output computing results. Compared with these full-threshold schemes, arbitrary threshold (ATh)-FHE schemes are robust to non-participants and can be a promising solution to many real-world applications. However, existing AThFHE...
Abstract. CHVote is one of the two main electronic voting systems developed in the context of political elections in Switzerland, where the regulation requires a specific setting and specific trust assumptions. We show that actually, CHVote fails to achieve vote secrecy and individual verifiability (here, recorded-as-intended), as soon as one of the online components is dishonest, contradicting the security claims of CHVote. In total, we found 9 attacks or variants against CHVote, 2 of...
Intel Trust Domain Extensions (TDX) has emerged as a crucial technology aimed at strengthening the isolation and security guarantees of virtual machines, especially as the demand for secure computation is growing largely. Despite the protections offered by TDX, in this work, we dig deep into the security claims and uncover an intricate observation in TDX. These findings undermine TDX's core security guarantees by breaching the isolation between the Virtual Machine Manager (VMM) and Trust...
While many side-channel attacks on elliptic curve cryptography can be avoided by coordinate randomization, this is not the case for the zero-value point (ZVP) attack. This attack can recover a prefix of static ECDH key but requires solving an instance of the dependent coordinates problem (DCP), which is open in general. We design a new method for solving the DCP on GLV curves, including the Bitcoin secp256k1 curve, outperforming previous approaches. This leads to a new type of ZVP attack on...
Making the most of TFHE advanced capabilities such as programmable or circuit bootstrapping and their generalizations for manipulating data larger than the native plaintext domain of the scheme is a very active line of research. In this context, AES is a particularly interesting benchmark, as an example of a nontrivial algorithm which has eluded "practical" FHE execution performances for years, as well as the fact that it will most likely be selected by NIST as a flagship reference in its...
The CKKS scheme is traditionally recognized for approximate homomorphic encryption of real numbers, but BLEACH (Drucker et al., JoC 2024) extends its capabilities to handle exact computations on binary or small integer numbers. Despite this advancement, BLEACH's approach of simulating XOR gates via $(a-b)^2$ incurs one multiplication per gate, which is computationally expensive in homomorphic encryption. To this end, we introduce XBOOT, a new framework built upon BLEACH's blueprint but...
In various real-world situations, a client may need to verify whether specific data elements they possess are part of a set segmented among numerous data holders. To maintain user privacy, it’s essential that both the client’s data elements and the data holders’ sets remain encrypted throughout the process. Existing approaches like Private Set Intersection (PSI), Multi-Party PSI (MPSI), Private Segmented Membership Test (PSMT), and Oblivious RAM (ORAM) face challenges in these...
Directed Acyclic Graph (DAG) based protocols have shown great promise to improve the performance of blockchains. The CAP theorem shows that it is impossible to have a single system that achieves both liveness (known as dynamic availability) and safety under network partition.This paper explores two types of DAG-based protocols prioritizing liveness or safety, named structured dissemination and Graded Common Prefix (GCP), respectively. For the former, we introduce the first...
As Fully Homomorphic Encryption (FHE) enables computation over encrypted data, it is a natural question of how efficiently it handles standard integer computations like $64$-bit arithmetic. It has long been believed that the CGGI/DM family or the BGV/BFV family are the best options, depending on the size of the parallelism. The Cheon-Kim-Kim-Song (CKKS) scheme, although being widely used in many applications like machine learning, was not considered a good option as it is more focused on...
We revisit a basic building block in the endeavor to migrate to post-quantum secure cryptography, Key Encapsulation Mechanisms (KEMs). KEMs enable the establishment of a shared secret key, using only public communication. When targeting chosen-ciphertext security against quantum attackers, the go-to method is to design a Public-Key Encryption (PKE) scheme and then apply a variant of the PKE-to-KEM conversion known as the Fujisaki-Okamoto (FO) transform, which we revisit in this work....
In this paper, we present a general framework for constructing SNARK-friendly post-quantum signature schemes based on minimal assumptions, specifically the security of an arithmetization-oriented family of permutations. The term "SNARK-friendly" here refers to the efficiency of the signature verification process in terms of SNARK constraints, such as R1CS or AIR constraints used in STARKs. Within the CAPSS framework, signature schemes are designed as proofs of knowledge of a secret preimage...
Fuzzy private set intersection (Fuzzy PSI) is a cryptographic protocol for privacy-preserving similarity matching, which is one of the essential operations in various real-world applications such as facial authentication, information retrieval, or recommendation systems. Despite recent advancements in fuzzy PSI protocols, still a huge barrier remains in deploying them for these applications. The main obstacle is the high dimensionality, e.g., from 128 to 512, of data; lots of existing...
Zero-knowledge proofs of training (zkPoT) allow a party to prove that a model is trained correctly on a committed dataset without revealing any additional information about the model or the dataset. Existing zkPoT protocols prove the entire training process in zero knowledge; i.e., they prove that the final model was obtained in an iterative fashion starting from the training data and a random seed (and potentially other parameters) and applying the correct algorithm at each iteration. This...
Privacy and security have become critical priorities in many scenarios. Privacy-preserving computation (PPC) is a powerful solution that allows functions to be computed directly on encrypted data. Garbled circuit (GC) is a key PPC technology that enables secure, confidential computing. GC comes in two forms: Boolean GC supports all operations by expressing functions as logic circuits; arithmetic GC is a newer technique to efficiently compute a set of arithmetic operations like addition and...
A secret-sharing scheme allows the distribution of a secret $s$ among $n$ parties, such that only certain predefined “authorized” sets of parties can reconstruct the secret, while all other “unauthorized” sets learn nothing about $s$. The collection of authorized/unauthorized sets is defined by a monotone function $f: \{0,1\}^n \rightarrow \{0,1\}$. It is known that any monotone function can be realized by a secret-sharing scheme; thus, the smallest achievable \emph{total share size},...
Fully Homomorphic Encryption (FHE) allows a server to perform computations directly over the encrypted data. In general FHE protocols, the client is tasked with decrypting the computation result using its secret key. However, certain FHE applications benefit from the server knowing this result, especially without the aid of the client. Providing the server with the secret key allows it to decrypt all the data, including the client's private input. Protocols such as Goldwasser et. al....
Registered attribute-based encryption (ABE) is a generalization of public-key encryption that enables fine-grained access control to encrypted data (like standard ABE), but without needing a central trusted authority. In a key-policy registered ABE scheme, users choose their own public and private keys and then register their public keys together with a decryption policy with an (untrusted) key curator. The key curator aggregates all of the individual public keys into a short master public...
Fix odd primes $p, \ell$ with $p \equiv 3 \mod 4$ and $\ell \neq p$. Consider the rational quaternion algebra ramified at $p$ and $\infty$ with a fixed maximal order $\mathcal{O}_{1728}$. We give explicit formulae for bases of all cyclic norm $\ell^n$ ideals of $\mathcal{O}_{1728}$ and their right orders, in Hermite Normal Form (HNF). Further, in the case $\ell \mid p+1$, or more generally, $-p$ is a square modulo $\ell$, we derive a parametrization of these bases along paths of the...
The Signal protocol relies on a special handshake protocol, formerly X3DH and now PQXDH, to set up secure conversations. Prior analyses of these protocols (or proposals for post-quantum alternatives) have all used highly tailored models to the individual protocols and generally made ad-hoc adaptations to "standard" AKE definitions, making the concrete security attained unclear and hard to compare between similar protocols. Indeed, we observe that some natural Signal handshake protocols...
Verifiable random access machines (vRAMs) serve as a foundational model for expressing complex computations with provable security guarantees, serving applications in areas such as secure electronic voting, financial auditing, and privacy-preserving smart contracts. However, no existing vRAM provides distributed obliviousness, a critical need in scenarios where multiple provers seek to prevent disclosure against both other provers and the verifiers. Implementing a publicly verifiable...
Proof-of-stake consensus protocols often rely on distributed randomness beacons (DRBs) to generate randomness for leader selection. This work analyses the manipulability of Ethereum's DRB implementation, RANDAO, in its current consensus mechanism. Even with its efficiency, RANDAO remains vulnerable to manipulation through the deliberate omission of blocks from the canonical chain. Previous research has shown that economically rational players can withhold blocks --~known as a block...
It is imperative to modernize traditional core cryptographic primitives, such as Oblivious Transfer (OT), to address the demands of the new digital era, where privacy-preserving computations are executed on low-power devices. This modernization is not merely an enhancement but a necessity to ensure security, efficiency, and continued relevance in an ever-evolving technological landscape. This work introduces two scalable OT schemes: (1) Helix OT, a $1$-out-of-$n$ OT, and (2) Priority OT,...
We introduce ZODA, short for 'zero-overhead data availability,' which is a protocol for proving that symbols received from an encoding (for tensor codes) were correctly constructed. ZODA has optimal overhead for both the encoder and the samplers. Concretely, the ZODA scheme incurs essentially no incremental costs (in either computation or size) beyond those of the tensor encoding itself. In particular, we show that a slight modification to the encoding scheme for tensor codes allows sampled...
In this work, we address the problem of Delegated PSI (D-PSI), where a cloud server is introduced to handle most computational and communication tasks. D-PSI enables users to securely delegate their private sets to the cloud, ensuring the privacy of their data while allowing efficient computation of the intersection. The cloud operates under strict security requirements, learning nothing about the individual sets or the intersection result. Moreover, D-PSI minimizes user-to-user...
Two most common ways to design non-interactive zero knowledge (NIZK) proofs are based on Sigma ($\Sigma$)-protocols (an efficient way to prove algebraic statements) and zero-knowledge succinct non-interactive arguments of knowledge (zk-SNARK) protocols (an efficient way to prove arithmetic statements). However, in the applications of cryptocurrencies such as privacy-preserving credentials, privacy-preserving audits, and blockchain-based voting systems, the zk-SNARKs for general statements...
Functional Encryption is a powerful cryptographic primitive that allows for fine-grained access control over encrypted data. In the multi-user setting, especially Multi-Client and Multi-Input, a plethora of works have been proposed to study on concrete function classes, improving security, and more. However, the CCA-security for such schemes is still an open problem, where the only known works are on Public-Key Single-Client FE ($\mathit{e.g.}$ Benhamouda, Bourse, and Lipmaa, PKC'17). ...
Today, many auctions are carried out with the help of intermediary platforms like Google and eBay. These platforms serve as a rendezvous point for the buyers and sellers, and charge a fee for its service. We refer to such auctions as platform-assisted auctions. Traditionally, the auction theory literature mainly focuses on designing auctions that incentivize the buyers to bid truthfully, assuming that the platform always faithfully implements the auction. In practice, however, the platforms...
Index Calculus (IC) algorithm is the most effective probabilistic algorithm for solving discrete logarithms over finite fields of prime numbers, and it has been widely applied to cryptosystems based on elliptic curves. Since the IC algorithm was proposed in 1920, the research on it has never stopped, especially discretization of prime numbers on the finite fields, both the algorithm itself and its application have been greatly developed. Of course, there has been some research on elliptic...
Cryptocurrency practices worldwide are seen as innovative, yet they navigate a fragmented regulatory environment. Many local authorities aim to balance promoting innovation, safeguarding consumers, and managing potential threats. In particular, it is unclear how people deal with cryptocurrencies in the regions where trading or mining is prohibited. This insight is crucial in conveying the risk reduction strategies. To address this, we conducted semi-structured interviews with 28...
In classical DNSSEC, a drop-in replacement with quantum-safe cryptography would increase DNS query resolution times by $\textit{at least}$ a factor of $2\times$. Since a DNS response containing large post-quantum signatures is likely to get marked truncated ($\texttt{TC}$) by a nameserver (resulting in a wasted UDP round-trip), the client (here, the resolver) would have to retry its query over TCP, further incurring a $\textit{minimum}$ of two round-trips due to the three-way TCP...
In classical cryptography, one-way functions (OWFs) play a central role as the minimal primitive that (almost) all primitives imply. The situation is more complicated in quantum cryptography, in which honest parties and adversaries can use quantum computation and communication, and it is known that analogues of OWFs in the quantum setting might not be minimal. In this work we ask whether OWFs are minimal for the intermediate setting of post-quantum cryptography, in which the protocols...
The rising demand for data privacy in cloud-based environments has led to the development of advanced mechanisms for securely managing sensitive information. A prominent solution in this domain is the "Data Privacy Vault," a concept that is being provided commercially by companies such as Hashicorp, Basis Theory, Skyflow Inc., VGS, Evervault, Protegrity, Anonomatic, and BoxyHQ. However, no existing work has rigorously defined the security notions required for a Data Privacy Vault or proven...
This paper introduces PQConnect, a post-quantum end-to-end tunneling protocol that automatically protects all packets between clients that have installed PQConnect and servers that have installed and configured PQConnect. Like VPNs, PQConnect does not require any changes to higher-level protocols and application software. PQConnect adds cryptographic protection to unencrypted applications, works in concert with existing pre-quantum applications to add post-quantum protection, and adds a...
We present an encrypted multi-map, a fundamental data structure underlying searchable encryption/structured encryption. Our protocol supports updates and is designed for applications demanding very strong data security. Not only it hides the information about queries and data, but also the query, access, and volume patterns. Our protocol utilizes a position-based ORAM and an encrypted dictionary. We provide two instantiations of the protocol, along with their operation-type-revealing...
The use of secure computation protocols within production software systems and applications is complicated by the fact that such protocols sometimes rely upon -- or are most compatible with -- unusual or restricted models of computation. We employ the features of a contemporary and widely used programming language to create an embedded domain-specific language for working with user-defined functions as binary matrices that operate on one-hot vectors. At least when working with small finite...
There are a variety of techniques for implementing read/write memory inside of zero-knowledge proofs and validating consistency of memory accesses. These techniques are generally implemented with the goal of implementing a RAM or ROM. In this paper, we present memory techniques for more specialized data structures: queues and stacks. We first demonstrate a technique for implementing queues in arithmetic circuits that requires 3 multiplication gates and 1 advice value per read and 2...
To provide safe communication across an unprotected medium such as the internet, network protocols are being established. These protocols employ public key techniques to perform key exchange and authentication. Transport Layer Security (TLS) is a widely used network protocol that enables secure communication between a server and a client. TLS is employed in billions of transactions per second. Contemporary protocols depend on traditional methods that utilize the computational complexity of...
Side-channel attacks exploit information leaked through non-primary channels, such as power consumption, electromagnetic emissions, or timing, to extract sensitive data from cryptographic devices. Over the past three decades, side-channel analysis has evolved into a mature research field with well-established methodologies for analyzing standard cryptographic algorithms like the Advanced Encryption Standard (AES). However, the integration of side-channel analysis with formal methods remains...
Blind signatures are an important primitive for privacy-preserving technologies. To date, highly efficient pairing-free constructions rely on the random oracle model, and additionally, a strong assumption, such as interactive assumptions or the algebraic group model. In contrast, for signatures we know many efficient constructions that rely on the random oracle model and standard assumptions. In this work, we develop techniques to close this gap. Compared to the most efficient...
We construct the first blind signature scheme that achieves all of the following properties simultaneously: - it is tightly secure under a standard (i.e., non-interactive, non-\(q\)-type) computational assumption, - it does not require pairings, - it does not rely on generic, non-black-box techniques (like generic NIZK proofs). The third property enables a reasonably efficient solution, and in fact signatures in our scheme comprise 10 group elements and 29...
A garbling scheme transforms a program (e.g., circuit) $C$ into a garbled program $\hat{C}$, along with a pair of short keys $(k_{i,0},k_{i,1})$ for each input bit $x_i$, such that $(C,\hat{C}, \{k_{i,x_i}\})$ can be used to recover the output $z = C(x)$ while revealing nothing else about the input $x$. This can be naturally generalized to partial garbling, where part of the input is public, and a computation $z = C(x, y)$ is decomposed into a public part $C_{\text{pub}}(x)$, depending only...
The \emph{Fluid} multiparty computation (MPC) model, introduced in (Choudhuri \emph{et al.} CRYPTO 2021), addresses dynamic scenarios where participants can join or leave computations between rounds. Communication complexity initially stood at $\Omega(n^2)$ elements per gate, where $n$ is the number of parties in a committee online at a time. This held for both statistical security (honest majority) and computational security (dishonest majority) in (Choudhuri \emph{et al.}~CRYPTO'21) and...
Authentication often bridges real-world individuals and their virtual public identities, like usernames, user IDs and e-mails, exposing vulnerabilities that threaten user privacy. This research introduces COCO (Coconuts and Oblivious Computations for Orthogonal Authentication), a framework that segregates roles among Verifiers, Authenticators, and Clients to achieve privacy-preserving authentication. COCO eliminates the need for Authenticators to directly access virtual public identifiers...
Cryptography secures our online interactions, transactions, and trust. To achieve this goal, not only do the cryptographic primitives and protocols need to be secure in theory, they also need to be securely implemented by cryptographic library developers in practice. However, implementing cryptographic algorithms securely is challenging, even for skilled professionals, which can lead to vulnerable implementations, especially to side-channel attacks. For timing attacks, a severe class of...
Multi-input functional encryption is a primitive that allows for the evaluation of an $\ell$-ary function over multiple ciphertexts, without learning any information about the underlying plaintexts. This type of computation is useful in many cases where one has to compute over encrypted data, such as privacy-preserving cloud services, federated learning, or more generally delegation of computation from multiple clients. It has recently been shown by Alborch et al. in PETS '24 to be useful to...
Garbled Circuits are essential building blocks in cryptography, and extensive research has explored their construction from both applied and theoretical perspectives. However, a challenge persists: While theoretically designed garbled circuits offer optimal succinctness--remaining constant in size regardless of the underlying circuit’s complexit--and are reusable for multiple evaluations, their concrete computational costs are prohibitively high. On the other hand, practically efficient...
The SPDM (Security Protocol and Data Model) protocol is a standard under development by the DMTF consortium, and supported by major industry players including Broadcom, Cisco, Dell, Google, HP, IBM, Intel, and NVIDIA. SPDM 1.2 is a complex protocol that aims to provide platform security, for example for communicating hardware components or cloud computing scenarios. In this work, we provide the first holistic, formal analysis of SPDM 1.2: we model the full protocol flow of SPDM considering...
The Gentry-Peikert-Vaikuntanathan (GPV) framework is utilized for constructing digital signatures, which is proven to be secure in the classical/quantum random-oracle model. Falcon is such a signature scheme, recognized as a compact and efficient signature among NIST-standardized signature schemes. Although a signature scheme based on the GPV framework is theoretically highly secure, it could be vulnerable to side-channel attacks and hence further research on physical attacks is required to...
Information-theoretic or unconditional security provides the highest level of security --- independent of the computational capability of an adversary. Secret-sharing techniques achieve information-theoretic security by splitting a secret into multiple parts (called shares) and storing the shares across non-colluding servers. However, secret-sharing-based solutions suffer from high overheads due to multiple communication rounds among servers and/or information leakage due to access-patterns...
Proving knowledge soundness of an interactive proof from scratch is often a challenging task. This has motivated the evelopment of various special soundness frameworks which, in a nutshell, separate knowledge extractors into two parts: (1) an extractor to produce a set of accepting transcripts conforming to some structure; (2) a witness recovery algorithm to recover a witness from a set of transcripts with said structure. These frameworks take care of (1), so it suffices for a protocol...
Multilateral Trade Credit Set-off (MTCS) is a process run by a service provider that collects trade credit data (i.e. obligations from a firm to pay another firm) from a network of firms and detects cycles of debts that can be removed from the system. The process yields liquidity savings for the participants, who can discharge their debts without relying on expensive loans. We propose an MTCS protocol that protects firms' sensitive data, such as the obligation amount or the identity of the...
The question of whether the complexity class P equals NP is a major unsolved problem in theoretical computer science. In this paper, we introduce a new language, the Add/XNOR problem, which has the simplest structure and perfect randomness, by extending the subset sum problem. We prove that P $\neq$ NP as it shows that the square-root complexity is necessary to solve the Add/XNOR problem. That is, problems that are verifiable in polynomial time are not necessarily solvable in polynomial...
Fully Homomorphic Encryption (FHE) enables secure computation of functions on ciphertexts without requiring decryption. Specifically, AP-like HE schemes exploit an intrinsic bootstrapping method called blind rotation. In blind rotation, a look-up table is homomorphically evaluated on the input ciphertext through the iterative multiplication of monomials. However, the algebraic structure of the multiplicative group of monomials imposes certain limitations on the input and output plaintext...
The advent of quantum computing has profound implications for current technologies, offering advancements in optimization while posing significant threats to cryptographic algorithms. Public-key cryptosystems relying on prime factorization or discrete logarithms are particularly vulnerable, whereas block ciphers (BCs) remain secure through increased key lengths. In this study, we introduce a novel quantum implementation of SLIM, a lightweight block cipher optimized for 32-bit plaintext and...
Differentially private (DP) heavy-hitter detection is an important primitive for data analysis. Given a threshold $t$ and a dataset of $n$ items from a domain of size $d$, such detection algorithms ignore items occurring fewer than $t$ times while identifying items occurring more than $t+\Delta$ times; we call $\Delta$ the error margin. In the central model where a curator holds the entire dataset, $(\varepsilon,\delta)$-DP algorithms can achieve error margin $\Theta(\frac 1 \varepsilon...
In the usual syntax of digital signatures, the verification algorithm takes a verification key in addition to a signature and a message, whereas in ECDSA with key recovery, which is used in Ethereum, no verification key is input to the verification algorithm. Instead, a verification key is recovered from a signature and a message. In this paper, we explore BUFF security of ECDSA with key recovery (KR-ECDSA), where BUFF stands for Beyond UnForgeability Features (Cremers et al., IEEE S&P...
We give new constructions of succinct non-interactive arguments ($\mathsf{SNARG}$s) for $\mathsf{NP}$ in the settings of both non-adaptive and adaptive soundness. Our construction of non-adaptive $\mathsf{SNARG}$ is universal assuming the security of a (leveled or unleveled) fully homomorphic encryption ($\mathsf{FHE}$) scheme as well as a batch argument ($\mathsf{BARG}$) scheme. Specifically, for any choice of parameters $\ell$ and $L$, we construct a candidate $\mathsf{SNARG}$ scheme...
Anonymous digital credentials allow a user to prove possession of an attribute that has been asserted by an identity issuer without revealing any extra information about themselves. For example, a user who has received a digital passport credential can prove their “age is $>18$” without revealing any other attributes such as their name or date of birth. Despite inherent value for privacy-preserving authentication, anonymous credential schemes have been difficult to deploy at scale. ...
A proof of solvency (or proof of reserves) is a zero-knowledge proof conducted by centralized cryptocurrency exchange to offer evidence that the exchange owns enough cryptocurrency to settle each of its users' balances. The proof seeks to reveal nothing about the finances of the exchange or its users, only the fact that it is solvent. The literature has already started to explore how to make proof size and verifier time independent of the number of (i) users on the exchange, and (ii)...
In many lightweight cryptography applications, low area and latency are required for efficient implementation. The gate count in the cipher and the circuit depth must be low to minimize these two metrics. Many optimization strategies have been developed for the linear layer, led by the Boyar-Peralta (BP) algorithm. The Advanced Encryption Standard (AES) has been a focus of extensive research in this area. However, while the linear layer uses only XOR gates, the S-box, which is an essential...
A long-standing question in the blockchain community is which class of computations are efficiently expressible in cryptocurrencies with limited scripting languages, such as Bitcoin Script. Such languages expose a reduced trusted computing base, thereby being less prone to hacks and vulnerabilities, but have long been believed to support only limited classes of payments. In this work, we confute this long-standing belief by showing for the first time that arbitrary computations can be...
In this paper we define the novel concept token-based key exchange (TBKE), which can be considered a cross between non-interactive key exchange (NIKE) and attribute-based encryption (ABE). TBKE is a scheme that allows users within an organization to generate shared keys for a subgroup of users through the use of personal tokens and secret key. The shared key generation is performed locally and no interaction between users or with a server is needed. The personal tokens are derived from a...
We propose a solution for optimized scaling of multi-party computation using the MP-SPDZ framework (CCS’20). It does not use manual optimization but extends the compiler and the virtual machine of the framework, thus providing an improvement for any user. We found that our solution improves timings four-fold for a simple example in MP-SPDZ, and it improves an order of magnitude on every framework using secret sharing considered by Hastings et al. (S&P’19) either in terms of time or RAM...
We present a garbling scheme for Boolean circuits with 1 bit per gate communication based on either ring learning with errors (RLWE) or NTRU assumption, with key-dependent message security. The garbling consists of 1) a homomorphically encrypted seed that can be expanded to encryption of many pseudo-random bits and 2) one-bit stitching information per gate to reconstruct garbled tables from the expanded ciphertexts. By using low-complexity PRGs, both the garbling and evaluation of each...
This article generalizes the widely-used GLV decomposition for scalar multiplication to a broader range of elliptic curves with moderate CM discriminant \( D < 0 \) (up to a few thousand in absolute value). Previously, it was commonly believed that this technique could only be applied efficiently for small \( D \) values (e.g., up to \( 100 \)). In practice, curves with \( j \)-invariant \( 0 \) are most frequently employed, as they have the smallest possible \( D = -3 \). This article...
With the emergence of DeFi, attacks based on re-ordering transactions have become an essential problem for public blockchains. Such attacks include front-running or sandwiching transactions, where the adversary places transactions at a particular place within a block to influence a financial asset’s market price. In the Ethereum space, the value extracted by such attacks is often referred to as miner/maximal extractable value (MEV), which to date is estimated to have reached a value of more...
A message authentication code (MAC) is a symmetric-key cryptographic function used to authenticate a message by assigning it a tag. This tag is a short string that is difficult to reproduce without knowing the key. The tag ensures both the authenticity and integrity of the message, enabling the detection of any modifications. A significant number of existing message authentication codes (MACs) are based on block ciphers (BCs) and tweakable block ciphers (TBCs). These MACs offer various...
Evaluating the security of LWE-based KEMs involves two crucial metrics: the hardness of the underlying LWE problem and resistance to decryption failure attacks, both significantly influenced by the secret key and error distributions. To mitigate the complexity and timing vulnerabilities of Gaussian sampling, modern LWE-based schemes often adopt either the uniform or centered binomial distribution (CBD). This work focuses on Kyber to evaluate its security under both distributions. Compared...
The rise of microarchitectural attacks has necessitated robust detection and mitigation strategies to secure computing systems. Traditional tools, such as static and dynamic code analyzers and attack detectors, often fall short due to their reliance on predefined patterns and heuristics that lack the flexibility to adapt to new or evolving attack vectors. In this paper, we introduce for the first time a microarchitecture security assistant, built on OpenAI's GPT-3.5, which we refer to as...
Lattice-based succinct arguments allow to prove bounded-norm satisfiability of relations, such as $f(\vec{s}) = \vec{t} \bmod q$ and $\|\vec{s}\|\leq \beta$, over specific cyclotomic rings $\mathcal{O}_\mathcal{K}$, with proof size polylogarithmic in the witness size. However, state-of-the-art protocols require either 1) a super-polynomial size modulus $q$ due to a soundness gap in the security argument, or 2) a verifier which runs in time linear in the witness size. Furthermore,...
We further explore the explicit connections between supersingular curve isogenies and Bruhat-Tits trees. By identifying a supersingular elliptic curve $E$ over $\mathbb{F}_p$ as the root of the tree, and a basis for the Tate module $T_\ell(E)$; our main result is that given a vertex $M$ of the Bruhat-Tits tree one can write down a generator of the ideal $I \subseteq \text{End}(E)$ directly, using simple linear algebra, that defines an isogeny corresponding to the path in the Bruhat-Tits tree...
The fast-paced development and deployment of private messaging applications demands mechanisms to protect against the concomitant potential for abuse. While widely used end-to-end encrypted (E2EE) messaging systems have deployed mechanisms for users to verifiably report abusive messages without compromising the privacy of unreported messages, abuse reporting schemes for systems that additionally protect message metadata are still in their infancy. Existing solutions either focus on a...
Automated cryptanalysis has seen a lot of attraction and success in the past decade, leading to new distinguishers or key-recovery attacks against various ciphers. We argue that the improved efficiency and usability of these new tools have been undervalued, especially for design processes. In this article, we break for the first time the classical iterative design paradigm for symmetric-key primitives, where constructions are built around the repetition of a round function. We propose...
The interest in realizing generic PQC KEM-based PAKEs has increased significantly in the last few years. One such PAKE is the CAKE protocol, proposed by Beguinet et al. (ACNS ’23). However, despite its simple design based on the well-studied PAKE protocol EKE by Bellovin and Merritt (IEEE S&P ’92), both CAKE and its variant OCAKE do not fully protect against quantum adversaries, as they rely on the Ideal Cipher (IC) model. Related and follow-up works, including Pan and Zeng (ASIACRYPT ’23),...
Advancements in deep learning (DL) not only revolutionized many aspects in our lives, but also introduced privacy concerns, because it processed vast amounts of information that was closely related to our daily life. Fully Homomorphic Encryption (FHE) is one of the promising solutions to this privacy issue, as it allows computations to be carried out directly on the encrypted data. However, FHE requires high computational cost, which is a huge barrier to its widespread adoption. Many prior...
Voltage fault injection attacks are a particularly powerful threat to secure embedded devices because they exploit brief, hard-to-detect power fluctuations causing errors or bypassing security mechanisms. To counter these attacks, various detectors are employed, but as defenses strengthen, increasingly elusive glitches continue to emerge. Artificial intelligence, with its inherent ability to learn and adapt to complex patterns, presents a promising solution. This research presents an...
In this work, we introduce Modular Algebraic Proof Contingent Payment (MAPCP), a novel zero-knowledge contingent payment (ZKCP) construction. Unlike previous approaches, MAPCP is the first that simultaneously avoids using zk-SNARKs as the tool for zero-knowledge proofs and HTLC contracts to atomically exchange a secret for a payment. As a result, MAPCP sidesteps the common reference string (crs) creation problem and is compatible with virtually any cryptocurrency, even those with limited or...
In 2016,Petit et al. first studied the implementation of the index calculus method on elliptic curves in prime finite fields, and in 2018, Momonari and Kudo et al. improved algorithm of Petit et al. This paper analyzes the research results of Petit, Momonari and Kudo, and points out the existing problems of the algorithm. Therefore, with the help of sum polynomial function and index calculus, a pseudo-index calculus algorithm for elliptic curves discrete logarithm problem over prime finite...
Fully Homomorphic Encryption (FHE) enables privacy-preserving computation but imposes significant computational and communication overhead on the client for the public-key encryption. To alleviate this burden, previous works have introduced the Hybrid Homomorphic Encryption (HHE) paradigm, which combines symmetric encryption with homomorphic decryption to enhance performance for the FHE client. While early HHE schemes focused on binary data, modern versions now support integer prime fields,...
We introduce MULTISS, a new distributed storage protocol over multiple remote Quantum Key Distribution (QKD) networks that ensures long-term data confidentiality. Our protocol extends LINCOS, a secure storage protocol that uses Shamir secret sharing to distribute data in a single QKD network. Instead MULTISS uses a hierarchical secret scheme that makes certain shares mandatory for the reconstruction of the original secret. We prove that MULTISS ensures that the stored data remain secure even...
Probabilistic data structures (PDS) are compact representations of high-volume data that provide approximate answers to queries about the data. They are commonplace in today's computing systems, finding use in databases, networking and more. While PDS are designed to perform well under benign inputs, they are frequently used in applications where inputs may be adversarially chosen. This may lead to a violation of their expected behaviour, for example an increase in false positive rate. In...
Despite the emergence of Large Language Models (LLMs) as potential tools for automating hardware design, the optimal programming language to describe hardware functions remains unknown. Prior works extensively explored optimizing Verilog-based HDL design, which often overlooked the potential capabilities of alternative programming languages for hardware designs. This paper investigates the efficacy of C++ and Verilog as input languages in extensive application space exploration, tasking an...
Electronic voting (e-voting) systems have become more prevalent in recent years, but security concerns have also increased, especially regarding the privacy and verifiability of votes. As an essential ingredient for constructing secure e-voting systems, designers often employ zero-knowledge proofs (ZKPs), allowing voters to prove their votes are valid without revealing them. Invalid votes can then be discarded to protect verifiability without compromising the privacy of valid...
Private set intersections are cryptographic protocols that compute the intersection of multiple parties' private sets without revealing elements that are not in the intersection. These protocols become less efficient when the number of parties grows, or the size of the sets increases. For this reason, many protocols are based on Bloom filters, which speed up the protocol by approximating the intersections, introducing false positives with a small but non-negligible probability. These false...
A new design strategy for ZK-friendly hash functions has emerged since the proposal of $\mathsf{Reinforced Concrete}$ at CCS 2022, which is based on the hybrid use of two types of nonlinear transforms: the composition of some small-scale lookup tables (e.g., 7-bit or 8-bit permutations) and simple power maps over $\mathbb{F}_p$. Following such a design strategy, some new ZK-friendly hash functions have been recently proposed, e.g., $\mathsf{Tip5}$, $\mathsf{Tip4}$, $\mathsf{Tip4}'$ and the...