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Abstract. Homomorphic message authentication codes (HMACs) allow users to authenticate data
using a shared secret key, while supporting computation over authenticated data. Given data
(m1, . . . ,mn) and their tags (σ1, . . . , σn), anyone can evaluate a circuit C on the data and tags
to produce a succinct tag authenticating the output C(m1, . . . ,mn). Importantly, tags remain suc-
cinct—of size polynomial in the security parameter λ—regardless of the size of C. This work intro-
duces an enhanced variant of HMACs called algebraic HMAC (aHMAC), in which all tags (input
and output) take the form ∆ ·m+K, as in standard information-theoretic MACs.
We construct an aHMAC from group-based assumptions, including variants of the DDH and DCR
assumptions, and use it to obtain group-based constructions of several cryptographic primitives:
– Succinct CDS for circuits. For any P : [N ]k → [N ] represented by circuit, we obtain a

Conditional Disclosure of Secrets protocol with poly(λ, k, logN) communication.
– Succinct PSM for simple programs. For any P : [N ]k → [N ] represented by a truth-table or

shallow branching program, we obtain a Private Simultaneous Messages protocol or a garbling
scheme with poly(λ, k, logN) communication.

– Constrained PRFs for circuits. We obtain the first group-based constrained pseudorandom
functions for general circuits, improving over a previous construction for NC1 circuits.

Prior to our work, these applications could only be obtained from lattice assumptions or indistin-
guishability obfuscation.

⋆ This is an updated version of [ILL24], with the old title “Succinct Partial Garbling from Groups and Applica-
tions.” See Section 1.7 for a summary of the changes.
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1 Introduction

Diversifying assumptions is a central theme in cryptography. While almost all cryptographic
primitives can be built from powerful tools such as indistinguishability obfuscation (iO), in most
cases this is an overkill. Excluding iO, lattice-based assumptions have also shown great ver-
satility in implying a wide range of primitives. For many of these primitives, we still do not
have constructions from cryptographic groups or other number-theoretic assumptions. In par-
ticular, primitives with homomorphic evaluation capabilities, such as homomorphic encryption,
attribute-based encryption, homomorphic MACs/signatures, and succinct garbling schemes have
state-of-the-art constructions using lattices, while group-based or number-theoretic constructions
typically only suffice for more limited functionalities or efficiency features.

This work is motivated by the challenge of narrowing the gap between the provable conse-
quences of iO or lattices and group-based assumptions. Besides the direct benefit of diversifying
assumptions, efforts in this direction have often led to other major developments and inspired
new techniques that found unexpected applications.

Expanding group-based cryptography. In this work, we provide the first group-based con-
structions for central cryptographic primitives that were previously only known using iO or
lattices. This includes the following:

– Succinct protocols for Conditional Disclosure of Secrets (CDS) [GIKM00] for general circuits,
improving over a previous one-way function based construction for truth tables [ABI+23];

– Succinct protocols for Private Simultaneous Messages (PSM) [FKN94] and garbling schemes
[Yao86] for truth tables and shallow branching programs, providing the first fully succinct
group-based constructions for any kind of programs;

– Constrained Pseudo-Random Functions (CPRF) [BW13, KPTZ13, BGI14] for general con-
straint circuits, overcoming the NC1 barrier in previous group-based constructions [CMPR23].

For all these primitives, we present the first group-based constructions, under (variants of) stan-
dard assumptions. Our new constructions are enabled using Homomorphic MAC (HMAC) with
natural and useful algebraic properties – called algebraic HMAC (aHMAC) – that we construct
using groups. Along the way, we also significantly improve over previous group-based HMAC
schemes without the algebraic property, in particular, removing depth constraint, dispensing
the need for sub-exponential hardness and non-black-box usage of cryptography. Let us explain
more.

Main Tool: Algebraic Homomorphic MAC. A standard homomorphic MAC, introduced by
Gennaro and Wichs [GW13] following Agrawal and Boneh [AB09], enables users to authenticate
their data using a (shared) secret key. After receiving data (m1, · · · ,mn) together with their
MAC tags (σ1, · · · , σn), anyone can homomorphically execute a program P over the data and
tags to generate a succinct tag that authenticates the output of P (m1, · · · ,mn); verification of
the output tag can be done without even knowing the original inputs. Similar to homomorphic
encryption, HMAC is composable in the sense that one can incrementally combine authenticated
outputs of partial computations to derive an authenticated output of a larger computation. The
key feature of homomorphic MAC is that the tags are succinct, of size poly(λ), independent of the
computation complexity or even the input length. As such, they enable verifying computations
over outsourced data in a communication-succinct way (though verification may take as long as
the verified computation).

In this work, we propose an algebraic enhancement, called aHMAC, requiring that the tags
of aHMAC (both input and evaluated ones) have the most widely used algebraic form ∆ ·m+K,
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as in a standard information-theoretic MAC. Here ∆ is a λ-bit global authentication key and K
is a pseudorandom blinding term, that can be derived from the secret MAC key. In particular,
given input tags {∆ · xi + Ki}i and the inputs {xi}, homomorphic evaluation of a function f
yields output tag ∆ · y + Kf , where y = f({xi}), and the key Kf can be computed from the
original keys {Ki} according to the function f , independent of the inputs {xi}. We show that
aHMAC readily implies HMAC (see Section 3.5), and the additional algebraic properties are
very useful for applications.

Constructions of HMAC: There have been a large body of works on constructing HMAC
and its stronger public key variant homomorphic signatures [BF11]; see Table 1 (and references
in [ACG24]). Not surprisingly (by now), using lattice assumptions or iO together with other
standard tools, one can obtain fully composable homomorphic MACs and signatures for all
polynomial-sized circuits with succinct tags/signatures [GW13, GVW15b, GU24]. On the “low
end,” assuming just one-way functions, partially succinct HMACs are known for computing low
degree polynomials [CF13], which can further be made fully succinct using groups [CF13, BFR13,
CFGN14]. In a more recent work [ACG24], using non-interactive Batch Arguments (BARGs),
one can even obtain succinct HMAC for bounded-depth circuits assuming subexponential k-Lin
over pairing groups or DDH over non-pairing groups. However, the way BARG is used makes
the construction non-black-box and inefficient. The weakness of supporting only bounded-depth
circuits and reliance on sub-exponential hardness and non-black-box usage of cryptography
highlight gaps between the best known group-based HMAC and constructions using lattices or
iO. Another line of works [CFT22, KLVW23, WW24], leveraging pairing-group, circumvents
these drawbacks but does not achieve the full functionality of HMAC, since they only permit
very limited composability. This leaves open the following questions:

Is there a black-box construction of (non-algebraic) HMACs for circuits from polynomial
hardness of standard group assumptions? Or any construction of aHMAC from groups?

In this work, we answer both questions affirmatively for the stronger notion of aHMAC. More
specifically, we present black-box constructions of 1) aHMAC for bounded depth circuits based
on DDH in prime-order or Paillier groups, or DCR in Paillier groups [Pai99, DJ01], and 2)
aHMAC for all circuits, based on their circular variants. This immediately implies similar HMAC
constructions under the same assumptions. These constructions can also be instantiated using
prime-order groups, assuming DDH for bounded depth circuits or circular power-DDH for all
circuits, albeit with (an arbitrarily small) inverse-polynomial error that can be eliminated in the
context of applications.

Applications to CDS, PSM, and CPRF. Leveraging the algebraic property of our aHMAC,
we are able to significantly extend the reach of group-based assumptions, obtaining succinct
CDS for circuits, succinct PSM for truth tables and other simple programs, as well as CPRF for
circuits, from the same assumptions enabling our aHMAC. All of these primitives were previously
only known under lattices or iO.

1.1 Applications

We now give a more detailed account of the above applications.

Conditional Disclosure of Secrets. A k-party Conditional Disclosure of Secret (CDS) pro-
tocol [GIKM00] considers a setting where k parties want to disclose a common secret s ∈ {0, 1}
to a referee if and only if their respective inputs x1, · · · , xk (known to the referee) satisfy some
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Class |σ| Assumption BBox Composable

HSig [GU24, GVW15b] Cir poly(λ)
subexp iO + FHE + NIZK

or SNARK-NP
✗ ✓

HMAC [GW13] Cir poly(λ) FHE ✓ ✓

HSig [GVW15b] Bnd-Dep-Cir poly(Dep, λ) SIS ✓ ✓

HSig [ACG24] Bnd-Dep-Cir poly(Dep, λ)
subexp k-Lin (Pairing)

or subexp LWE
or subexp DDH

✗ ✓

HMAC [CF13]
poly deg

polynomials

Deg · poly(λ)
poly(λ)⋆

OWF

DDH
✓ ✓

aHMAC [This Work] Cir poly(λ)
CP-DDH

or KDM-DCR
✓ ✓

aHMAC [This Work] Bnd-Dep Cir Dep · poly(λ) DDH ✓ ✓

Schemes with Limited Composability

HSig [CFT22] NC1 poly(λ) DHE ✓ ✗

HSig [KLVW23] Cir poly(λ)
k-Lin (Pairing)

or LWE
or subexp DDH

✗ ✗

HSig [WW24]
bounded size

Cir
poly(λ)

bilateral k-Lin
(Pairing)

✓ ✗

Table 1. Comparison between homomorphic MAC and signature schemes, in terms of class of functions supported,
size |σ| of the tags/signatures, assumptions, whether the construction make black-box use of the underlying
cryptographic tools and assumptions, and whether the scheme is fully composable. The top part lists schemes
that are composable, while the bottom part lists weaker schemes that are not. λ denotes the security parameter,
Dep the depth of a circuit, and Deg the degree of a polynomial. DHE stands for the Diffie-Hellman exponent
assumption. ⋆ indicates that the computational costs of the DDH-based HMAC scheme of [CF13] scales with
the degree of the polynomial evaluated.

fixed (public) predicate P : [N ]k → {0, 1}. Using randomness, the parties achieve this by send-
ing simultaneous messages to the referee. This notion is equivalent to secret sharing for partite
functions and partial garbling schemes [IW14]. CDS has found many interesting applications,
including to symmetric private information retrieval protocols [GIKM00], attribute based en-
cryption [GVW15a, Att14, Wee14, IW14], (priced) oblivious transfer [AIR01], and secret shar-
ing [LV18, ABF+19, ABNP20, AN21, ABI+23].

Understanding the minimal communication complexity of CDS has been an active research
direction. This question is qualitatively interesting because without security requirements, one
bit of communication suffices by simply sending the secret to the referee. This motivates the
challenge of fully succinct CDS, where the total communication is independent of the description
size of the predicate P . For the simplest case of a truth-table representation of P , in the infor-
mation theoretic two-party setting, partially succinct schemes are known with communication
2O(

√
n logn) [LVW18], where n = logN . In the computational setting, it is known that one-way

functions are sufficient for poly(λ, k, logN) communication (poly-logarithmic in the truth-table
size Nk) [HK20, ABI+23, Hea24], but again with computational cost that scales polynomially
with the input domain size, or equivalently the truth-table representation. For general predicates
P expressed as Boolean circuits over the bit-representation of the inputs, succinct and efficient
CDS is only known using lattices or iO [BGG+14, HLL23].

We present the first group-based construction of succinct CDS for circuits based on the same
assumptions underlying our aHMAC. Interestingly, while aHMACs instantiated using prime-
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order groups have inverse-polynomial errors, these errors can be eliminated in CDS through
correctness and security amplification, giving fully correct and secure instantiation from prime-
order groups.

Private Simultaneous Messages. A Private Simultaneous Messages (PSM) protocol [FKN94,
IK97] enables k parties with shared common randomness to securely evaluate a public predicate
P : [N ]k → {0, 1} on their private inputs x1, · · · , xk, by simultaneously sending messages to a
referee, revealing only the output P (x1, . . . , xk). For N = 2, it is equivalent to decomposable
randomized encoding [IK00] and garbling schemes [Yao86, BHR12]. Similar to CDS, the PSM
model has been a test bed for understanding the communication overhead of secure computation
in a simple non-interactive setting, as well as for yielding secure computation protocols with
efficient online communication [AIKW13].

The additional requirement of hiding the inputs from the referee makes PSM more challeng-
ing to realize than CDS. Even for the simplest truth-table representation of P , the only known
succinct constructions uses lattice [GKP+13, BGG+14, HLL23] or iO [KLW15, BCG+18]. With-
out lattices or iO, the best known protocols are information theoretic and have communication
complexity grows polynomially with N : O(N1/2) for k = 2 [BIKK14] and Ok(N

(k−1)/2) for
infinitely many k [BKN18, AL19]. We obtain a (computationally secure) PSM protocol and gar-
bling schemes with communication complexity poly(λ, k, logN), polylogarithmic in the truth-
table size Nk and computation complexity poly(λ,Nk), based on DDH in prime order groups,
or DCR in Paillier groups. This yields exponential improvement in communication compared to
the previous state-of-the-art without using lattices or iO. More generally, our PSM protocol can
handle functions P represented by shallow branching programs, including DFAs and decision
trees, with computational cost that scales polynomially with the program size.

Constrained PRFs. Constrained pseudorandom function (CPRFs) [BW13, KPTZ13, BGI14]
allow for delegating “constrained” secret keys that enable evaluating the function at certain
authorized inputs – as specified by a constraint predicate P : {0, 1}n → {0, 1} – while keeping
the function value at unauthorized inputs pseudorandom. Here we consider the common scenario
where a single constrained key is published for a selectively chosen function–referred to as 1-
key selective CPRF. The stronger variants supporting multiple keys and/or achieving adaptive
security are only known using heavy tools such as iO.

Assuming one-way functions, the works of [BW13, KPTZ13, BGI14] showed how to construct
CPRFs for simple function classes that include prefix-fixing functions and range functions, which
through the “puncturing” technique of Sahai and Waters [SW14] become a crucial tool in many
iO applications. CPRFs for general functions have other applications, such as, broadcast en-
cryption schemes and identity-based key exchange [BW13].

We obtain CPRFs for general constraint circuits, based on DCR, or DDH plus the small
exponent assumption in Paillier groups. Previously, CPRFs for general circuits were only known
relying either on lattices [BV15] or multilinear maps [BW13] or iO [HKKW19, BLW17, DKN+20]
plus other tools. Group-based CPRFs were limited to NC1 circuits [GGM84, AMN+18, DKN+20,
CMPR23], and our new construction overcomes this NC1 barrier.

In summary, in this work, we significantly extend the reach of group-based cryptography, by
providing the first group-based constructions of several important primitives including succinct
CDS for circuits, PSM for truth table, and CPRFs for circuits. We obtain these results through
the new aHMAC primitive, an algebraic enhancement of HMAC that is likely to find other
applications. Our group-based construction of aHMAC also represents significant improvement
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over previous group-based HMACs, dispensing with depth constraint, sub-exponential hardness,
and non-black-box use of cryptography.

In the body of the paper, we present our succinct PSM and CDS protocols using a unified
framework of garbling schemes and partial garbling schemes, respectively.

1.2 Overview of aHMAC Construction

Our Assumptions. The set of assumptions we use in this work includes the standard assump-
tion of DDH in prime-order groups and its adaptation in Paillier groups, DCR in Paillier groups,
as well as their circular security variants. We assume familiarity with the DDH assumptions and
give a short description of the circular variants of DDH and DCR.

The Circular Power Decisional Diffie Hellman (CP-DDH) assumption (Definition 9) asserts
that a circular encryption of bits of the secret key s using powers of the secret key is pseudo-
random. More precisely, for appropriately sampled group elements g, f and random exponents
s and {ai, bi, ci}i, the following computational indistinguishability holds:

g, gs, (gai , gsai , gs
2ai · fs[i])i∈[log s] ≈c g, gs, (gai , gbi , gci)i∈[log s].

The CP-DDH assumption can be postulated over prime-order groups, as well as the Pail-
lier/Damg̊ard-Jurik and class groups, and our constructions can be instantiated using any of
these groups. For prime-order groups, CP-DDH holds in the standard generic group model
(GGM) [Sho97]; see Section 2.4. In particular, our CDS and succinct partial garbling scheme is
unconditionally secure in the GGM.

Alternatively, we can replace CP-DDH in the Paillier/Damg̊ard-Jurik groups by assuming
key-dependent message (KDM) security of the Damg̊ard-Jurik cryptosystem (Definition 11) [BRS03,
BHHO08]. The semantic security of this cryptosystem relies on the Decisional Composite Resid-
uosity (DCR) assumption [DJ01]. KDM variants of this assumption are commonly used in prior
Paillier-group based HSS works, for example [FGJS17, OSY21, MORS24].3 We write KDM-DCR
as a shorthand.

Theorem 1 (Algebraic Homomorphic MAC, Informal; see Theorem 5, 6). Assume
DDH over prime-order or Paillier groups. There is an aHMAC (with tags of the form ∆ ·y+K)
for bounded-depth circuits, where the evaluation key size scales linearly with the circuit depth.

Under the CP-DDH assumption over prime-order or Paillier groups, or alternatively KDM-
DCR over Paillier groups, the aHMAC can support general circuits with fixed poly(λ)-size eval-
uation key.

Instantiations using prime-order groups have inverse polynomial 1/poly(λ) correctness er-
rors, while instantiations using Paillier groups have negligible correctness errors.

Technical Overview We provide an overview of our aHMAC construction, which builds heavily
on techniques from the homomorphic secret sharing (HSS) literature. HSS [BGI16] is a 2-party
analogue of FHE, allowing a local mapping from shares of an input x to additive shares of an
output f(x). However, group-based HSS cannot be applied directly to construct an aHMAC for
two reasons: i) known group-based HSS schemes only support limited classes of circuits captured

3 More concretely, our notion of KDM security assumes that encryptions (under sk) of sk−1 are secure. This is
strictly weaker than [MORS24], which assumes encryptions of any affine function of sk, sk−1 are secure, and
incomparable with [FGJS17, OSY21], which assume encryptions of bits of sk are secure.
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by so-called “RMS programs” and ii) in standard group-based HSS schemes, both shares depend
on the input. In aHMAC, there is an “asymmetry of information”: The homomorphic evaluation
over tags can depend on inputs to compute the output tag ∆ · y+Kf , but not the derivation of
Kf from the original keys {Ki} (which only depends on f).

The HSS limitation to RMS programs stems from the fact that if two parties hold only
additive shares of two values x and y, it is not clear how to “multiply” these shares to obtain
shares of the product xy. A key idea in HSS is that if x is an input and the two parties
additionally have an appropriate encryption Encs(x ·s) of x multiplied by the secret key s, x can
be “multiplied” with shares of (y · s) to obtain shares of (xy · s). As a result, the computation
of both parties depends on x.

The difficulty with handling general circuits is that there is no encryption for intermediate
computation values, only shares of (x · s) and (y · s). A key technical contribution of this work
is a method for “multiplying” these shares, when x and y are known to just one party (e.g., the
evaluator) while the computation of the other party (e.g., the authenticator) is independent of
x, y. Our technique is inspired by the recent work of Meyer, Orlandi, Roy, and Scholl [MORS24],
but with crucial differences. The work of [MORS24] designed a way of “multiplying” shares of
(x ·s) and (y ·s), without knowledge of x, y, by revealing to one party auxiliary information that
depends on the other party’s shares. Our technique eliminate the need for auxiliary information,
by leveraging that x, y are known to one party.

We now describe our aHMAC based on the CP-DDH assumption that supports all circuits.
This construction can be easily modified to obtain a leveled variant for bounded depth circuits,
from power-DDH (without circular security). To obtain a construction based on standard DDH,
we rely on a technique from the recent work [MORS25].

More technically, in aHMAC, a KeyGen algorithm generates a secret key sk and an evaluation
key evk. They are distributed to an authenticator and an evaluator respectively. The authenti-
cator can use the secret key sk to compute tags σx for inputs x (with an arbitrary unique id).
An evaluator can use the evaluation key evk to homomorphically evaluate any Boolean circuit
C over the tags σx.

Authenticator(sk) :

σx ← Auth(sk, x, id),

Evaluator(evk) :

σz ← EvalTag(evk, C,x, {σ(i)
x }).

Correctness requires the evaluated tag σz to have an algebraic form (hence the name) σz =
∆ · z+ kC over Z, where z = C(x), ∆ is a global secret specified at key generation time, and kC
is a MAC key that can be derived without knowing the authenticated inputs x:

kC ← EvalKey(sk, C, {id(i)}), // s.t. σz = ∆ · C(x) + kC over Z.

Security requires the global secret ∆ remains hidden to the evaluator. Succinctness requires the
tags, including the evaluated ones, have bit-lengths independent of the evaluation circuit C.

Constructing aHMACs from DDLog. The authentication algorithm σx ← Auth(sk, x, id) is
simple. It evaluates a PRF on the id to produce a one-time pad kx ← F(key, id), and outputs
σx := ∆ · x+ kx over Z. The PRF key key and the global secret ∆ are included in sk.

The core of our construction is an evaluation procedure to derive from two algebraic tags
σx, σy to another σz while maintaining their algebraic forms:

Authenticator(sk) :

from kx, ky

to kz,

Evaluator(evk) :

from σx = ∆ · x+ kx, σy = ∆ · y + ky,

to σz = ∆ · z + kz,
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for the cases z = x + y and z = x · y over Z. This would give us the algorithms EvalTag and
EvalKey respectively for evaluating circuits consisting of Add and Mult gates. As we will see,
our evaluation procedure requires the input values x, y to be polynomially bounded. But this
still suffices for evaluating any Boolean circuit, which can be implemented via Add, Mult gates
while keeping intermediate values bounded by 1.

We first note the easy case, z = x+y: setting σz := σx+σy, and kz := kx+ky over Z suffices.
We focus on the case of z = x · y. Our starting point is the following identity

σx · σy −∆(x · σy + y · σx) + (∆2 +∆)z = ∆ · z + kx · ky,

where the RHS would be a tag for z of the desired form, with kz = kx · ky. While the terms
σx · σy, (x · σy + y · σx), and z are computable by the evaluator, the apparent challenge is to
allow the evaluator to multiply ∆, and (∆2 +∆) with those terms without leaking ∆. For this,
we apply the natural idea of putting ∆ in the exponents of a random group (with a generator
g) element h, and compute the identity in the exponents:

r ← $, h = gr, h1 = h∆, h2 = h∆
2
g∆,

=⇒ hσx·σy/h
x·σy+y·σx

1 · hz2 = g∆·z · hkx·ky .
(1)

The evaluation key evk consists exactly of those group elements h, h1, h2. By a DDH-like as-
sumption, which we call circular-power-DDH (CP-DDH), the terms h, h1, h2 together don’t leak
∆.

It remains to recover the exponents into an integer satisfying the desired algebraic from. The
rich literature of HSS constructions provides two methods. (a) The work of [BGI16, DKK18]
present an algorithm, DDLog that works for any cyclic group (of order p) and small exponents
m < poly, but fails with 1/poly probability over the choice of a common public randomness R:

∀a ∈ ⟨g⟩, Pr
R
[DDLogg(a · gm;R) = m+ DDLogg(a;R) mod p] ≥ 1− 1/poly. (2)

This will lead to an aHMAC scheme with overall 1/poly correctness error. (b) The work
of [ADOS22] introduces a framework of groups (including the Damg̊ard-Jurik groups and class
groups) with efficient and perfectly correct DDLog algorithms for certain “easy” subgroups. This
will lead to an aHMAC scheme with perfect correctness.

For simplicity, we assume method (a) in this overview. We obtain the following almost correct
evaluation procedures:

Authenticator(sk ∋ (h,R), kx, ky) :

k∗z ← DDLogg(h
kx·ky ;R),

Evaluator(evk = (h, h1, h2, R), σx, σy) :

a := hσx·σy/h
x·σy+y·σx

1 · hz2,
σ∗
z ← DDLogg(a;R).

Assuming the term ∆ · z is small, we can apply the DDLog guarantee (although with 1/poly
failure probability):

σ∗ = DDLogg(a;R)

(Eq 1) = DDLogg(g
∆·z · hkx·ky ;R)

(Eq 2) ≡ ∆ · z + DDLogg(h
kx·ky ;R) ≡ ∆ · z + k∗z mod p.

The procedure as described has two more challenges to resolve:
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– The DDLog algorithm from (a) requires ∆ · z to be polynomially bounded, while the global
secret ∆ needs to be exponentially large in CP-DDH. We resolve this by decomposing the
large secret ∆ into a bit-vector, so that each entry is small. (See Section 3 for details.)

– The DDLog algorithm only ensures σ∗
z = ∆ · z + k∗z mod p, while we need the equality to

hold over Z. A standard trick is to add a common random shift to both σ∗
z and k∗z mod p.

If p is sufficiently larger than ∆ · z, then the equality holds over Z except with negligible
probability. The common random shifts and the randomness R for DDLog can be derived
from a public PRF seed included in both sk and evk.

What we obtain now is an aHMAC scheme with 1/poly correctness, and where the global
secret ∆ is sampled as a secret group exponent. In our applications, it will be convenient if
the final evaluated tags σz can have a user-supplied global secret ∆′ instead. Furthermore, for
evaluating a multi-output circuit C : {0, 1}ℓx → {0, 1}ℓz , we would like the user-supplied secrets
to be different for each output bit of z = C(x). 4 We implement those features in our final
constructions in Section 3, which also contains a construction with negl correctness error based
on method (b), a construction based on the KDM security of Damg̊ard-Jurik encryption, and
leveled variants of the constructions.

We summarize the syntax of our final constructions.

(sk, evk)← KeyGen(1λ,∆)

Authenticator(sk) :

σx ← Auth(sk, x, id),

kC ← EvalKey(sk, C, {id(i)}),

Evaluator(evk) :

σz ← EvalTag(evk, C,x, {σ(i)
x }),

// s.t. σz = ∆⊙ z+ kC over Z,

where z = C(x), and ⊙ denotes component-wise multiplication between vectors.

1.3 Overview of Succinct Partial Garbling and CDS

Using aHMAC, we first obtain a succinct partial garbling scheme for general circuits, which
implies succinct CDS for circuits.

Garbling schemes [Yao86] play a critical role in modern cryptography, enabling non-interactive
secure computation in a variety of applications. A garbling scheme is a randomized algorithm
transforming a “program” C : {0, 1}n → {0, 1}m, such as a circuit or a branching program, into
a garbled program Ĉ along with a pair of short keys (ki,0, ki,1) for each input bit xi. Given the
program C, the garbled program Ĉ and the input keys kx = (ki,xi)i∈[n] for a private input x,

anyone can compute C(x) while learning nothing else about x, in the sense that (Ĉ, kx) can be
simulated (up to computational indistinguishability) given C and C(x) alone.

Motivated by potential efficiency benefits in applications, Ishai and Wee [IW14] extended
this notion to partial garbling, where part of the input is public. In partial garbling, the program
is decomposed into a public part Cpub(x), which depends only on a public input x, and a
private part Cpriv(Cpub(x), y), which also involves a private input y. Partial garbling generalizes
standard garbling, privacy-free garbling [FNO15], and CDS [GIKM00, AARV17]. The latter can
be view as a special instance of partial garbling, which in turn also implies partial garbling when
combined with standard garbling; see Section 1.3.

4 This can be trivially achieved by running the single-output scheme ℓz times. But in the multi-output version,
we require the tags sizes to be independent of ℓz.
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Yao’s original garbling scheme for circuits [Yao86] and its optimization [BMR90, NPS99,
KS08, PSSW09, KMR14, GLNP15, ZRE15, RR21] have garbled circuit size growing linearly
with the size |C| of the original circuit, creating a communication bottleneck for large-scale
computations. Succinct garbling, where the size of the garbled program Ĉ does not grow with C,
holds the promise to resolve the bottleneck. Specifically, the garbled circuit size |Ĉ| should only
depend (polynomially) on the security parameter, and possibly also on second-order parameters
such as the input and output length. However, existing succinct garbling schemes rely on “high-
end” primitives, such as iO [KLW15, BCG+18] or combinations of FHE and ABE [GKP+13,
BGG+14, HLL23]. Without iO or lattices, even for the weaker notion of partial garbling (or
CDS), succinct schemes where the garbled circuit size is only independent of the size |Cpub|
of the public computation, are only known for highly restricted program classes, such as truth
tables [HK21, Hea24, ABI+23].

Theorem 2 (Succinct Partial Garbling for Circuits, Informal; see Theorems 9, 10).
Assume DDH over prime-order groups, or Paillier groups, or class groups. Let C be the class
of two-input circuits of the form C(x, y) = Cpriv(Cpub(x), y). Then, there is a succinct partial
garbling scheme for C with garbled circuit of size (|Cpriv| + Dpub) · poly(λ), where Dpub is the
depth of the public circuit Cpub. Under the CP-DDH assumption, or alternatively KDM-DCR,
the garbled circuit size is reduced to |Cpriv| · poly(λ).

Technical Overview As a first step, we compose an aHMAC scheme with any symmetric
encryption E to succinctly implement a simple case of partial garbling CDS(x, y) = f(x) · y.

At high level, the garbler use aHMAC tags for x as their labels, and prepares an encryption
of y under the global secret ∆. To help decryption by the evaluator, the garbler also releases an
evaluated MAC key kf .

CDSGb(f, y) :

∆← $, (sk, evk)← KeyGen(1λ, ∆)

σ
(i)
b ← Auth(sk, b, id(i)),

kf ← EvalKey(sk, f, {id(i)}),
cty ← E.Enc(∆, y),

Output {L(i)
x,b = σ

(i)
b },

and gb = (evk, kf , cty).

CDSEv(f, gb,x, {L(i)
x = σ

(i)
x[i]}) :

Output 0 if f(x) = 0. O/w:

σz ← EvalTag(evk, f,x, {σ(i)
x[i]}),

∆ = σz − kf ,

y = E.Dec(∆, cty),

Output y.

The evaluator, given aHMAC tags for x can evaluate f on them to obtain a tag σz = ∆·f(x)+kf .
(For simplicity, we assume the aHMAC scheme has negl correctness errors in this overview. See
Section 4.2 for how to handle 1/poly correctness errors.) When f(x) = 1, the evaluators use
kf to recover ∆, and decrypts y correctly. When f(x) = 0, kf = σz is completely redundant.
The aHMAC security then guarantees that ∆ remains hidden to the evaluator, and hence the
ciphertext cty under ∆ securely hides y.

We can extend the above construction to a slightly more general case, where CDS(x,y) =
f(x)⊙y. Here f : {0, 1}ℓx → {0, 1}ℓy is a multi-output function, and ⊙ denotes component-wise
multiplication. An evaluator can learn the j-th components of the secret input y if and only if
f(x)[j] = 1.

Finally, we compose the simple-case succinct partial garbling CDSGb,CSDEv with any stan-
dard Boolean garbling BG.Garb,BG.Eval to handle general cases, C(x,y) = Cpriv(Cpub(x),y),
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where the public computation Ppub outputs intermediate values w = Cpub(x), and the private
computation Cpriv outputs final results z = Cpriv(w,y).

At a high level, the construction runs BG to garble the private computation Cpriv, produc-
ing labels for possible values of w and y, and runs CDSGb,CDSEv to release only the labels
corresponding to w = Cpub(x).

Garb(C = (Cpub, Cpriv)) :

(Ĉpriv, {L(i)
w,b}, {L

(i)
y,b})← BG.Garb(Cpriv),

({L(i)
x,b}, gb)← CDSGb(Cpub, {L

(j)
w,1})),

({L(i)
x,b}, gb)← CDSGb(Cpub, {L

(i)
w,0})),

Output {L(i)
x,b, L

(i)
x,b}, {L

(i)
y,b},

and Ĉ = (Ĉpriv, gb, gb).

Eval(C, Ĉ,x, {L(i)
x , L

(i)
x }, {L(i)

y }) :
w = Cpub(x),

{L(j)
w }w[j]=1 ← CDSEv(Cpub, gb,x, {L(i)

x }),

{L(j)
w }w[j]=0 ← CDSEv(Cpub, gb,x, {L

(i)
x }),

z← BG.Eval(Cpriv, Ĉpriv, {L(j)
w }, {L(i)

y }),
Output z.

1.4 From Partial to Full Garbling and PSM

We present a generic transformation that combines a succinct partial garbling scheme and an
HE scheme for a program class P to obtain a succinct (fully hiding) garbling scheme for the same
program class, which implies PSM for the same class. The transformation is extremely simple,
and follows the blueprint of constructing succinct garbled circuits from FHE and ABE [GKP+13,
BGG+14], replacing the ABE ingredient by partial garbling. To garble a program P , use the
partial garbling scheme to garble the circuit C(x̂, sk) = Dec(sk,Eval(pk, P, x̂)) = P (x) that
performs homomorphic evaluation of P over a public HE ciphertext x̂ of the actual input x,
followed by HE decryption using the secret key sk. The succinctness of partial garbling ensures
that the garbled circuit Ĉ grows only with the complexity of HE decryption (i.e., Cpriv(⋆, ⋆) =
Dec(⋆, ⋆)) which in turn depends only on the output length and the security parameter, if
assuming circular security. Without circular security, the size additionally depends on the depth
of the homomorphic evaluation of P (i.e., Cpub(⋆) = Eval(pk, P, ⋆)). For the types of simple
programs we consider here, the homomorphic evaluation depth is bounded by a fixed polynomial
in the security parameter, eliminating the need for circular security.

We note that while using HE to ensure the privacy of the input x is a standard technique, our
key observation here is that partial garbling suffices for ensuring the correctness / integrity of
the homomorphic evaluation, replacing the stronger ABE techniques (with succinct secret keys)
used in [GKP+13, BGG+14, QWW21]. This approach, though simple in retrospect, is crucial
for moving away from lattice-based assumptions and iO.

Lemma 1 (From Partial to Full Garbling, Informal). Any homomorphic encryption scheme
for a class of programs P can be transformed into a succinct garbling scheme for P, using a suc-
cinct partial garbling scheme able to support the homomorphic evaluation of the homomorphic
encryption scheme for P. The size of the garbled program is poly(λ) · m if assuming circular
security, or poly(λ) · (m + DEval) without circular security, where m is the output length and
DEval is the maximal circuit depth of the homomorphic evaluation of programs in P.

Succinct Garbling for Simple Programs and Implications for General Circuits.
General-purpose FHE schemes are currently only known lattice assumptions or iO/FE, which
this work tries to avoid. However, for several simple but useful classes of programs, there are
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HE schemes relying on group-based assumptions. For instance, private information retrieval
(PIR) schemes with polylogarithmic communication, which can be based on a variety of as-
sumptions [KO97, Ste98, OS07, Lip05, GR05, DGI+19], can be viewed as a (compact) HE
scheme for truth-table programs. This was generalized in [IP07, DGI+19] to yield, under similar
assumptions, an HE scheme for bounded-length branching programs of unbounded size, where
only the length bound impacts the encryption size.5 As special cases, this enables the compact
evaluation of decision trees and DFAs of an arbitrary size on an encrypted input. In a different
direction, the Boneh-Goh-Nissim cryptosystem [BGN05] implies an HE scheme for quadratic
polynomials over a finite field under an assumption on bilinear groups. Here the program size is
at most quadratic in the input size.

Combining the above HE schemes with our succinct partial garbling, we obtain the following.

Corollary 1 (Succinct Garbling for Simple Programs). Assuming DDH over prime-order
groups, or Paillier/Damg̊ard-Jurik groups, or class groups, there are succinct garbling schemes
for the following classes:

– bounded-length (unbounded size) branching programs, assuming additionally the DDH as-
sumption over prime order groups, or the DCR assumption over Paillier groups. This implies
succinct garbling for truth tables, deterministic finite automata (DFAs), and decision trees
of an arbitrary size.

– quadratic polynomials, assuming additionally the hardness of the subgroup decision problem
in composite-order bilinear groups.

We further show a generic composition theorem that leverages succinct garbling for simple
programs, to garble circuits consisting of general gates computing these simple programs. The
cost of garbling scales with the number of wires in circuits over general gates, without growing
with the number of Boolean gates (such as AND gates) required to implement a general gate.

Corollary 2 (Implication for Garbling General Circuits). Under the same assumptions
as in Corollary 1, there is a garbling scheme for circuits over general gates, each computing one
of the simple programs in Corollary 1, where the garbling size is poly(λ) ·#wires, where #wires
is the number of wires in the circuit.

Implication for PSM protocols. Our succinct garbling schemes imply the first group-based
succinct PSM protocols for simple programs. In the case of truth tables, we get PSM protocols
for arbitrary functions with polylogarithmic communication and polynomial computation in the
input domain size.

Corollary 3 (Computationally Secure PSM for Truth Tables). Assuming DDH over
prime-order groups, or DCR plus DDH over Paillier groups, any k-party function f : [N ]k →
{0, 1} has a computationally secure PSM protocol with poly(λ, k, logN) communication and
poly(λ,Nk) computation.

PSM vs. generalized secret sharing. Finally, it is interesting to compare our succinct com-
putational PSM result for truth tables from Corollary 3 with a recent succinct computational
secret sharing (SCSS) scheme from [ABI+23], which applies to general access structures repre-
sented by a truth table. One might a-priori expect the SCSS question to be easier because of

5 This is analogous to LWE-based HE for circuits, where the ciphertext size depends on the circuit depth but
not on its size.
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its one-sided hiding requirement and the relation with partial garbling and CDS, for which we
have strong positive results for truth tables even in the information-theoretic setting. However,
the current state of the art on the two problems is incomparable. The group-based construction
of SCSS from [ABI+23] specifically relies on the RSA assumption, and it is open whether the
same conclusion holds from other group-based assumptions, such as the ones we use in this
work. On the other hand, using LWE-based succinct garbling [BGG+14], succinct PSM can be
based on LWE, which is still open for SCSS. The known group-based PSM and SCSS solutions
are also incomparable in terms of the class of programs they efficiently support beyond truth
tables: branching programs with bounded length in the PSM case and monotone CNF formulas
of unbounded size in the SCSS case.

1.5 Overview of Constrained Pseudorandom Functions

By combining an aHMAC with HSS schemes, and following the HSS-based blueprint of Couteau,
Meyer, Passelègue and Riahinia [CMPR23], we obtain the first CPRF for general constraint cir-
cuits from group-based assumptions. Note that the “bounded-depth” variant of aHMAC suffices
for this application, and hence no circular security assumption is needed.

Theorem 3 (CPRFs for Circuits, Informal; see Theorem 13). There is a 1-key, selectively-
secure CPRF supporting general constraint circuits based on DCR, or DDH and small-exponent
assumptions, over Paillier groups.

Technical Overview In a constrained PRF (CPRF), there are two evaluation algorithms
Eval,CEval, one with a normal key msk, and one with a constrained key skC with respect to
a circuit C. Correctness requires evaluations (on x) using both keys should equal if C(x) = 0.
Security requires evaluations using msk remain pseudorandom if C(x) = 1, even given the con-
strained key skC .

msk← KeyGen(1λ), evk← Constrain(msk, C).

Correctness: Eval(msk,x) = CEval(skC ,x), if C(x) = 0,

Security: Eval(msk,x) pseudorandom given skC o/w.

(3)

The Blueprint of [CMPR23]. The observation of [CMPR23] is that common homomor-
phic secret sharing schemes (HSS) for evaluating restricted multiplication straight-line programs
(RMS) allows for an extended evaluation algorithm. Normally, an HSS evaluation for a function
f locally transforms a pair of input shares I0, I1 for x into additive shares z0, z1 of f(x):

I0, I1 ← HSS.Input(x), (evk0, evk1)← HSS.Setup(1λ),

zb ← HSS.Eval(b, evkb, Ib, f), s.t. z1 = z0 + f(x).

The extended evaluation takes an additional pair of shares ∆0, ∆1 of the form ∆1 = ∆ ·w+∆0

for some secret value ∆, and output additive shares z0, z1 of w · f(x). (See Section 5 for details
of this extension.)

I0, I1 ← HSS.Input(x), (evk0, evk1, ∆)← HSS.Setup(1λ),

any ∆0, ∆1 s.t. ∆1 = ∆0 +∆ · w
zb ← HSS.ExtEval(b, evkb, Ib, ∆b, f), s.t. z1 = z0 + w · f(x).
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In order to construct a CPRF scheme, it now suffices to design a mechanism that let Eval
and CEval respectively derive shares ∆0, ∆1 such that ∆1 = ∆ · C(x) + ∆0, and then run an
extended HSS evaluation of the function Fx(·) = F(·,x), on input shares I0, I1 of a secret key
key for a PRF F.

Blueprint:

msk = (evk0, I0, . . . , ), skC = (evk1, I1, . . . , ),

Eval : derive ∆0, z0 ← HSS.ExtEval(0, evk0, I0, ∆0,Fx),

CEval : derive ∆1 z1 ← HSS.ExtEval(1, evk1, I1, ∆1,Fx).

By the extended evaluation correctness of HSS, we have z1 = z0+C(x) ·F(key,x), which satisfy
both CPRF correctness and security (Equation 3). The work of [CMPR23] uses another special
HSS to let Eval, CEval derive the desired shares ∆0, ∆1. We instead use an aHMAC scheme for
this.

In our construction of CPRF, we generate a secret key aHMAC.sk and evaluation key
aHMAC.evk with respect to a user-supplied global secret ∆, which is exactly the secret for
extended HSS evaluations. We view the constrained circuit C as a bit string, and compute tags

{σ(i)
C } authenticating the bits of C.

KeyGen(1λ) :(evk0, evk1, ∆)← HSS.Setup(1λ),

key← $, (I0, I1)← HSS.Input(key),

(aHMAC.sk, aHMAC.evk)← aHMAC.KeyGen(1λ, ∆).

Outputs msk = (I0, evk0, I1, evk1, aHMAC.sk, aHMAC.evk).

Constrain(msk, C) :σ
(i)
C ← aHMAC.Auth(aHMAC.sk, C[i], id(i)).

Outputs skC = (I1, evk1, C, {σ(i)
C }, aHMAC.evk).

Then, following the blueprint Eval and CEval can respectively run aHMAC.EvalKey and aHMAC.EvalTag
with a universal function Ux(C) = C(x) to derive kw and σw as the shares ∆0 and ∆1.

Eval(msk,x) :∆0 = kU ← aHMAC.EvalKey(aHMAC.sk, Ux, {id(i)}),
z0 ← HSS.ExtEval(0, evk0, I0, ∆0,Fx),

CEval(evk,x) :∆1 = σU ← aHMAC.EvalTag(aHMAC.evk, Ux, C, {σ(i)
C }),

z1 ← HSS.ExtEval(1, evk1, I1, ∆1,Fx).

By the correctness of aHMAC, we indeed have ∆1 = ∆ · C(x) +∆0.

1.6 Concurrent Work

In an independent and concurrent work, Liu, Wang, Yang, and Yu [LWYY24] constructed a
garbling scheme for Boolean circuits that uses 1 bit per gate, based on RLWE or NTRU. There
are several major differences between their work and ours. First, we achieve full succinctness,
i.e., garbling size independent of the number of gates, whereas their garbled circuits still have
linear size dependency. However, they achieve standard input privacy guarantees for general
circuits, whereas our schemes either ensure only partial hiding, or only support simple classes
of programs. Since succinct garbling was already known under LWE, a major focus of their
work is improving concrete efficiency. In contrast, our schemes are based on group assumptions,
diversifying the assumptions underlying succinct garbling.
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1.7 Updates from the Previous Version [ILL24]

There are two main changes compared to the previous version of this paper:

– Whereas the previous version was centered around garbling, the title and introduction of
the current version focus on the new homomorphic MAC primitive (aHMAC). The current
version also includes more details on the connections between our aHMACs primitive and
standard HMACs. See Section 3.5.

– The current version includes aHMAC constructions that avoid “powering-style” assumptions
by applying a technique from [MORS25]. In particular, the previous leveled constructions
from [ILL24] (in either the NIDLS framework or prime-order groups) assumed power-DDH
(P-DDH) whereas the new constructions assume standard DDH. See Section 3.4.

For completeness, the current version also includes lattice-based constructions of aHMAC, which
are powering-free variants of constructions from [ILL25]. See Appendix A.

2 Preliminaries

2.1 Garbling Schemes

In a garbling scheme, a program P and Boolean inputs x are encoded respectively into a garbled

program P̂ and input labels {L(i)
x }. The standard notion of garbling requires that P̂ , {L(i)

x }
together reveals nothing about the input x beyond P (x). The notion of partial garbling, first
proposed in [IW14], relaxes the security requirement to allow part of the input x to be leaked.
We refer to this part as the public input.

The program can then be decomposed into two parts: P (x,y) = Ppriv(Ppub(x),y), where
Ppub represents the computation that depends on the public input x alone, and Ppriv represents
the rest that also depends on the private input y. We call Ppub, Ppriv the public and private
computations of P , respectively. We give two useful examples suitable for partial garbling:

– P (x, s) = f(x) · s implements a conditional disclosure of secret (CDS) functionality. The
output of P reveals the secret input s if and only if the public input satisfy f(x) = 1.

– P (ct, sk) = HE.Dec(HE.Eval(f, ct), sk) implements a homomorphic evaluation of HE cipher-
texts ct, followed by decryption using a secret key sk. Assuming the ciphertexts correctly
encrypts some input x, then a partial garbling of P implements a (fully private) standard
garbling of f .

In exchange for the relaxed security, we expect more efficient constructions. In this work, we
consider the strong efficiency requirement, succinctness with respect to public computation, that
the garbled program size |P̂ | should be independent of the complexity of the public computation.
More precisely, we consider garbling families of programs P = {Pλ} indexed by a security
parameter λ. Each family Pλ satisfies some restrictions on its parameters, e.g. computation
depth, but importantly has no polynomial bound on the size of the program. In this work, we
obtain succinct partial garbling schemes for two classes:

– General Boolean circuits: C = {Cλ}, where Cλ consists of all two-input Boolean circuits,
of form C(x,y) = Cpriv(Cpub(x),y), based on circular-security assumptions, CP-DDH or
KDM-DCR (Definition 9, 11);

– Bounded-depth Boolean circuits: Cd = {Cdλ}, where Cdλ consists of all two-input Boolean
circuits with depth bounded by some fixed polynomial d(λ), based on DDH (Definition 8).
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As applications of our succinct partial garbling for bounded-depth circuits, we also obtain (fully
private) succinct standard garbling schemes for two classes. Here succinctness requires the gar-
bled program size |P̂ | to be independent of the complexity of the entire computation.

– Bounded-length branching programs: P = {Pℓ
λ}, where Pℓ

λ consists of branching programs
with length bounded by some fixed polynomial ℓ(λ) and size below 2poly(λ).

– Quadratic polynomials (mod 2): Q = {Qλ}, where Qλ consists of quadratic polynomials
with below 2poly(λ) number of monomials.

Besides succinctness, we also impose composability of garbled circuits at the syntax level:

the garbled program evaluation should output arbitrary target key functions K
(i)
z (specified at

garbling time) applied to the output bits z = P (x,y).

Definition 1 (Partial Garbling). Let P = {Pλ} be a class of programs with Boolean inputs
and of the form P (x,y) = Ppriv(Ppub(x),y), and L = {Lλ}λ be a label space of sizes |Lλ| ≤
2poly(λ). A partial garbling scheme for P with label space L consists of two efficient algorithms:

– Garb(1λ, P ∈ Pλ, {K
(i)
z }i∈[ℓz ]) takes a program P : {0, 1}ℓx × {0, 1}ℓy → {0, 1}ℓz , and target

key functions {K(i)
z } (mapping output bits to labels in Lλ). It outputs a garbling P̂ , and input

key functions {K(i)
x }i∈[ℓx], and {K

(i)
y }i∈[ℓy ].

– Eval(P, P̂ , {x(i), L(i)
x }i∈[ℓx], {L

(i)
y }i∈[ℓy ]) takes a program P , a garbling P̂ , public inputs x(i),

their labels L
(i)
x , and labels for private inputs L

(i)
y . It outputs labels L

(i)
z for i ∈ [ℓz].

Correctness: For every polynomial p(λ), there exists a negligible function negl(λ) such that for

all λ ∈ N, programs P ∈ Pλ with size |P | ≤ p(λ), inputs x, y, and target key functions {K(i)
z }

the following holds:

Pr

Eval(P, P̂ , {x(i), L(i)
x }, {L(i)

y })

= {L(i)
z }

∣∣∣∣∣∣∣∣
(P̂ , {K(i)

x }, {K(i)
y })← Garb(1λ, P, {K(i)

z }),

L(i)
x = K(i)

x (x(i)), L(i)
y = K(i)

y (y(i)),

z = P (x,y), L(i)
z = K(i)

y (z(i)).


≥ 1− negl(λ).

(Computational) Security: There exists an efficient simulator Sim such that for every polyno-

mial p(λ), sequence of programs {Pλ} from P such that |Pλ| < p(λ), sequence of inputs {xλ,yλ},
and sequence of target key functions {K(i)

z,λ}i,λ, the following holds (suppressing the subscript λ
for brevity): {

Sim(1λ, P,x, {L(i)
z }) | z = P (x,y), L(i)

z = K(i)
z (z(i))

}
λ

≈c

{
P̂ , {L(i)

x }, {L(i)
y }

∣∣∣∣∣ (P̂ , {K(i)
x }, {K(i)

y })← Garb(1λ, P ),

L(i)
x = K(i)

x (x(i)), L(i)
y = K(i)

y (y(i)),

}
λ

We now define the default succinctness requirement for partial garbling.

Definition 2 (Succinctness w.r.t. Public Computation). We say a partial garbling scheme
for a class P is succinct w.r.t. public computation if there exists a poly(λ) such that for every
λ ∈ N and P ∈ Pλ, the garbling size P̂ is bounded by poly(λ, |Ppriv|), where |Ppriv| denotes the
complexity of the private computation Ppriv.
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Note that a standard Boolean garbling scheme, e.g. Yao’s garbling, can be viewed as a special
case of our definition of partial garbling, where the public input is ∅. For standard garbling
schemes, we define succinctness with respect to the entire (private) computation.

Definition 3 (Succinctness (w.r.t. Entire Computation)). We say a (standard) garbling
scheme for a class P is succinct if there exists a poly(λ) such that for all λ ∈ N and P ∈ Pλ,
the garbling size P̂ is bounded by poly(λ, ℓz).

2.2 PSM and CDS

Definition 4 (Private Simultaneous Message (PSM) Schemes [FKN94, IK97]). Let
P = {Pλ} be a class of programs with Boolean inputs and outputs. A PSM scheme for P consists
of two efficient algorithms.

– Encode(1λ, P ∈ Pλ, i ∈ [ℓx], x ∈ {0, 1}; r) takes a program P : {0, 1}ℓx → {0, 1}ℓz , an input
position i, an input bit x, and a shared randomness r ∈ {0, 1}λ. It outputs a message msgi.

– Recon(1λ, P, {msgi}[ℓx]) takes a program P and one message msgi for each input position

i ∈ [ℓx]. It outputs an evaluation result z ∈ {0, 1}ℓz .

Correctness. For every polynomial p(λ), there exists a negligible function negl(λ) such that for
all λ ∈ N, programs P ∈ Pλ with ℓx inputs and of size |P | ≤ p(λ), and inputs x ∈ {0, 1}ℓx, the
following holds:

Pr

[
Recon(1λ, P, {msgi})
= P (x)

∣∣∣∣∣ r← {0, 1}λ, and ∀i ∈ [ℓx]

msgi ← Encode(1λ, P, i,x[i]; r)

]
≥ 1− negl(λ).

(Computational) Privacy. For every polynomial p(λ), sequence of programs {Pλ} from P
such that |Pλ| ≤ p(λ), sequences of inputs {xλ}, {x′

λ} satsifying Pλ(xλ) = Pλ(x
′
λ), the following

computational indistinguishability holds:{
{msgi}

∣∣∣∣∣ r← {0, 1}λ, and ∀i ∈ [ℓx]

msgi ← Encode(1λ, P, i,x[i]; r)

}
λ

≈c

{
{msg′i}

∣∣∣∣∣ r′ ← {0, 1}λ, and ∀i ∈ [ℓx]

msg′i ← Encode(1λ, P, i,x′[i]; r′)

}
λ

Succinctness. We say a PSM scheme for a class P is succint if there exists a fixed poly(λ)

such that for every λ ∈ N and P ∈ Pλ, the total message bit-lengths
∑

i |msgi| is bounded by
poly(λ, ℓz).

Remark 1. As outlined in [FKN94], a garbling scheme implements a multi-party private simul-
taneous messages (PSM) protocol as follows.

– Each party i running Encode computes a garbled circuit P̂ using shared randomness, and

also a input label L
(i)
x . The message from this party consists of msgi := (P̂ , L

(i)
x ). As an

optimization, we can also require only server 1 to include the garbled circuit P̂ .

– The referee running Recon evaluates the garbled circuit P̂ with all input labels {L(i)
x } from

each party to obtain the result z = P (x).

Therefore, a succinct standard garbling scheme for P directly implies a succinct PSM protocol.

Definition 5 (Disclosure of Secret (CDS) Schemes [GIKM00]). Let P = {Pλ} be a
class of predicats with Boolean inputs and (1-bit) outputs. A CDS scheme for P consists of two
efficient algorithms.
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– Encode(1λ, P ∈ Pλ, i ∈ [ℓx], x ∈ {0, 1}, z ∈ {0, 1}ℓz ; r) takes a predicate P : {0, 1}ℓx → {0, 1},
an input position i, an input bit x, a shared secret z ∈ {0, 1}ℓz , and a shared randomness
r ∈ {0, 1}λ. It outputs a message msgi.

– Recon(1λ, P,x ∈ {0, 1}ℓx , {msgi}[ℓx]) takes a predicate P , a public input x, and one message
msgi for each input position i ∈ [ℓx]. It outputs either ⊥ or the secret z.

Correctness. For every polynomial p(λ), there exists a negligible function negl(λ) such that for
all λ ∈ N, predicates P ∈ Pλ with ℓx inputs and of size |P | ≤ p(λ), inputs x ∈ {0, 1}ℓx, and
secrets z ∈ {0, 1}ℓz , the following holds:

Pr

[
Recon(1λ, P, {msgi})
= z

∣∣∣∣∣ r← {0, 1}λ, and ∀i ∈ [ℓx]

msgi ← Encode(1λ, P, i,x[i], z; r)

]
≥ 1− negl(λ).

(Computational) Privacy. For every polynomial p(λ), sequence of predicates {Pλ} from P
such that |Pλ| ≤ p(λ), sequence of inputs {xλ}, satsifying Pλ(xλ) = 0, and sequence of secrets
{zλ}, the following computational indistinguishability holds:{
{msgi}

∣∣∣∣∣ r← {0, 1}λ, and ∀i ∈ [ℓx]

msgi ← Encode(1λ, P, i,x[i], z; r)

}
λ

≈c

{
{msg′i}

∣∣∣∣∣ r′ ← {0, 1}λ, and ∀i ∈ [ℓx]

msg′i ← Encode(1λ, P, i,x′[i],0; r′)

}
λ

.

Succinctness. We say a CDS scheme for a class P is succint if there exists a fixed poly(λ) such

that for every λ ∈ N, P ∈ Pλ, and secret z ∈ {0, 1}ℓz , the total message bit-lengths
∑

i |msgi| is
bounded by poly(λ, ℓz).

Remark 2. In the analogous way as using a standard garbling scheme to implement PSM, we
can use a partial garbling scheme to implement CDS:

– Define P ′(x, z) := z · P (x).

– Each party i running Encode computes a garbled circuit P̂ ′ using shared randomness, an

input label for its input L
(i)
x , and labels for the secret input {L(j)

z }. The message from this

party consists of msgi := (P̂ ′, L
(i)
x , {L(j)

z }). As an optimization, we can also require only

server 1 to include the garbled circuit P̂ ′ and labels {L(j)
z } for the secret.

– The referee running Recon evaluates the garbled circuit P̂ ′ with the public input x, corre-

sponding public input labels {L(i)
x }, and the secret input labels {L(j)

z } to obtain the result
z · P (x).

Therefore, a succinct partial garbling scheme for P directly implies a succinct CDS protocol.

2.3 Cryptographic Assumptions

In this work, we will use two types of groups: (1) groups satisfying the non-interactive distributed
log sharing (NIDLS) framework [ADOS22], which have distributed discrete log (DDLog) algo-
rithms with perfect correctness, and (2) prime-order groups, which have DDLog algorithms with
a 1/poly correctness error [BGI16, DKK18].

Definition 6 (NIDLS Framework [ADOS22]). Let G = {Gλ} be a sequence of families of
groups (with efficient group operations). We say G is an instantiation of the NIDLS framework
if the following three efficient algorithms exist:
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– Gen(1λ) outputs public parameters pp = (G,F,H, f, t, ℓ) where

• G ∈ Gλ is a finite Abelian group with subgroups F,H s.t. G = F ×H;

• F is a cyclic group of order t > 2λ, and f is a generator of F ;

• ℓ is an upper-bound on the order of H.

– Samp(pp) samples an element g ∈ G with the guarantee that f ∈ ⟨g⟩, and that the following
statistical indistinguishability holds:{

pp, ρ, gs

∣∣∣∣∣ pp = (G,F,H, f, t, ℓ)← Gen(1λ),

(ρ, g)← Samp(pp), s← [ℓ].

}

≈

{
pp, ρ, g′

∣∣∣∣∣ pp = (G,F,H, f, t, ℓ)← Gen(1λ),

(ρ, g)← Samp(pp), g′ ← ⟨g⟩.

}
.

It outputs g and the sampling randomness ρ.

– DDLog(pp, a ∈ G) takes an element a and outputs a value α ∈ Zt with the guarantee that for
all a ∈ G, m ∈ Zt:

DDLog(pp, a · fm) = DDLog(pp, a) +m mod t.

Remark 3. Compared to the description in [ADOS22], we additionally require the subgroups F
have large orders t > 2λ. This is needed in our application to (non-interactively) convert additive
shares mod t of 0, 1 values into shares over Z.

Known instantiations of the framework, with large subgroups F , include (the ciphertext
spaces of) Damg̊ard-Jurik encryption, a variant of Joye-Libert encryption described in [ADOS22],
and class groups.

Definition 7 (Prime-order Groups). We consider prime-order groups G = {Gλ} that have
efficient instance generation algorithms Gen:

– Gen(1λ) outputs a group G ∈ Gλ with order p > 2λ, and and a generator g. The group order
p is included in the description of G.

Lemma 2 (Distributed Discrete Log with Error [BGI16, DKK18]). For any cyclic
group G with order p and a generator g, there exists an algorithm DDLogG,g:

– DDLogG,g(δ ∈ (0, 1], B ∈ [p], ϕ : G → {0, 1}⌈log(2B/δ)⌉, a ∈ G) takes an error bound δ, a
message bound B, a function ϕ mapping group elements to bit strings, and an element a. It
outputs a value α ∈ Zp.

The algorithm requires O(
√

B/δ) group operations, and has the guarantee that for all 0 < δ ≤ 1,
B < p, a ∈ G, and m ≤ B:

Pr

[
DDLogG,g(δ,B, ϕ, a · gm)

=DDLogG,g(δ,B, ϕ, a) +m mod p

∣∣∣∣∣ ϕ← $

]
≥ 1− δ,

where ϕ← $ means sampling at random from all possible mappings.

We state the standard DDH and power-DDH assumptions below, followed by our new
circular-power-DDH and a proof that it holds in GGM.
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Definition 8 (DDH Assumption). We say the DDH assumption holds in the NIDLS frame-
work if the following holds:{

pp, (ρ, g), ga, gb, gab

∣∣∣∣∣ pp = (G,F,H, f, t, ℓ)← Gen(1λ),

(ρ, g)← Samp(pp), a, b← [ℓ].

}

≈c

{
pp, (ρ, g), ga, gb, gc

∣∣∣∣∣ pp = (G,F,H, f, t, ℓ)← Gen(1λ),

(ρ, g)← Samp(pp), a, b, c← [ℓ].

}
.

We say the DDH assumption holds in prime-order groups if the following holds:{
G, g, ga, gb, gab

∣∣∣∣∣ (G, g)← Gen(1λ),

a, b← Zp.

}
≈c

{
G, g, ga, gb, gc

∣∣∣∣∣ (G, g)← Gen(1λ),

a, b, c← Zp.

}
.

Via a standard hybrid argument, we obtain DDH in matrix form:

Lemma 3 (DDH in Matrix Form). Assuming DDH in the NIDLS framework, for any poly-
nomials m(λ), n(λ), the following holds:{

pp, (ρ, g), ga, gb, ga·b
T

∣∣∣∣∣ pp = (G,F,H, f, t, ℓ)← Gen(1λ),

(ρ, g)← Samp(pp), a← [ℓ]m, b← [ℓ]n.

}

≈c

{
pp, (ρ, g), ga, gb, gC

∣∣∣∣∣ pp = (G,F,H, f, t, ℓ)← Gen(1λ),

(ρ, g)← Samp(pp),a← [ℓ]m,b← [ℓ]n,C← [ℓ]m×n.

}
.

Similarly, assuming DDH in prime-order groups, for any polynomials m(λ), n(λ), the following
holds: {

G, g, ga, gb, ga·b
T

∣∣∣∣∣ (G, g)← Gen(1λ),

a← Zm
p , b← Zn

p .

}

≈c

{
G, g, ga, gb, gC

∣∣∣∣∣ (G, g)← Gen(1λ),

a← Zm
p , b← Zn

p ,C← Zm×n
p .

}
.

Definition 9 (Circular-Power-DDH Assumption). We say the circular-power-DDH as-
sumption holds in the NIDLS framework if the following holds:{

pp, (ρ, g), gs, gai , gsai , gs
2ai · fs[i]

(for i ∈ ⌈log ℓ⌉)

∣∣∣∣∣ pp = (G,F,H, f, t, ℓ)← Gen(1λ),

(ρ, g)← Samp(pp), s, {ai} ← [ℓ].

}

≈c

{
pp, (ρ, g), gs, gai , gbi , gci

(for i ∈ ⌈log ℓ⌉)

∣∣∣∣∣ pp = (G,F,H, f, t, ℓ)← Gen(1λ),

(ρ, g)← Samp(pp), s, {ai, bi, ci} ← [ℓ].

}
.

We say the circular-power-DDH assumption holds in prime-order groups if the following holds:{
G, g, gs, gai , gsai , gs

2ai+s[i]

(for i ∈ ⌈log p⌉)

∣∣∣∣∣ (G, g)← Gen(1λ),

s, {ai} ← Zp.

}

≈c

{
G, g, gs, gai , gbi , gci

(for i ∈ ⌈log p⌉)

∣∣∣∣∣ (G, g)← Gen(1λ),

s, {ai,bi, ci} ← Zp.

}
.
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Remark 4. CP-DDH implies DDH, which just requires indistinguishability of the first 3 terms in
the above. We also show in Theorem 4 that CP-DDH in prime-order groups holds in the generic
group model (GGM) as formulated in [Sho97].

The following small-exponent assumption is commonly assumed in the NIDLS framework,
and is requires for obtaining HSS (for NC1 circuits) in prior work [ADOS22]. We don’t rely on
this assumption except when using existing HSS schemes as a black box.

Definition 10 (Small Exponent Assumption). We say the small exponent assumption holds
in the NIDLS framework if the following holds:{

pp, ρ, gs

∣∣∣∣∣ pp = (G,F,H, f, t, ℓ)← Gen(1λ),

(ρ, g)← Samp(pp), s← [ℓ].

}

≈c

{
pp, ρ, gs

′

∣∣∣∣∣ pp = (G,F,H, f, t, ℓ)← Gen(1λ),

(ρ, g)← Samp(pp), s′ ← [2λ].

}
.

While the Damg̊ard-Jurik encryption scheme [Pai99, DJ01] satisfy the NIDLS framework,
our applications can alternatively rely directly on the KDM security of this scheme, rather than
CP-DDH defined generically for the NIDLS framework. We give preliminaries for Damg̊ard-Jurik
below.

Construction 1 (Damg̊ard-Jurik Encryption [Pai99, DJ01]). Let B′ = B′(λ) ≤ 2poly(λ)

be a bound on message magnitude. The Damg̊ard-Jurik encryption scheme for integer messages
consists of the following algorithms.

– KeyGen(1λ) : sample two λ-bit primes p, q, set N = p · q, and choose the smallest integer ζ
such that N ζ > B′. Output pk = (N, ζ) and sk = φ(N), where φ(·) is the Euler’s totient
function.

– Enc(pk,m ∈ Z) : sample r ← Z∗
Nζ+1 , and output a ciphertext

c = rN
ζ · (1 +N)m mod N ζ+1.

– Dec(pk, sk, c) : compute and output

m = DLog(1+N)(c
sk)/sk mod N ζ+1,

where DLog(1+N) efficiently recovers x from (1 +N)x mod N ζ+1.

Definition 11 (KDM Security [BRS03, BHHO08]). A public key encryption scheme is
KDM secure w.r.t. a class of functions F if for every efficient adversary A there exists a negligible
function negl(λ) such that for all λ ∈ N:∣∣∣Pr [ExpA,F ,0

KDM (λ) = 1
]
− Pr

[
ExpA,F ,1

KDM (λ) = 1
]∣∣∣ ≤ negl(λ),

where the experiment ExpA,F ,b
KDM (λ) is as follows:

1. Sample public and secret keys (pk, sk)← KeyGen(1λ) and launch A(1λ, pk).
2. Answer arbitrary number of queries f ∈ F from A with

cf = Enc(pk, f(sk)) if b = 0

cf = Enc(pk, 0|f(sk)|) if b = 1.
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3. In the end, A outputs a bit b′ as the experiment result.

Remark 5. We will need the class F to contain constant functions fC(sk) = C, and inverse
functions f ′

M (sk) = sk−1 mod M for all C,M ∈ N.
Note that standard semantic security can be viewed as a special case of KDM security where

F contains only constant functions. The semantic security of Damg̊ard-Jurik encryption is also
known as the DCR assumption. We write KDM-DCR as a shorthand for the KDM security of
Damg̊ard-Jurik encryption.

Lemma 4 (DDLog algorithm for Damg̊ard-Jurik [RS21]). Let p, q be any distinct primes,
ζ ≥ 1 be any positive integer, N = p · q, pk = (N, ζ), and sk = φ(N). There exists an efficient
algorithm DDLogN,ζ(·), such that for all x, y, z ∈ Z and c ∈ Supp(Enc(pk, y)), the following
holds:

DDLogN,ζ(c
sk·x+z) ≡ sk · x · y + DDLogN,ζ(c

z) mod N ζ .

2.4 CP-DDH in Generic Group Model

We first recall the definition of (Shoup’s) generic group model [Sho97] as formulated in [Zha22],
and then prove that our new assumption, CP-DDH in prime order groups, holds in this model
(Theorem 4).

Definition 12 (GGM [Sho97, Zha22]). Let p ∈ Z be a positive integer and S ⊆ {0, 1}∗ be
a set of strings of length bounded by some B, and cardinality at least p. In the generic group
model for a cyclic group of order p, a random injective labeling function L : Zp → S is chosen,
whose outputs L(x) represents group elements gx with respect to a fixed generator g. All parties
– including the adversary and the challenger – are allowed the following queries (incurring unit
cost) to a group oracle:

– Labeling queries: The party submits x ∈ Zp, and receives L(x).

– Group operations: The party submits (l1, l2, a1, a2) ∈ S2 × Z2
p. If l1, l2 are valid labels for

x1, x2 ∈ Zp, i.e. L(x1) = l1, L(x2) = l2 , then the party receives the label L(a1x1 + a2x2).
Otherwise, the party receives ⊥.

Theorem 4 (CP-DDH in GGM). For every sequence of prime orders {pλ}λ where pλ > 2λ,
and every adversary A with polynomial number of queries in GGM (for groups of orders {pλ}),
the following holds:

|Pr[A(Labelsλ,CPDDH) = 1]− Pr[A(Labelsλ,Rand) = 1]| ≤ negl(λ),

where the labels provided to A are sampled as follows:

Labelsλ,CPDDH =

{
L(1), L(s), L(ai), L(sai), L(s

2ai + s[i])

(for i ∈ ⌈log pλ⌉)

∣∣∣∣∣ s, {ai} ← Zpλ

}
,

Labelsλ,Rand =

{
L(1), L(s), L(ai), L(bi), L(ci)

(for i ∈ ⌈log pλ⌉)

∣∣∣∣∣ s, {ai, bi, ci} ← Zpλ

}
.

Proof. We show a series of hybrid experiments whose output distribution transition fromA(Labelsλ,CPDDH)
to A(Labelsλ,Rand).
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Hyb0 : In this experiment, the challenger uniformly samples exponents s, {ai}, queries the group
oracle to obtain Labelsλ,CPDDH, and provides them to A. The queries of A to the group
oracle are answered by the oracle. The output of A is also the output of this experiment, i.e.
Hyb0 ≡ A(Labelsλ,CPDDH).

Hyb1 : Instead of relying on the actual group oracle, the challenger simulates all its answers (to
queries of both the challenger and the adversary) by lazily sampling a random label table L:

– Upon a labeling query of x ∈ Zpλ : If it’s not answered before, sample a random label
L(x)← S and remember it. Otherwise, return L(x).

– Upon a group operation query of (l1, l2, a1, a2): If either l1 or l2 is not in S, then return
⊥. Otherwise, for an unqueried label, say l1, randomly sample a previously un-queried
x1 ∈ Zp and set L(x1) = l1. Finally, compute x3 = a1x1 + a2x2 mod p and return L(x3).

As the challenger perfectly simulates the group oracle, we have Hyb1 ≡ Hyb0.

Hyb2 : Instead of simulating the group oracle as in Hyb1, the challenger first translates every
query into an affine function α over the values s, {ai, sai, s2ai + s[i]}, and then answers the
query as L′(α) with a random table L′ mapping distinct translated affine functions to random
labels in S.

The challenger’s own labeling queries of exponents among s, {ai, sai, s2ai+s[i]} are translated
to the affine functions that “select” the correct input variables. A’s queries are handled as
follows.

– Upon a labeling query of x: Translate it to the constant function α(·) = x.

– Upon a group operation query of (l1, l2, a1, a2): If either l1 or l2 is not in S, then return
⊥. Otherwise, for an unqueried label, say l1, randomly sample a previously un-queried
constant function α1, and set L′(α1) = l1. Finally, translate the query to α3 := a1 · α1 +
a2 · α2, which is another affine function.

We observe that the simulated answers in Hyb2 and Hyb1 are equivalent, unless there exists
queried affine functions α ̸= α′ such that α(s, {ai, sai, s2ai+s[i]}) = α′(s, {ai, sai, s2ai+s[i]}).
We claim (and prove in the end) that this “bad event” happens with negligiable probability,
because it implies a non-zero affine function α∗ = α−α′ satisfying α∗(s, {ai, sai, s2ai+s[i]}) ≡
0 mod p:

Claim. For every prime p, every non-zero affine function α over 3⌈log p⌉ + 1 inputs the
following holds:

Pr[α(s, {ai, sai, s2ai + s[i]}) ≡ 0 mod p | s, {ai} ← Zp] ≤ 3/p.

Therefore, we have Hyb2 ≈ Hyb3. We also note that in Hyb2 the labels provided to A, both
as inputs Labelsλ,CPDDH and as answers to its queries, are computed independent of the
exponents s, {ai} sampled by the challenger.

Hyb3 In this experiment, the challenger uniformly samples exponents s, {ai, bi, ci}, queries the
group oracle to obtain Labelsλ,Rand, and provides them to A. The queries of A are answered
by the oracle.

By exactly the same arguments as used to argue Hyb0 ≈ Hyb2 above, we haveA(Labelsλ,Rand) ≡
Hyb3 ≈ Hyb2.

By a hybrid argument, we conclude that Hyb0 ≈ Hyb3, which proves the theorem. We prove the
claim now.
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Proof (of Claim). Denote the coefficients of α as c, d, ei, fi, gi ∈ Zp for i ∈ ⌈log p⌉:

α(s, {ai, sai, s2ai + s[i]})

:=c+ d · s+
∑
i

ei · ai +
∑
i

fi · sai +
∑
i

gi · (s2ai + s[i])

= c+ sd+
∑
i

s[i]gi︸ ︷︷ ︸
γ

+
∑
i

ai (ei + sfi + s2gi)︸ ︷︷ ︸
βi

.

Let “Target” denote the event α(s, {ai, sai, s2ai + s[i]}) ≡ 0 mod p. We analyze two possible
cases:

Case A: γ, {βi} don’t all evaluate to zero (mod p). By Schwartz-Zippel lemma, viewing {ai}
as variables, we have

Pr[Target |Case A] ≤ 1/p

Case B: γ, {βi} all evaluate to zero (mod p). As we assume α is a non-zero function, at least
one of the following are true:
– Exists i∗ such ei∗ , fi∗ , gi∗ are not all zero. By Schwartz-Zippel lemma, viewing s as the

variable, we have Pr[Case B] ≤ Pr[βi∗ = 0] ≤ 2/p.
– {ei, fi, gi} are zero for all i, but c, d are not all zero. By Schwartz-Zipple lemma, viewing

s as the variable, we have Pr[Case B] ≤ Pr[γ = 0] ≤ 1/p.
In both cases, we have

Pr[Case B] ≤ 2/p.

We conclude the proof by the following identity:

Pr[Target] =Pr[Case A]Pr[Target |Case A] + Pr[Case B] Pr[Target |Case B]

≤1 · Pr[Target |Case A] + Pr[Case B] · 1 ≤ 3/p.

⊓⊔

3 Algebraic Homomorphic MACs

Our notion of algebraic homomorphic MACs (aHMACs) can be roughly viewed as a refinement
of existing homomorphic MACs (HMACs [AB09, GW13, CF13]). In both notions, there are
Auth, and EvalTag algorithms that respectively produce authentication tags σx for some input
x, and homomorphically evaluate some circuit C over them. The resulting tags σz should be
verifiable with respect to the circuit C and unforgeable.

The main difference in our definition is the requirement that evaluated tags have the the
form σz = ∆ · C(x) + kC (over Z), where ∆ is a global secret specified at key generation
time, and kC is computable from only the secret key and the circuit C, without knowing x.
This format is known as information-theoretic MACs. As our applications in this work doesn’t
require explicitely verifying the evaluated tags, we omit the Verify algorithm, verifiability, and
unforgeability from our main Definition 13.

In Section 3.5, we provide the standard HMAC definition and show that our aHMAC def-
inition (Definition 13) implies a HMAC scheme with verifiability and a weaker variant of un-
forgeability than commonly required in the literature. We also show how to generically amplify
a scheme with weak unforgeability to achieve the usual unforgeability. (The amplified scheme
doesn’t satisfy the algebraic format anymore.)
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Definition 13 (Algebraic Homomorphic MACs). An algebraic homomorphic MAC scheme
(for arbitrary Boolean circuits) consists of four efficient algorithms:

– KeyGen(1λ,∆ ∈ [2λ]ℓz) takes a vector of global secrets ∆, (one for each evaluation output
bit,) and outputs a secret key sk and evaluation key evk.

– Auth(sk, x ∈ {0, 1}, id ∈ {0, 1}λ) takes as inputs the secret key sk, a bit x to be authenticated,

and an id associated with the bit. It outputs a tag σx. We will write σx = (. . . , σ
(i)
x , . . .) to

mean a vector of such tags.
– EvalTag(evk, C,x, σx) takes as inputs the evaluation key evk, a Boolean circuit C : {0, 1}ℓx →
{0, 1}ℓz , input bits x, and their associated tags σx. It outputs tags σz ∈ Zℓz authenticating
the outputs of C(x).

– EvalKey(sk, C, id) takes as inputs the secret key sk, a Boolean circuit C : {0, 1}ℓx → {0, 1}ℓz
and the ids associated with its inputs. It outputs MAC keys kC ∈ Zℓz for the outputs of C.

δ-Correctness: Let δ = δ(λ) be an error bound. For every polynomial p(λ), there exists a
negligible function negl(λ) such that for all λ ∈ N, Boolean circuits C : {0, 1}ℓx → {0, 1}ℓz where
|C| ≤ p(λ), global secrets ∆ ∈ [2λ]ℓz , inputs x ∈ {0, 1}ℓx, and ids id ∈ {0, 1}ℓx×λ, the following
holds:

Pr


σz = ∆⊙ C(x) + kC

(over Zℓz ,⊙ means

component-wise mult)

∣∣∣∣∣∣∣∣∣∣∣∣∣

(sk,evk)← KeyGen(1λ,∆)

σ(i) ← Auth(sk,x[i], id[i])

σx := (σ(0), . . . , σ(ℓx−1))

σz ← EvalTag(evk, C,x, σx)

kC ← EvalKey(sk, C, id)


≥ 1− δ(λ)− negl(λ).

(Adaptive) Security: There exists a pair of efficient simulators Sim1,Sim2 such that for every
efficient adversary A, there exists a negligible function negl(λ) such that for all λ ∈ N, the
following holds ∣∣∣Pr[ExpA,0

priv(λ) = 1]− Pr[ExpA,1
priv(λ) = 1]

∣∣∣ ≤ negl(λ),

where the experiment ExpA,b
priv is as follows:

1. Launch A(1λ). Receive from A a vector ∆ ∈ [2λ]ℓz , compute evk as follows and send it to A.{
evk, sk← KeyGen(1λ,∆) if b = 0,

evk, st← Sim1(1
ℓz) if b = 1,

2. Receive any number of adaptively chosen queries (x ∈ {0, 1}, id ∈ {0, 1}λ) with distinct ids
from A, and answer each with a tag σ computed as follows.{

σ ← Auth(sk, x, id) if b = 0,

σ, st← Sim2(st) if b = 1.

(Queries with previously used ids are ignored.)
3. A outputs a bit b′ as the output of the experiment.

Succinctness: The tags produced by Auth and EvalTag have bounded sizes by some fixed poly(λ).
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Remark 6. The adaptive security definition implies the following weaker, but simpler, selective
security that suffices for our applications. There exists an efficient simulator Sim such that for
every sequence of global MAC keys {∆λ}λ and inputs {xλ}λ (of polynomial lengths ℓz(λ) and
ℓx(λ)), and distinct ids {idλ}λ, the following holds{

Sim(1λ, 1ℓz)
}
λ
≈c

{
evk, σx := (σ(i), . . . , σ(ℓx−1))

∣∣∣∣∣ (sk,evk)← KeyGen(1λ,∆)

σ(i) ← Auth(sk,x[i], id[i])

}
λ

.

We prove the stronger adaptive version for our constructions this section, but use the sim-
pler version in our applications to succinct partial garbling (Section 4) and constrained PRF
(Section 5).

Remark 7. We define a leveled variant analogously to Definition 13 with the following differences.

– KeyGen additionally takes a depth-bound D on evaluation circuits as 1D.
– EvalTag and EvalKey take circuits of depth less than D, and correctness only holds w.r.t.

those circuits. (We don’t require the circuits to be leveled.)
– Succinctness requires the bit-lengths of tags produced by Auth and EvalTag to be bounded

by some fixed poly(λ,D).

In Section 3.1, 3.2, we show constructions of aHMACs assuming CP-DDH in the NIDLS
framework or in prime-order groups. In Section 3.3, we describe a construction assuming KDM-
DCR (in Damg̊ard-Jurik groups). In Section 3.4, we describe leveled variants of these construc-
tions assuming DDH in the NIDLS framework or in prime-order groups. (A leveled variant
assuming DCR is described in a recent concurrent work [MORS25], we only include this in
our theorem statement for completeness, but don’t claim any credit. Our leveled constructions
assuming DDH are also inspired by the techniques from [MORS25].) In Section 3.5 we show
that our aHMAC definition implies a HMAC scheme with verifiability and (a weaker variant
of) unforgeability. We also show how to generically amplify weak unforgeability to standard
unforgeability. Finally, in Appendix A we include a construction based on lattice assumptions
from subsequent work [ILL25], and a leveled variant analogous to our group-based constructions
for completeness.

Our results on aHMACs are summarized as follows. (See Theorem 7, 8 in Section 3.5 for the
implied results on HMACs.)

Theorem 5 (aHMACs). We have the following constructions:

1. Assuming CP-DDH in the NIDLS framework (e.g. Damg̊ard-Jurik groups and class groups)
(Definition 6, 9), or KDM-DCR (Definition 11), there exists an aHMAC scheme achieving
negl-correctness.

2. Assuming CP-DDH in prime-order groups, for every polynomial p(λ), there exists an aHMAC
scheme achieving 1/p-correctness.

In the above, evk costs ℓz · poly(λ) bits.

Theorem 6 (Leveled aHMACs). We have the following constructions (besides those from
Theorem 5):

1. Assuming DDH in the NIDLS framework (Definition 8), or DCR, 6 there exists a leveled
aHMAC scheme achieving negl-correctness.

6 As noted, the leveled contruction under DCR is adapted from [MORS25].

25



2. Assuming DDH in prime-order groups, for every polynomial p(λ), there exists a leveled aH-
MAC scheme achieving 1/p-correctness.

In the above, evk costs (ℓz +D) · poly(λ) bits.

3.1 aHMACs from the NIDLS Framework

In this section, we construct an aHMAC scheme in the NIDLS framework (Definition 6). See
Section 1.2 for an overview and intuitions.

Construction 2 (aHMACs from the NIDLS Framework). Ingredients:

– An instance G = {Gλ} of the NIDLS framework with large order F , i.e., the subgroup F of
each G ∈ Gλ has order at least t > 2λ.

– Two PRFs F1 : K1 × {0, 1}∗ → [t] and F2 : K2 × {0, 1}∗ → [2λ].

Note that every Boolean circuit C can be implemented via an arithmetic circuit C ′ over Z as
follows:

∀x, y ∈ {0, 1}, xAND y = x · y, xOR y = x+ y − x · y, Notx = 1− x.

The wire values in C ′ are 0 or 1. In the following construction of EvalTag and EvalKey, we will
evaluate C ′ instead of C.

For an integer vector r, we write gr = (. . . , gr[i], . . .), denote component-wise multiplication
by ⊙, and define BC(r) =

∑
i r[i] · 2i over Z. When using a PRF to generate n values from a

single input, we write Fn(s, x) = (. . . ,F(s, x∥i), . . .)i∈[n] for vectorized operations.

(sk, evk)← KeyGen(1λ,∆) :
Generate public parameters pp = (G,F,H, f, t, ℓ) ← Gen(1λ), a group element (g, ρ) ←
Samp(pp), and a secret exponent s← [ℓ]. Then compute ciphertexts cts, ct∆ encrypting the
bits of s (as a bit vector s := Bits(s) of length ℓs := ⌈log ℓ⌉, such that BC(s) = s) and of ∆
(as a bit matrix in {0, 1}ℓz×λ):

h = gr, r← [ℓ]ℓs , H = gR,R← [ℓ]ℓz×λ,

cts = (h,hs,hs2 · f s), ct∆ = (H,H−s · f∆).
(4)

Finally, sample PRF keys key1 ← K1, key2 ← K2. Output sk = (pp,h,H, s, key1, key2), and
evk = (pp, cts, ct∆, key1).

σx ← Auth(sk, x, id) :
Parse the secret exponent s and the (secret) PRF key key2 from sk. Then compute an
authentication tag

σx = s · x+ Fℓs2 (key2, id) over Zℓs .

σz ← EvalTag(evk, C,x, σx) :
Parse pp, ciphertexts cts = {h,h1,h2}, ct∆ = {H,H1}, and a PRF key key1 from evk.

1. Assign the tags σx to corresponding input wires of C ′, and then a tag σ(w) to every
output wire w of some gate in C ′ (with input wires w1, w2 and values x1, x2) following
the topological order:

– For Add gates, set σ(w) := σ(w1) + σ(w2) over Zℓs .
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– For Mult gates, compute the output tag σ(w) as follows:

a(w) := hBC(σ(w1))·BC(σ(w2)) ⊙ h
−BC(σ(w1))·x2−BC(σ(w2))·x1

1 ⊙ hx1·x2
2 ,

σ(w) := DDLog(pp,a(w)) + Fℓs1 (key1, w) mod t.

We note the following invariant: if the input tags have the form σ(w1) = s ·x1+k(w1),
and σ(w2) = s · x2 + k(w2), over Z, then the computed tag also has the form σ(w) =
s·z+k(w) over Z. For Add gates, the invariant is immediate, with k(w) := k(w1)+k(w2)

over Z. For Mult gates, we note the following core identity:

BC(σ(w1))BC(σ(w2))− s ·
(
BC(σ(w1))x2 + BC(σ(w2))x1

)
+ s2z

=BC(k(w1))BC(k(w2)) over Z.

Plugging in the fact that h1 = hs, h2 = hs2 · f s, we obtain

a(w) = f s·z · hBC(k(w1))BC(kw2 )

⇒DDLog(pp,a(w)) = s · z + DDLog(pp,hBC(k(w1))BC(k(w2))) mod t.

⇒σ(w) = s · z + k(w) mod t,

w/ k(w) := DDLog(pp,hBC(k(w1))BC(k(w2))) + Fℓs1 (key1, w) mod t.

We have obtained the desired invariant mod t, and now argue it also holds over Z.
For each coordinate i, there are at most ∥s · z∥∞ ≤ 1 possible values of k(w)[i] to
break the invariant over Z. Since k(w) is distributed pseudorandomly mod t, due to
the offset by F1, the probability of it breaking the invariant is ≤ (1/t)ℓs = negl(λ).

2. Compute the final output tags σz = (. . . ,BC(σ′(oj)), . . .)j∈[ℓz ], where {oj} are the output
wires of C ′ (with values {zj}):

a′
(oj) := H[j]BC(σ

(oj)) ⊙H1[j]
zj ,

σ′(oj) = DDLog(pp,a′(oj)) + Fℓs1 (key1, oj) mod t.

Similarly, we note if the tags σ(oj) have the form σ(oj) = s · zj + k(oj), then we have

σ′(oj) = ∆[j] · zj + k′(oj) over Z,

w/ k′(oj) := DDLog(pp,H[j]BC(k
(oj))) + Fℓs1 (key1, oj) mod t.

⇒σz = ∆⊙ zj + kC over Z w/ kC := BC(k′(oj)),

where in the last line we abuse notations to write ∆ as a vector in Zℓz .

kC ← EvalKey(sk, C, id) :
Parse the PRF keys key1, key2 and group elements h,H from sk. Then compute MAC keys
k(wj) associated with each input wire wj of C ′:

k(wj) = Fℓs2 (key2, id[j]).
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1. Assign a MAC key to every output wire w of some gate in C ′ (with input wires w1, w2)
following the topological order:

– For Add gates, set k(w) := k(w1) + k(w2) over Zℓs .
– For Mult gates, compute the output MAC key k(w) as follows:

b(w) := hBC(k(w1))·BC(k(w2)),

k(w) := DDLog(pp,b(w)) + Fℓs1 (key1, w) mod t.

As noted before, we have σ(w) = s · z + k(w) over Z.

2. Compute the final output MAC keys kC = (. . . ,BC(k′(oj)), . . .)j∈ℓz , where {oj} are the
output wires of C ′:

b′(oj) := H[j]BC(k
(oj)),

k′(oj) = DDLog(pp,b′(oj)) + Fℓs1 (key1, oj) mod t.

As noted before, we have σz = ∆⊙ z+ kC over Z as desired.

Correctness and Efficiency: To help digest the construction, we have broken up and embed-
ded correctness analysis as notes in the above. We note that the tags output by Auth and the
EvalTag all have bounded magnitude by O(t) ≤ O(2λ). Hence they have bit-lengths bounded by
O(λ · ℓs) = poly(λ), and satisfy succinctness. The evaluation key evk contains mainly the cipher-
texts cts, ct∆, which are O(ℓs + ℓz × λ) group elements. In total, evk has bit-length ℓz · poly(λ).
Security: We state and prove the following security lemma.

Lemma 5. Under CP-DDH in the NIDLS framework, Construction 2 is secure.

Proof (of Lemma 7). The security of an aHMAC scheme (Definition 13) requires simulators
Sim1,Sim2 to simulate an evaluation key evk and adaptively queried authentication tags σ.

– Sim1 samples all components of the simulated evk = (pp, cts, ct∆, key1) at random. In more
detail, it samples a random PRF key key1 ← K1, public parameters of a NIDLS group
pp ← Gen(1λ), and a random group element (g, ρ) ← Samp(pp). It then samples random
ciphertexts cts = (h̃, h̃1, h̃2), and ct∆ = (H̃, H̃1):

h̃ = gr, r← [ℓ]ℓs , h̃1 = gr1 , r1 ← [ℓ]ℓs , h̃2 = gr2 , r2 ← [ℓ]ℓs ,

H̃ = gR,R← [ℓ]ℓz×λ, H̃1 = gR1 ,R1 ← [ℓ]ℓz×λ.

– Sim2 samples the authentication tag at random σ̃ ← [2λ]ℓs .

We show a series of hybrids that transitions from the real-world experiment Hyb0 = Exp0priv in

Definition 13 to the simulation-world experiment Hyb5 = Exp1priv.
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Hyb0 : We summarize the real-world distribution of the evaluation key evk = (pp, cts, ct∆, key1),
where cts = (h,h1,h2), and ct∆ = (H,H1), and of the authentication tag σ for some query
(x, id).

key1 ← K1, pp← Gen(1λ),

h = gr, h1 = gs·r, h2 = gs
2·r · f s,

H = gR, H1 = gs·R · f∆,

∣∣∣∣∣(ρ, g)← Samp(pp), r← [ℓ]ℓs ,

R← [ℓ]ℓz×λ, s← [ℓ].
(5)

σ = s · x+ Fℓs2 (key2, id) over Z |key2 ← K2, s := Bits(s). (6)

Hyb1 : Instead of computing each tag σ as in Equation 6, Hyb1 simulates it as σ̃ ← [2λ]ℓs . The
PRF security of F2 ensures that Hyb1 ≈c Hyb0.

Hyb2 : Instead of sampling the random exponents R← [ℓ]ℓz×λ as in Equation 5, Hyb2 simulate
it as R̃ = r′ · rT , where r′ ← [ℓ]ℓz . 7 The matrix form of DDH (Lemma 3) in the NIDLS
framework ensures that Hyb2 ≈c Hyb1.

To summarize, in Hyb2 the terms h, h1, h2, H, H1 are computed as:

h = gr, h1 = gs·r, h2 = gs
2·r · f s,

H = gr
′·rT , H1 = gr

′·(s·r)T · f∆,

∣∣∣∣∣(ρ, g)← Samp(pp), r← [ℓ]ℓs ,

r′ ← [ℓ]ℓz , s← [ℓ].

In particular, H and H1 can be derived from h, h1, r
′ and ∆.

Hyb3 : Instead of computing h, h1, h2 as above, Hyb3 simulates:

h̃ = ga, h̃1 = gb, h̃2 = gc, | (ρ, g)← Samp(pp), a,b, c← [ℓ]ℓs .

CP-DDH in the NIDLS framework ensures that Hyb3 ≈c Hyb2.

In Hyb3, the terms H, H1 (derived from h̃ and h̃1) becomes

H = gr
′·aT

, H1 = gr
′·bT · f∆, | r′ ← [ℓ]ℓz .

Hyb4 : Instead of computing H, H1 as above, Hyb4 simulates them as

H̃ = gR, H̃1 = gR1 · f∆ |R,R1 ← [ℓ]ℓz×λ.

The matrix form of DDH in the NIDLS framework ensures Hyb4 ≈c Hyb3.

Hyb5 : Instead of computing H̃1 as above, Hyb5 simulates H̃1 = gR1 , i.e., independent of ∆.
The Samp algorithm (Definition 6) ensures

gR1 · f∆ ≈ Uniform(⟨g⟩) · f∆ ≡ Uniform(⟨g⟩) ≈ gR1 ,

where the first and last indistinguishabilities are statistical. Hence we have Hyb5 ≈ Hyb4.

By a hybrid argument, we conclude that Hyb0 ≈c Hyb5, which proves the lemma. ⊓⊔

7 An omitted detail (for brevity) here is the mismatch of dimensions: R̃ should have dimension ℓz ×λ, but r′ · rT
has dimension ℓz × ℓs, where ℓs = ⌈log ℓ⌉ ≥ λ. We simply take R to be the first λ columns of r′ · rT .
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3.2 aHMACs from Prime-Order Groups

In this section, we construct an aHMAC scheme in prime-order groups. It follows the same
blue-print as Construction 2 in the NIDLS framework, but will have a 1/poly-correctness error
due to the imperfect DDLog algorithm in prime-order groups.

Construction 3 (aHMACs from Prime-Order Groups). Ingredients:

– Prime-order groups G = {Gλ} with an algorithm Gen and orders p > 2λ.
– A compatible PRF F3 : K3 ×G→ {0, 1}λ used for the DDLog algorithm.
– Two PRFs F1 : K1 × {0, 1}∗ → [p] and F2 : K2 × {0, 1}∗ → [2λ].

Compared to Construction 2, the Auth, EvalTag, EvalKey algorithms are the same except
DDLog now requires three additional parameters δ′, B, ϕ (Lemma 2). We set δ′ = δ/O(|C|) so
that running DDLog O(|C|) times has an overall error probability bounded by δ, and B = 1
which equals the wire value bound when implementing C as an arithmetic circuit (as explained
in Construction 2). We sample a public PRF key key3 during KeyGen which specifies the function
ϕ(·) := F3(key3, ·). 8 The remaining differences are in KeyGen, where we compute cts, ct∆ as part
of evk differently:

(sk, evk)← KeyGen(1λ, ∆) :
Generate public parameters pp = (G, g) ← Gen(1λ) and a secret exponent s ← Zp. Then
compute ciphertexts cts, ct∆ encrypting the bits of s (as a bit vector s ∈ {0, 1}ℓs) and ∆ (as
a bit matrix in {0, 1}ℓz×λ):

h = gr, r← Zℓs
p , H, = gR,R← Zℓz×λ

p

cts = (h,hs,hs2 · gs), ct∆ = (H,H−s · g∆).

Finally, sample PRF keys key1 ← K1, key2 ← K2, key3 ← K3. Output sk = (pp,h,H, s, key1,
key2, key3), and evk = (pp, cts, ct∆, key1, key3).

Correctness, Efficiency, and Security. Correctness arguments are the same as Construc-
tion 2, except that every invokation of DDLog has a δ′ correctness error. We have set δ′ =
δ/O(|C|) such that the overall error probability from running DDLog O(|C|) times is below
δ as required. The scheme has the same asymptotic efficiency as Construction 2, i.e., with
|evk| ≤ ℓz · poly(λ).

We state the following security lemma, whose proof is completely analogous to Lemma 7.

Lemma 6. Under CP-DDH in prime-order groups, Construction 3 is secure.

3.3 aHMACs From Damg̊ard-Jurik

While the Damg̊ard-Jurik encryption scheme (Construction 1) can be viewed as an instantiation
of the NIDLS framework, we note that its particular structure allows a more convenient DDLog
algorithm (Lemma 4):

DDLogN,ζ(c
sk·x+z) ≡ sk · x · y + DDLogN,ζ(c

z) mod N ζ ,

where c is any ciphertext that decrypts to some value y, and sk is not a random exponent, but
a fixed secret value sk = φ(N). We will use this DDLog variant on ciphertexts encrypting the

8 The output length of F3 is truncated to ⌈log(2B/δ′)⌉ as required by ϕ.
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inverse of the secret key sk−1 mod N ζ , which can effectively remove a factor of sk from any tag
of the form σ = sk · x+ k over Z: 9

cts ← DJ.Enc(pk, 1/sk mod N ζ),

=⇒ DDLogN,ζ(ct
sk·x+k
s ) ≡ sk · x · sk−1 + DDLogN,ζ(ct

k
s) mod N ζ ,

≡ x+ DDLogN,ζ(ct
k
s) mod N ζ .

This leads to the following evaluation procedures for a Mult gate in EvalTag and EvalKey re-
spectively:

EvalTag given σx, σy computes:

a = ct
σx·σy
x , σ∗

z := −DDLogN,ζ(a) + σx · y + σy · x mod N ζ

EvalKey given kx, ky computes:

b = ct
kx·ky
x , k∗z := DDLogN,ζ(b) mod N ζ

The DDLog algorithm ensures σ∗
z = sk · x · y+ k∗z mod N ζ . The EvalTag and EvalKey algorithms

then apply a common random shift to σ∗
z and k∗z respectively to make the equality holds also

over Z. We omit further details for this construction, which are analogous to Construction 2.
Security of this construction relies on the KDM security of Damg̊ard-Jurik encryption, which
ensures cts does not leak anything about sk.

We note that in a recent concurrent work [MORS25], very similar techniques to the above
are used to achieve a primitive called semi-private offline HSS (also assuming the KDM security
of Damg̊ard-Jurik encryption). The authors also give a leveled variant of their construction
assuming only the standard DCR assumption. Adapting their leveled construction leads to a
leveled aHMAC scheme assuming DCR. We omit re-creating this leveled construction here, and
refer readers to [MORS25] for more details. Inspired by their leveled construction based on DCR,
we present leveled constructions based on DDH in the NIDLS framework and in prime-order
groups in Section 3.4.

3.4 Leveled aHMACs without Circular Security Assumptions

In this section, we show leveled variants that avoid the circular security assumption CP-DDH
in Construction 2 and 3, at the cost of a larger evaluation key evk with size growing linearly
with the depth bound D of evaluation circuits: |evk| = (ℓz +D) · poly(λ). The leveled variants
assume DDH in the NIDLS framework and prime-order groups respectively.

In the following, we focus on explaining the modifications to Construction 2 and prove it
secure. The modifications to Construction 3 and the security proof are analogous.

Construction 4 (Leveled aHMACs from the NIDLS Framework). This construction
relies on the same ingradients as Construction 2.

(sk, evk)← KeyGen(1λ, 1D,∆) : Compared to Construction 2, the only difference is that the
ciphertexts cts, ct∆ (Equation 4) are replaced with per-level ciphertexts ct(j) for j ∈ [D], and
a final one ct∆ computed as follows. First, sample two secret exponents per level

∀j = 0, . . . , D, s
(j)
L , s

(j)
R ← [ℓ].

9 This usage of DDLog is inspired by the technique from [MORS24].
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Then compute the ciphertexts {ct(j)} and ct∆.

∀j ∈ [D], h = gr, for fresh r← [ℓ]2ℓs ,

ct(j) := (h,hs
(j)
L ,hs

(j)
R ,hs

(j)
L ·s(j)R · fBits(s

(j+1)
L ,s

(j+1)
R )),

for j = D, H = gR, for fresh R← [ℓ]ℓz×λ,

ct∆ := (H,H−s
(D)
L · f∆).

σx ← Auth(sk, x, id) : Compared to Construction 2, the only difference is that the secret vector
s used to be the bits of a global secret s, but now is the bits of the level-0 secrets:

s = s(0) := Bits(s
(0)
L , s

(0)
R ).

σz ← EvalTag(evk, C,x, σx) : Compared to Construction 2, there are two overall differences:
– Each tag assigned to an intermediate wire w, of depth j and with value x, used to have

the form s ·x+k(w) for a global secret vector s, but now will have the form s(j) ·x+k(w)

for a per-level secret vector s(j) := Bits(s
(j)
L , s

(j)
R ).

– Before evaluating a gate, an additional step is required to ensure the tags on both input
wires have the same-level secret vector.

We first present evaluation procedures for Add and Mult gates assuming both input tags
σ(w1), σ(w2) have the same level-j secret vector.
– For Add gates, set σ(w) := σ(w1) + σ(w2) over Z2ℓs .

Note that if the input tags have the form σ(w1) = s(j) · x1 + k(w1), and σ(w2) =
s(j) ·x2+k(w2) over Z, then the computed tag also has the form σ(w) = s(j) · z+k(w)

over Z, where k(w) = k(w1) + k(w2).

– For Mult gates, parse σ(w1) = (σ
(w1)
L , σ

(w1)
R ), σ(w2) = (σ

(w2)
L , σ

(w2)
R ), and ct(j) = (h,h1,L,h1,R,

h2). Compute

a(w) := hBC(σ
(w1)
L )·BC(σ(w2)

R ) ⊙ h
−BC(σ

(w1)
L )·x2

1,R ⊙ h
−BC(σ

(w2)
R )·x1

1,L ⊙ hx1·x2
2 ,

σ(w) := DDLog(pp,a(w)) + Fℓs1 (key1, w) mod t.

We show if the input tags have the form σ(w1) = s(j) · x1 + k(w1), and σ(w2) =
s(j) · x2 + k(w2) over Z, then the computed tag has the form σ(w) = s(j+1) · z + k(w)

over Z, with the level-(j + 1) secret vector. We rely on the following core identity:

BC(σ
(w1)
L )BC(σ

(w2)
R )− s

(j)
R ·

(
BC(σ(w1))x2

)
− s

(j)
L ·

(
BC(σ(w2))x1

)
+ s

(j)
L s

(j)
R z

=BC(k
(w1)
L )BC(k

(w2)
R ) over Z.
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Plugging in h1,L = hs
(j)
L , h1,R = hs

(j)
R , and h2 = hs

(j)
L s

(j)
R · f s(j+1)

, we obtain

a(w) = f s·z · hBC(k
(w1)
L )BC(k

(w2)
R )

⇒DDLog(pp,a(w)) = s · z + DDLog(pp,hBC(k
(w1)
L )BC(k

(w2)
R )) mod t.

⇒σ(w) = s(j+1) · z + k(w) mod t,

w/ k(w) := DDLog(pp,hBC(k
(w1)
L )BC(k

(w2)
R )) + Fℓs1 (key1, w) mod t.

We have showed the desired invariant mod t. By the same argument as in Construc-
tion 2, it also holds over Z except with negligible probabiblity.

We can now transform any level-j tag to a level-(j+1) tag of the same value by applying the
described Mult procedure with another level-j tag of the constant value 1. We can obtain
level-j tag of 1 for all levels, by starting from an arbitray input tag (of level-0) and squaring
it j times.

kC ← EvalKey(sk, C, id) : As in Construction 2, perform matching evaluations over MAC keys
in the same order as EvalTag. We present evaluation procedures for Add and Mult gates
assuming the input MAC keys are k(w1),k(w2), and the output wire w has depth j.

– For Add gates, set k(w) := k(w1) + k(w2) over Z2ℓs .

As noted in EvalTag, the matching evaluated tag equals σ(w) = s(j)z + k(w) over Z.

– For Mult gates, parse k(w1) = (k
(w1)
L ,k

(w1)
R ), and k(w2) = (k

(w2)
L ,k

(w2)
R ). Read h(j) from

sk, and compute

b(w) :=
(
h(j)

)BC(k
(w1)
L )·BC(k(w2)R )

,

k(w) := DDLog(pp,b(w)) + Fℓs1 (key1, w) mod t.

As noted in EvalTag, the matching evaluated tag equals σ(w) = s(j+1)z + k(w) over
Z.

Correctness, Efficiency, and Security. As before, we have broken up and embedded correct-
ness analysis as notes in the above. Compared to Construction 2, the leveled construction has a
larger evk consisting of per-level ciphertexts {ct(j)}[D] of poly(λ) bits each, and a final one ct∆
of ℓz · poly(λ) bits. In total, the bit-length of evk is bounded by (D + ℓz) · poly(λ). Finally, we
state and prove the following security lemma.

Lemma 7. Under DDH in the NIDLS framework, Construction 4 is secure.

Proof. The security of an aHMAC scheme (Definition 13) requires a pair of simulators Sim1, Sim2

to simulate an evaluation key evk and adaptively queried authentication tags σ.

– Sim1 samples all components of the simulated evk = (pp, {ct(j)}[D], ct∆, key1) at random. In
more detail, it samples a random PRF key key1 ← K1, public parameters of a NIDLS group
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pp ← Gen(1λ), and a random group element (g, ρ) ← Samp(pp). It then samples random

ciphertexts ct(j) = (h̃(j), h̃
(j)
1,L, h̃

(j)
1,R, h̃

(j)
2 ), and ct∆ = (H̃, H̃1):

∀j ∈ [D], h̃(j) = gr
(j)
, h̃

(j)
1,L = gr

(j)
1,L , h̃

(j)
1,R = gr

(j)
1,R , h̃

(j)
2 = gr

(j)
2 , r(j), r

(j)
1,L, r

(j)
1,R, r

(j)
2 ← [ℓ]2ℓs ,

H̃ = gR, H̃1 = gR1 R,R1 ← [ℓ]ℓz×λ.

– Sim2 samples the authentication tag at random σ̃ ← [2λ]2ℓs .

We show a series of hybrids that transitions from the real-world experiment Hyb0 = Exp0priv in

Definition 13 to the simulation-world experiment Hyb3 = Exp1priv.

Hyb0 : We summarize the real-world distribution of the evaluation key evk = (pp, {ct(j)}, ct∆, key1),
where ct(j) = (h(j),h

(j)
1,L,h

(j)
1,R,h

(j)
2 ), and ct∆ = (H,H1), and of the authentication tag σ for

some query (x, id).

key1 ← K1, pp← Gen(1λ),

∣∣∣∣∣ (ρ, g)← Samp(pp),

s
(j)
L , s

(j)
R ← [ℓ], ∀j = 0, . . . , D,

∀j ∈ [D] : h
(j) = gr

(j)
, h

(j)
1,L = gs

(j)
L ·r(j) , h

(j)
1,R = gs

(j)
R ·r(j) ,

h
(j)
2 = gs

(j)
L s

(j)
R ·r(j) · f s(j+1)

,

∣∣∣∣∣r
(j) ← [ℓ]2ℓs ,

s(j+1) := Bits(s
(j+1)
L , s

(j+1)
R ),

(7)

H = gR, H1 = gs
(D)
L ·R · f∆,

∣∣∣R← [ℓ]ℓz×λ, (8)

σ = s(0) · x+ Fℓs2 (key2, id) over Z |key2 ← K2, (9)

Hyb1 : Instead of computing each tag σ as in Equation 9, Hyb1 simulates it as σ̃ ← [2λ]ℓs . The
PRF security of F2 ensures that Hyb1 ≈c Hyb0.

Hyb2,0,0 : Instead of computing h(0),h
(0)
1,L,h

(0)
1,R,h

(0)
2 as in Equation 7, compute them from inde-

pendent random exponents as follows:

h(0) = gr
(0)
, h

(0)
1,L = gr

(0)
1,L , h

(0)
1,R = gr

(0)
1,R ,

h
(0)
2 = gr

(0)
2 · f s(1) ,

∣∣∣∣∣∣ r(0), r(0)1,L, r
(0)
1,R, r

(0)
2 ← [ℓ]2ℓs .

By DDH in the NIDLS framework (Definition 8), we have Hyb2,0,0 ≈c Hyb1.

Hyb2,0,1: Instead of computing h
(0)
2 as the previous hybrid, directly compute it as

h
(0)
2 = gr

(0)
2 ,

∣∣∣ r(0)2 ← [ℓ]2ℓs .

without depending on the secret vector s(1). The Samp algorithm (Definition 6) ensures

gr
(0)
2 · f s(1) ≈ Uniform(⟨g⟩) · f s(1) ≡ Uniform(⟨g⟩) ≈ gr

(0)
2 .

Hence we have Hyb2,0,1 ≈ Hyb2,0,0.

Hyb2,j : for j = 1, . . . D−1, instead of computing h(j),h
(j)
1,L,h

(j)
1,R,h

(j)
2 as in Equation 7, compute

them from independent random exponents as follows:

h(j) = gr
(j)
, h

(j)
1,L = gr

(j)
1,L , h

(j)
1,R = gr

(j)
1,R ,

h
(j)
2 = gr

(j)
2

∣∣∣∣∣∣ r(j), r(j)1,L, r
(j)
1,R, r

(j)
2 ← [ℓ]2ℓs .

By analogous arguments from Hyb2,0,0 and Hyb2,0,1, we have Hyb2,j ≈c Hyb2,j−1.
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Hyb3 Instead of computing H,H1 as in Equation 8, compute them from independent random
exponents as follows:

H = gR,H = gR1

∣∣∣R,R1 ← [ℓ]ℓz×λ.

By analogous arguments from Hyb2,0,0 and Hyb2,0,1, we have Hyb3 ≈c Hyb2,D−1.

By a hybrid argument, we conclude that Hyb0 ≈c Hyb3, which proves the lemma. ⊓⊔

3.5 Standard HMAC from aHMAC

In this section, we explain the connection between our notion of aHMAC and standard HMAC
schemes [AB09, GW13, CF13] (Definition 14). First, we show that with minor syntactical
changes, we can adapt an aHMAC scheme into a HMAC scheme satisfying 1-hop verifiabil-
ity (Definition 15) and a weak variant of unforgeability (Definition 16). Then, we show that
our constructions of aHMAC can actually be modified to satsify multi-hop verifiability (Def-
inition 18). (We keep the main construction for 1-hop evaluation as it’s more convenient for
the applications considered in this paper.) Finally, we show how to amplify weak unforgeability
to standard unforgeability generically. The amplified scheme don’t not have the algebraic form
anymore.

Definition 14 (Homomorphic MAC (HMAC)). A homomorphic MAC scheme has the a
similar syntax to an aHMAC scheme (Definition 13), except with a slightly different KeyGen
algorithm, and with a Verify instead of EvalKey algorithm.

– KeyGen(1λ, 1ℓz) takes in an upperbound ℓz on the output length of supported evaluation cir-
cuits, and outputs a secret key sk and evaluation key evk.

– Auth,EvalTag has the same syntax as Definition 13.
– Verify(sk, C, id, z, σz) : takes as inputs the secret key sk, a Boolean circuit C : {0, 1}ℓx →
{0, 1}ℓz , the ids associated with the inputs, output bits z ∈ {0, 1}ℓz , and evaluated tags σz ∈
Zℓz authenticating z. It outputs either ⊤, indicating accept, or ⊥, indicating reject.

Remark 8. We define a leveled variant where KeyGen additionally takes a depth-bound D on
evaluation circuits as 1D, and require EvalTag to only take circuits of depth less than D.

Definition 15 ((1-hop) δ-Verifiability). Let δ = δ(λ) be an error bound. For every poly-
nomial p(λ), there exists a negligible function negl(λ) such that for every Boolean circuit C :
{0, 1}ℓx → {0, 1}ℓz where |C| ≤ p(λ), inputs x ∈ {0, 1}ℓx, and ids id ∈ {0, 1}ℓx×λ, the following
holds

Pr

Verify(sk, C, id,C(x), σz) = ⊤

∣∣∣∣∣∣∣∣∣∣
(evk, sk)← KeyGen(1λ, 1ℓz)

σ(i) ← Auth(sk,x[i], id[i])

σx := (. . . , σ(i), . . .)

σz ← EvalTag(evk, C,x, σx)

 ≥ 1− δ(λ)− negl(λ).

Definition 16 (Unforgeability). For every efficient adversary A, there exists a negligible
function negl(λ) such that for all λ ∈ N, the following holds

Pr[ExpAUF(λ) = Win] ≤ negl(λ),

where the experiment ExpUF is as follows:
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1. Launch A(1λ). Receive from A an output length 1ℓz , compute (evk, sk) ← KeyGen(1λ, 1ℓz),
and send evk to A.

2. Receive from A any number of adaptively chosen queries in the following forms.

– Authentication queries {x(i), id(i)} with distinct ids.

– Verification queries {C(i), id(i), z(i), σ
(i)
z }.

In the weak version, we require id(i) to contain only previously queried ids.

Answer them using sk,∆ and running Auth,Verify.
3. Receive from A a forgery (C, id, z, σz), and output Win if Verify(sk, C, id, z, σz) = ⊤, and

either of the following is true.

– All id(i) ∈ id are queried in Step 2. Let x be the queried inputs corresponding to id. We
have C(x) ̸= z.

– There exist i such that id[i] is not queried in Step 2.

In the weak version, we require C to not be determined by the already queried (partial)
inputs. More specifically, we require the remaining positions can be efficiently assigned
in two ways to cause differen evaluations of C.

Remark 9. We embeded the definition of weak unforgeability in the above as boxed notes. We
write ExpwUF to denote the weak unforgeability experiment. We will also consider the following
slight variants to the experiments ExpUF,ExpwUF:

– We can enforce a bounded Q(λ) ≤ poly(λ) number of verification queries from the adversary.

– We can allow a δ = 1/poly(λ) chance of the adversary winning. We call it soundness error.

Theorem 7 (HMACs). We have the following constructions:

1. Assuming CP-DDH in the NIDLS framework (e.g. Damg̊ard-Jurik groups and class groups)
or the KDM security of Damg̊ard-Jurik encryption, there exists an HMAC scheme for arbi-
trary Boolean circuits, achieving 0-hop and multi-hop negl-verifiability (Definition 17, 18),
and unforgeability (Definition 18).

2. Assuming CP-DDH in prime-order groups, for every polynomials p1(λ), p2(λ), p3(λ), there
exists an HMAC scheme for arbitrary Boolean circuits, achieving 0-hop and multi-hop 1/p1-
verifiability, and unforgeability assuming ≤ p2(λ) verification queries and with 1/p3 sound-
ness errors.

In the above, an authentication tag (evaluated or not) costs poly(λ) bits, and an evk costs ℓz ·
poly(λ) bits.

Theorem 8 (Leveled HMACs). We have the following constructions:

1. Assuming DDH in the NIDLS framework or the semantic security of Damg̊ard-Jurik en-
cryption (i.e. the DCR assumption), there exists a leveled HMAC scheme for bounded-depth
Boolean circuits, achieving 0-hop and multi-hop negl(λ)-verifiability and unforgeability.

2. Assuming DDH in prime-order groups, for every polynomials p1(λ), p2(λ), p3(λ), there exists
a leveled aHMAC scheme for bounded-depth Boolean circuits, achieving 0-hop and multi-hop
1/p1-verifiability, and unforgeability assuming ≤ p2(λ) verification queries and with 1/p3
soundness errors.
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In the above, an authentication tag (evaluated or not) costs poly(λ) bits, and an evk supporting
bounded-depth circuits by D costs (ℓz +D) · poly(λ) bits.

In the remaining of this section, we focus on explaining the outlined steps to obtain non-leveled
HMACs (Theorem 7) from aHMACs. The steps to obtain leveled HMACs (Theorem 8) from
aHMACs are analogous.

Syntactical Changes from aHMAC to HMAC. The syntax of Auth,EvalTag are the same
for both aHMAC and HMAC. The differences are (1) in HMAC, the KeyGen algorithm doesn’t
take any user-supplied vector ∆ and (2) in HMAC a Verify algorithm replaces the EvalKey algo-
rithm. To obatin a standard HMAC scheme from aHMAC, we modify KeyGen, and implement
Verify as follows. (Auth,EvalTag and are the same as aHMAC.Auth, aHMAC.EvalTag.)

Construction 5 (HMAC from aHMAC).

– (sk, evk) ← KeyGen(1λ, 1ℓz) : Sample a global secret ∆ ← [2λ]ℓz , and run (sk′, evk′) ←
aHMAC.KeyGen(1λ,∆). Output sk := (sk′,∆) and evk = evk′.

– b ← Verify(sk, C, id, z, σz) : First parse sk = (sk′,∆) and compute the evaluated MAC key
kC ← aHMAC.EvalKey(sk′, C, id). Then check whether the evaluated tags satisfy the correct

form: σz
?
= ∆⊙ z+ kC (over Z). If yes, output b := ⊤. Otherwise, output b := ⊥.

It’s clear (hence we omit the proof) that if the underlying aHMAC scheme has δ-correctness,
then the obtained HMAC scheme satisfies δ-verifiability.

Proposition 1. Assuming the underlying aHMAC scheme has δ-correctness per Definition 13,
then Construction 5 satisfies δ-verifiability per Definition 15.

We show that the straightforwardly adapted HMAC scheme from any aHMAC scheme with negl
correctness error satisfy weak unforgeability.

Proposition 2. Assuming the underlying aHMAC scheme has negl(λ)-correctness per Defini-
tion 13, then Construction 5 satisfy weak unforgeability per Definition 16.

Proof. We show a series of hybrids that transitions from Hyb0 := ExpAwUF(λ) to Hyb3, where
the the queries of A are all answered without depending on the global secret ∆. We then argue
that a forgery is impossible in Hyb3 due to the randomness of ∆.

Hyb0: This is the experiment ExpAwUF(λ).

Hyb1: Instead of answering each verification query (C(i), id(i), z(i), σ
(i)
z ) using sk,∆ and running

Verify, proceed as follows.
– Let x, σx be the already queried inputs and tags associated with id. (By assumption, all

id ∈ id have been queried.)
– Compute σ∗

z ← EvalTag(evk, C(i),x, σx), and answer according to the check

σ∗
z + (z(i) − C(i)(x))⊙∆ = σ

(i)
z . (10)

By negl(λ)-correctness, σz satisfy σ∗
z = ∆⊙C(i)(x) + kC , while by construction, Verify only

passes if σ
(i)
z = ∆ · z(i) + kC = σ∗

z + (z(i) − C(i)(x))⊙∆. Therefore, we have Hyb1 ≈ Hyb0.
Hyb2: Instead of checking the forgery (C, id, z, σz) by running Verify, proceed as follows.

– If every id ∈ id has been queried, with associated input x, and C(x) = z, output “Loss”;
– If exists an id ∈ id (at i-th position) not queried in Step 2, but C is already determined

by the queried inputs, then directly output “Loss”;
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– Otherwise, for every un-queried input position j, one can assign assign a bit xj and
compute an associated tag σ ← Auth(sk, xj , id[j]) such that the “completed” input x
associated with id satsify C(x) ̸= x. Let x be the completed inputs corresponding to id,
and σx be associated tags. Then compute σ∗

z ← EvalTag(evk, C,x, σx), and check

σ∗
z + (z− C(x))⊙∆

?
= σz.

If not, output “Loss”. Otherwise, output “Win”.
Similarly to the previous hybrid, by negl(λ)-correctness we have Hyb2 ≈ Hyb1.

Hyb3: Instead of answering authentication queries using ∆, sk and running Auth, the experiment
Hyb3 runs Sim1,Sim2 as guaranteed by Definition 13 to simulate the evaluation key evk, the
answers to authentication queries, and the tags associated with un-queried “fake” inputs.
The aHMAC security guarantees Hyb3 ≈c Hyb2.
Note that the global secret ∆ is now only used for answering verification queries as in
Equation 10 and in the final check for forgery.

Hyb4: Instead of answering verification queries using ∆ as in Equation 10, directly check if

z(i) − C(i)(x)
?
= 0. Due to the randomness of ∆, we have Hyb4 ≈ Hyb3.

Note that the global secret ∆ is now only used for checking for forgery.

By a hybrid argument, we conclude that ExpAwUF(λ) ≡ Hyb0 ≈c Hyb4. In Hyb4, the adversary A
wins only if it outputs a forgery (C, id, z, σz) such that σz = σ∗

z +(C(x)− z)⊙∆. As noted, the
adversary A’s view is entirely independent of ∆. Hence in the case of C(x)− z ̸= 0, the forgery
has negligible chance of passing the checks due to the randomness of ∆. ⊓⊔

The above proof of weak unforgeability relies on negl(λ)-correctness of the underlying aH-
MAC scheme to transition from Hyb0 to Hyb1 and then from Hyb1 to Hyb2. In general, if the
underlying aHMAC has δ-correctness, then the transition from Hyb0 to Hyb2 incurrs a Q · δ
soundness error, where Q is the number of verification queries by the adversary.

Proposition 3. Assuming the underlying aHMAC scheme has δ-correctness per Definition 13,
and a bound Q on the number of verification query in the weak unforgeability experiment, then
Construction 5 satisfy weak unforgeability with δ ·Q soundness error.

Therefore, if assuming a polynomially bounded number of verification queries Q in the weak
unforgeability experiment, then we can choose a sufficiently small δ ≤ 1/(poly(λ) ·Q) for the un-
derlying aHMAC scheme and prove weak unforgeability with 1/poly(λ) soundness error, for any
poly(λ). This is how we obtain the HMAC instantiation using prime-order groups in Theorem 7
and 8.

Achieving Composability. In the literature of HMACs, a desirable feature is to allow further
evaluations by EvalTag on previously evaluated tags. We refer to this as multi-hop verifiability
formally defined as follows.

Definition 17 ((0-hop) δ-Verifiability). Let δ = δ(λ) be an error bound. There exists a
negligible function negl(λ) such that for every ℓz ∈ N, input x ∈ {0, 1} and id ∈ {0, 1}λ, the
following holds

Pr

Verify(sk, ID, id,
x, σ′

x) = ⊤

∣∣∣∣∣∣∣
(evk, sk)← KeyGen(1λ, 1ℓz)

σx ← Auth(sk, x, id)

σ′
x ← EvalTag(evk, ID, x, σx)

 ≥ 1− δ(λ)− negl(λ),

where ID : {0, 1} → {0, 1} is the identity circuit.
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Remark 10. 0-hop verifiability is trivially implied by 1-hop verifiability (Definition 15).

Definition 18 ((multi-hop) δ-Verifiability). Let δ = δ(λ) be an error bound. For every
polynomial p(λ), there exists a negligible function negl(λ) such that for every composed labeled
Boolean circuits C := g(f1, . . . , fn), where where g : {0, 1}n → {0, 1}ℓz and |g| ≤ p(λ), ids
idi ∈ {0, 1}ℓxi×λ corresponding to fi, and intermediate evaulation results w ∈ {0, 1}n and tags
σw ∈ Zn, the following implication holds with probability ≥ 1− δ(λ)− negl(λ).

Setup Sample (sk, evk)← KeyGen(1λ, 1ℓz).
Premise For i ∈ [n], Verify(sk, fi, idi,w[i], σw[i]) = ⊤.
Conclusion

Verify(sk, C, id, g(w), σz) = ⊤

∣∣∣∣∣σz ← EvalTag(evk, g,w, σw),

id := (id1, . . . , idn).

The aHMAC definition in Definition 13 doesn’t support multi-hop evaluation because the au-
thenticated tags and evaluated tags have different forms. More specifically, we will need the
evaluated tags (of x) to have an algebraic form ∆x+kx, where ∆ is a user-supplied integer vec-
tor. This is defined to make the evaluated tags compatible for further evaluation as a wire label
by a garbling scheme (with “free-XOR” style labels) or as a memory share by a HSS scheme.

However, we note that our constructions of aHMAC (Construction 2, 3, or the one sketched
in Section 3.3) can be straightforwardly modified to support multi-hop evaluations. Roughly,
our evaluation algorithm EvalTag proceeds in two steps:

1. Evaluate the circuit C over input tags using evk. Every intermediate evaluated tag (of value
x) has a consistent form sx+ kx, where s is a global internal secret vector.

2. In the end, apply a “key-switching” step to transform the output tags (of value x) to have
the format ∆x+ k′

x, where ∆ is the user-supplied vector encoded in evk.

To support multi-hop evaluations, we can move the second step out of EvalTag, and only perform
it during verification Verify. This ensures all evaluated tags remain their internal format, and
can be further evaluated freely.

Claim 1. With the described modification to the underlying aHMAC scheme, (Construction 2, 3,
or Section 3.3) and assuming it has δ-correctness, then Construction 5 satsify both 0-hop δ-
verifiability and multi-hop δ-verifiability.

Note that weak unforgeability is not affected by this modification, because (1) the view of an
adversary, consisting of un-evaluated tags and evk, does not change and (2) a forgery of a tag in
the internal format can be publicly transformed into a forgery in the original format by applying
the “key-switching” step.

Amplifying Weak to Standard Unforgeability. Finally, we show that we can generically
combine two instances of HMAC schemes with weak unforgeability to satisfy standard unforge-
ability. We describe the construction below.

Construction 6 (HMAC from Weak to Standard Unforgeability). Ingredients:

– An HMAC scheme HMAC with weak unforgeability.

(sk, evk)← KeyGen(1λ, 1ℓz) : Setup two instances of HMAC:

(sk0, evk0)← HMAC.KeyGen(1λ, 1ℓz), (sk1, evk1)← HMAC.KeyGen(1λ, 1ℓz),

and output sk := (sk0, sk1) and evk := (evk0, evk1).
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σx ← Auth(sk, x, id) : Parse sk = (sk0, sk1), and authenticate x using two instances of HMAC:

σ0 ← HMAC.Auth(sk0, x, id), σ1 ← HMAC.Auth(sk1, x, id).

Output σx := (σ0, σ1).
σz ← EvalTag(evk, C,x, σx) : Parse evk = (evk0, evk1), and evaluate two different circuits on σx

using two instances of HMAC:

σz,0 ← HMAC.EvalTag(evk0, C,x, σx),

σy,1 ← HMAC.EvalTag(evk1,XOR,x, σx),

where y = XOR(x) computes the XOR of all bits in x. Output σz = (σz,0, y, σy,1)
Verify(sk, C, id, z, σz) : Parse sk = (sk0, sk1), and σz = (σz,0, y, σy,1). Then verify the evaluated

tags σz,0 and σy,1 using two instances of HMAC:

b0 ← HMAC.Verify(sk0, C, id, z, σz,0),

b1 ← aHMAC.Verify(sk1,XOR, id, y, σy,1).

Output ⊤ only if b0 = b1 = ⊤. Otherwise, output ⊥.

The verifiability correctness of Construction 6 follows directly from that of the underlying HMAC
scheme. We now show that Construction 6 satsify unforgeability per Definition 16.

Proposition 4. Assuming the underlying HMAC scheme satsify weak unforgeability per Defi-
nition 16, then Construction 6 satsify (standard) unforgeability per Definition 16.

Proof. We now show a series of hybrids that transitions from Hyb0 := ExpAUF(λ) to Hyb2, where
the probability of the experiment outputs “Win” is negligible.

Hyb0: This is the experiment ExpAUF(λ).

Hyb1: Instead of answering each verification query (C(i), id(i), z(i), σ
(i)
z ) using sk and Verify, pro-

ceed as follows.
– If there is an id ∈ id(i) that’s un-queried, directly answer ⊥.
– Otherwise, run Verify to answer as in Hyb0.
Note that Hyb1 is the same as Hyb0, unless there is a verification query with unqueried id. We
claim that this bad event happens with negligible probability, due to the weak unforgeability
of (the second instance of) HMAC.

Claim. If the underlying HMAC scheme satisfy weak unforgeability, then in Hyb0 all verifi-
cation queries with an un-queried id evaluate to ⊥, except with negligible probability.

We have Hyb1 ≈c Hyb0.
Hyb2 : Instead of checking the forgery (C, id, z, σz) by running Verify, proceed as follows.

– If there is an id ∈ id(i) that’s un-queried, directly answer “Loss”.
– Otherwise, run Verify to answer as in Hyb1.
By analogous arguments as the previous hybrid, we have Hyb2 ≈c Hyb1 due to the weak
unforgeability of (the second instance of) HMAC.

By a hybrid argument, we conclude that ExpAUF(λ) ≡ Hyb0 ≈c Hyb2. We claim that the proba-
bility of Hyb2 outputing “Win” is negligible due to the weak unforgeability of (the first instance
of) HMAC, which concludes the proof.
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Claim. If the underlying HMAC scheme satisfy weak unforgeability, then Hyb2 outputs “Loss”
except with negligible probability.

We now prove the first claim.

Proof (of the first claim). For contradiction, assume there exists an efficient adversary A that
with non-negligible probability p(λ) produces at least one verification query in the Hyb0 exper-

iment, (C(i), id(i), z(i), σ
(i)
z ), where id(i) contains an un-queried id, but Verify outputs ⊤. We call

such queries “bad” ones. Then we define the following reduction B to break the weak unforge-
ability of the underlying HMAC scheme.

– Let Q ≤ poly(λ) be a bound on the number of verification queries from A, and j ← [Q] be
B’s guess of the first “bad” query from A.

– Recall that in Construction 5, authentication tags and verification queries are handled using
two independent instances of HMAC schemes. B sets up the first instance on its own by
running

(sk0, evk0)← HMAC(1λ, 1ℓz).

It queries the challenger to handle the second instance of HMAC as we explain below.
– For every authentication query (x(i), id(i)), B computes σ0 ← HMAC.Auth(sk0, x

(i), id(i)) on
its own, and query the challenger (x(i), id(i)) to obtain σ1. B answers σx := (σ0, σ1) to A.

– For every authentication query (C(i), id(i), z(i), σ
(i)
z = (σz,0, y, σy,0)), B checks if id(i) contains

an un-queried id.
• If yes, and if i < j, then B aborts.
• If yes, and if i = j, then B outputs (XOR, id(i), y, σy,0) as the forgery to the challenger.
• If no, then B computes b0 ← HMAC.Verify(sk0, C

(i), id, z, σz,0), and query the challenger

with (XOR, id(i), y, σy,0) to obtain b1. B answers ⊤ to A if b0 = b1 = ⊤, and ⊥ otherwise.

Note that if B guess correctly the index of the first “bad” query from A, then it successfully wins
the weak unforgeability experiment. This happens with non-negligible probability ≥ p(λ)/Q.
Hence we are done. ⊓⊔

We next prove the second claim.

Proof (of the second claim). For contradiction, assume there exists an efficient adversary A that
wins the Hyb2 experiment with non-negligible probability p(λ). Then we define the following
reduction B to break the weak unforgeability of the underlying aHMAC scheme.

– Recall that in Construction 5, authentication tags and verification queries are handled using
two independent instances of HMAC schemes. B sets up the second instance on its own by
running

(sk1, evk1)← HMAC(1λ, 1ℓz).

It queries the challenger to handle the first instance of HMAC as we explain below.
– For every authentication query (x(i), id(i)), B computes σ1 ← HMAC.Auth(sk1, x

(i), id(i)) on
its own, and query the challenger (x(i), id(i)) to obtain σ0. B answers σx := (σ0, σ1) to A.

– For every authentication query (C(i), id(i), z(i), σ
(i)
z = (σz,0, y, σy,0)), B checks if id(i) contains

an un-queried id.
• If yes, answer ⊥ to A as in Hyb2.
• If no, then B computes b1 ← HMAC.Verify(∆, sk0,XOR, id, y, σy,1), and query the chal-

lenger with (C(i), id(i), z(i), σz,0) to obtain b0. B answers ⊤ to A if b0 = b1 = ⊤, and ⊥
otherwise.
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– Given a forgery (C, id, z, σz = (σz,0, y, σy,1)) from A, B checks if id contains un-queried ids.

• If yes, then abort.

• If no, then output (C, id, z, σz,0) to the challenger as a forgery.

Note that if A wins in the emulated experiment, then B also wins in the weak unforgeability
experiment. By assumption, this happens with non-negligible probability p(λ). Hence we are
done. ⊓⊔

4 Succinct Partial Garbling

In this section, we show how to construct succinct partial garbling schemes for circuits from
aHMACs. In Section 4.1, we show the simpler case using an aHMAC with negl correctness
errors. In Section 4.2, we show the more general case using an aHMAC with 1/poly correctness
errors, and a robust secret sharing scheme, e.g., Shamir’s scheme.

Theorem 9 (Succinct Partial Garbling for Circuits). Let C = {Cλ} be the class of two-
input Boolean circuits, i.e.

Cλ := {all Boolean circuits of form C(x,y) = Cpriv(Cpub(x),y)}.

There exists a succinct partial garbling scheme for C where the garbling size is |Ĉ| = |Cpriv| ·
poly(λ) bits under any of the assumptions from Theorem 5:

1. CP-DDH in either the NIDLS framework or prime-order groups;

2. the KDM-DCR assumption.

When replacing the aHMAC with a leveled aHMAC in the above constructions, we obtain a
partial garbling whose size scales linearly with both the private computation complexity |Cpriv|
and the public computation depth Dpub. This scheme satisfies our succinctness definition (Def-
inition 2) when restricted to the class of bounded-depth circuits. As the constructions remain
unchanged otherwise, we omit writing them out again.

Theorem 10 (Succinct Partial Garbling for Bounded-Depth Circuits). Let C be the
class of two-input Boolean circuits as in Theorem 9. There exists a partial garbling scheme for
C with garbling size |Ĉ| = (|Cpriv|+Dpub) · poly(λ) bits, where Dpub denotes the depth of Cpub,
under any of the assumptions from Theorem 6:

1. DDH in the NIDLS framework or prime-order groups.

2. The DCR assumption.

As a directly implication, for any polynomial d(λ), let Cd := {Cdλ} be the class of bounded-depth
two-input Boolean circuits, i.e.

Cdλ := {all Boolean circuits of form C(x,y) = Cpriv(Cpub(x),y), and with depth ≤ d(λ)}.

There exists a succinct partial garbling scheme for Cd with garbling size |Ĉ| = (|Cpriv|+ d(λ)) ·
poly(λ) bits, under the above assumptions.
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4.1 Construction from negl-Correct aHMACs

Construction 7 (Succinct Partial Garbling). Ingredients:

– An aHMAC scheme aHMAC with negl-correctness error.
– Any Boolean garbling scheme BG with λ-bit labels.
– A secret-key encryption scheme E with λ-bit keys encrypting λ-bit messages.

We construct a succinct partial garbling scheme for the class of Boolean circuits of unbounded
size: C = {Cλ}, where every Cλ contains all Boolean circuits of the form C(x,y) = Cpriv(Cpub(x),y).
We refer to Cpub : {0, 1}ℓx → {0, 1}ℓw as the public sub-circuit, and Cpriv : {0, 1}ℓw ×{0, 1}ℓy →
{0, 1}ℓz , the private sub-circuit.

(Ĉ, {K(i)
x }, {K(i)

y })← Garb(1λ, C, {K(i)
z }) :

1. Generate the garbling Ĉpriv of the private sub-circuit:

(Ĉpriv, {K(i)
w }, {K(i)

y })← BG.Garb(Cpriv, {K(i)
z }).

2. Sample ℓw pairs of secret keys {∆j , ∆j} to encrypt output labels of Cpub:

for j ∈ [ℓw], ctj ← E.Enc(∆j ,K
(j)
w (1))

ctj ← E.Enc(∆j ,K
(j)
w (0)).

3. Generate aHMAC tags for public inputs as their labels (using deterministically derived
distinct id, id):

(sk, evk)← aHMAC.KeyGen(1λ,∆), ∆ := (. . . , ∆j , . . .),

(sk, evk)← aHMAC.KeyGen(1λ,∆), ∆ := (. . . ,∆j , . . .),

σ
(i)
b ← aHMAC.Auth(sk, b, id[i]), // for i ∈ [ℓx], b ∈ {0, 1},

σ
(i)
b ← aHMAC.Auth(sk, b, id[i]).

Define K
(i)
x such that K

(i)
x (b) = (σ

(i)
b , σ

(i)
b ).

4. Evaluate aHMAC keys kpub,kpub which will be used as “decryption helpers”:

kpub ← aHMAC.EvalKey(sk, Cpub, id), kpub ← aHMAC.EvalKey(sk, Cpub, id),

where Cpub computes the complement of Cpub.

Output Ĉ := (Ĉpriv, {ctj , ctj}, evk, evk,kpub,kpub), {K
(i)
x } and {K(i)

y }.
z← Eval(C, Ĉ, {x(i), L(i)

x }, {L(i)
y }) :

Parse Ĉpriv, {ctj , ctj}, and evk, evk,kpub,kpub from Ĉ. Let x := (. . . , xi, . . .). Parse {σ(i), σ(i)}
from {L(i)

x }, and let

σx := (. . . , σ(i), . . .)i∈[ℓx], σx := (. . . , σ(i), . . .)i∈[ℓx].

1. Evaluate aHMAC tags according to Cpub:

σw ← aHMAC.EvalTag(evk, Cpub,x, σx), σw ← aHMAC.EvalTag(evk, Cpub,x, σx).

Note that the aHMAC correctness should ensure σw = ∆ ⊙ w + kpub, and σw = ∆ ⊙
w + kpub over Z, where w = Cpub(x), and w = 1−w = Cpub(x).
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2. Recover one of the decryption keys ∆j , ∆j for each bit of w = Cpub(x).

If w[j] = 1 ∆j ← σw[j]− kpub[j] (over Z),
o/w ∆j ← σw[j]− kpub[j] (over Z).

3. Decrypt input labels {L(i)
w } to the private sub-circuit Cpriv:

If w[j] = 1 L(j)
w ← E.Dec(∆j , ctj),

o/w L(j)
w ← E.Dec(∆j , ctj).

Then evaluate the garbling {L(i)
z } ← BG.Eval(Cpriv, Ĉpriv, {L(i)

w }, {L(i)
y }).

Correctness: As noted in the construction, correctness follows straightforwardly from that of
the aHMAC scheme and Boolean garbling.

Efficiency:We summarize bit-lengths of the components, assuming the Boolean garbling scheme
BG has label size O(λ) bits and garbling size |Cpriv| · poly(λ) bits, the encryption scheme E has
O(1)-rate ciphertexts, and the aHMAC scheme aHMAC has evaluation keys of ℓz · poly(λ) bits.
They all exist under any of the assumptions from which we construct aHMACs in Theorem 5.

– {L(i)
x } each consists of two aHMAC tags, which has poly(λ) bits.

– {L(i)
y } are standard Boolean garbling labels, and each has O(λ) bits.

– Ĉ consists of the following, and has |Cpriv| · poly(λ) bits overall.
• A Boolean garbling Ĉpriv, which has |Cpriv| ·O(λ) bits;
• 2ℓz ciphertexts {ctj , ctj}, each having O(λ) bits;
• 2 aHMAC evaluation keys evk, evk, each having ℓz · poly(λ);
• 2 aHMAC evaluated keys kpub,kpub, each having ℓz · poly(λ).

Security: We will next show a more general construction from aHMACs with 1/poly correctness
error. We omit proving security of the current simpler case, and refer readers to the more general
proof (of Lemma 9).

Lemma 8. Construction 7 is a secure partial garbling scheme.

4.2 Construction from 1/poly-Correct aHMACs

Definition 19 (t-out-of-n Robust Secret Sharing). A t-out-of-n robust secret sharing scheme
with message spaceM consists of two efficient algorithms:

– Share(s ∈M) takes a secret s, and outputs n shares {si}[n] where si ∈M.
– Recon({si}[n]) takes n shares, and recovers a secret s ∈M.

Robust Reconstruction. For all messages s ∈ M, all subsets T ⊂ [n] with |T | ≤ t, and any
adversary A, the following holds:

Pr

Recon({s∗i }[n]) = s

∣∣∣∣∣∣∣
{si} ← Share(s),

{s∗i }T ← A({si}[n]),
s∗i = s for i ̸∈ T.

 = 1

Privacy. For any two messages s, s′ ∈M, all subsets T ⊂ [n] with |T | ≤ t, the following holds:

Share(s)T ≡ Share(s′)T
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Remark 11. For t < n/3, the standard Shamir’s secret sharing is also a robust secret sharing.
This suffices for our application. For n/3 ≤ t < n/2, there also exists robust secret sharing
schemes with a negligible correctness error and larger share size, e.g. [RB89, CFOR12].

Construction 8 (Correctness and Privacy Amplification). Ingredients:

– An aHMAC scheme aHMAC with 1/(2λ)-correctness error.

– A (λ− 1)-out-of-3λ RSS scheme RSS with message spaceM = {0, 1}λ.
– Any Boolean garbling scheme BG with λ-bit labels.

– A secret-key encryption scheme E with λ-bit keys encrypting λ-bit messages.

Compared to Construction 7, the new construction for Garb differs in Step 3, 4, and for Eval
differs in Step 1, 2. In the following, we focus on the differences.

(Ĉ, {K(i)
x }, {K(i)

y })← Garb(1λ, C) :

3’. Generate 3λ shares {∆j,t, ∆j,t}t∈[3λ] from each pairs of secret keys:

for j ∈ [ℓw], {∆j,t}t∈[3λ] ← Share(∆j),

{∆j,t}t∈[3λ] ← Share(∆j).

Write Keyst = {∆j,t, ∆j,t}j∈[ℓw] to denote the t-th share of the key pairs.

4’. Apply Step 3, 4 from Construction 7 independently on each share Keyst to generate

evkt, evkt,kpub,t,kpub,t, and for i ∈ [ℓx], K
(i)
x,t.

Define K
(i)
x such that K

(i)
x (b) = (. . . ,K

(i)
x,t(b), . . .)t∈[3λ], and as shorthands write Tablest =

(evkt, evkt,kpub,t,kpub,t).

Output Ĉ := (Ĉpriv, {ctj , ctj}, {Tablest}), {K(i)
x } and {K(i)

y }).
z← Eval(C, Ĉ, {x(i), L(i)

x }, {L(i)
y }) :

Parse Ĉpriv, {ctj , ctj}, and {Tablest} from Ĉ. Let x := (. . . , xi, . . .). Parse {σ(i)
t , σ

(i)
t } from

{L(i)
x }, and let

σx,t := (. . . , σ
(i)
t , . . .)i∈[ℓx], σx,t := (. . . , σ

(i)
t , . . .)i∈[ℓx].

1’. For each t ∈ [3λ], apply Step 1, 2 from Construction 7 independently on each Tablest to
recover (half of) the t-th share Keyst = {∆j,t,∆j,t} for each bit of w = Cpub(x).

If w[j] = 1, {∆j,t}t∈[3λ], o/w, {∆j,t}t∈[3λ].

Note that due to the 1/(2λ)-correctness error from aHMAC, some of the recovered shares
(but less than λ of them) may be incorrect. But this suffices for (robust) reconstruction
of the secret sharing scheme.

2’. Apply robust secret share reconstruction to recover the decryption keys:

If w[j] = 1, ∆j ← Recon({∆j,t}), o/w, ∆j ← Recon({∆j,t}).

Then continue as in Construction 7 using the recovered decryption keys.
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Correctness: As noted, correctness follows from the robust reconstruction property of the secret
sharing scheme, which is able to tolerate up to λ− 1 incorrect shares.

Efficiency: Compared to Construction 7, the label sizes remain poly(λ) bits each, while the
garbled circuit size is increased by at most 3λ times. We still have |Ĉ| = |Cpriv| · poly(λ).
Security: We state and prove the following security lemma.

Lemma 9. Construction 8 is a secure partial garbling scheme.

Proof (of Lemma 9). The security of a partial garbling scheme (Definition 1) requires a simulator

Sim, given a two-input circiut C, a public input x, and output labels {L(i)
z }, to simulate a garbled

circuit Ĉ and input labels {L(i)
x }, {L(i)

y }. It simulates them as follows:

– Run the (standard) Boolean garbling simulator BG.Sim to compute

C̃priv, {L̃(i)
w }, {L̃(i)

y } ← BG.Sim(1λ, Cpriv, {L(i)
z }).

– Sample random encryptions keys ∆ = (. . . , ∆j , . . .)j , ∆ = (. . . ,∆j , . . .)j∈[ℓw], and simulate

ciphertexts {ctj , ctj}j∈[ℓw] of labels L
(j)
w according to w = Cpub(x).

ctj ←

{
E.Enc(∆j , L

(j)
w )

E.Enc(∆j , 0)
ctj ←

{
E.Enc(∆j , 0) if w[j] = 1

E.Enc(∆j , L
(j)
w ) o/w .

(11)

– Secret share the encryption keys according to w:

{∆j,t}t ←

{
Share(∆j),

Share(0),
{∆j,t}t ←

{
Share(0) if w[j] = 1,

Share(∆j) o/w.
. (12)

– Proceed as in Construction 8 to compute Tablest = (evkt, evkt,kpub,t,kpub,t) and labels

{L(i)
x,t}i from the t-th shares denoted as Keyst = {∆j,t,∆j,t}j . As a shorthand, we write

(Tablest, {L(i)
x,t}i)← Compsx,Cpub

(Keyst)

to mean the computations in this step, summarized here for reference.

Compsx,Cpub
(Keys = {∆j , ∆j}j) : (13)

Denote ∆ = (. . . , ∆j , . . .)j , ∆ = (. . . ,∆j , . . .)j ,

Compute

(sk, evk)← KeyGen(1λ,∆), (sk, evk),← KeyGen(1λ,∆),

kpub ← EvalKey(sk, Cpub, id), kpub ← EvalKey(sk, Cpub, id)

σ(i)
x ← Auth(sk,x[i], id[i]), σ(i)

x ← Auth(sk,x[i], id[i]),

Output Tables = (evk, evk,kpub,kpub), and {L(i)
x = (σ(i)

x , σ(i)
x )}i.

We further use the notation Keyst[w] to mean the subset:

Keyst[w] = {∆j,t : w[j] = 1} ∪ {∆j,t : w[j] = 0}.
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– Output the simulated garbled circuit C̃ = (C̃priv, {ctj , ctj}, {Tablest}), and input labels

{L̃(i)
x = (. . . , L

(i)
x,t, . . .)t} and {L̃

(i)
y }.

We first argue that the function Compsx,Cpub
is a 1/(2λ)-leaking computation with respect to

the subset Keyst[w].

Claim. For every polynomial p(λ), and every efficient distinguisher A, there exists a negligiable
function negl such that for every λ ∈ N, sequence of Boolean circuits {fλ} with |fλ| ≤ p(λ),
inputs {xλ}, and inputs {Keysλ}, the following holds.∣∣Pr[A(Compsx,f (Keys)) = 1]− Pr[A(Compsx,f (Keys

′))) = 1]
∣∣

< 1/λ+ negl(λ),

where Keys′[w] = Keys[w], and Keys′[w] = 0, for w = f(x).

Proof (of Claim). We show a series of hybrids that transition from Hyb′0 = Compsx,f (Keys) to
Hyb′3 = Compsx,f (Keys

′).

Hyb′0 : The output of this hybrid is summarized in Equation 13.
Hyb′1 : Instead of computing kf , kf as in Equation 13, Hyb′1 simulates them as

σx := (. . . , σ(i)
x , . . .)i, σx := (. . . , σ(i)

x , . . .)i,

σw ← aHMAC.EvalTag(evk, f,x, σx), σw ← aHMAC.EvalTag(evk, f ,x, σx),

kf [j]←

{
σw[j]−∆j ,

σw[j],
kf [j]←

{
σw[j], if w[j] = 1,

σw[j]−∆j , o/w,
(14)

where w = f(x). The 1/(2λ)-correctness of aHMAC (Definition 13) ensures that the simu-
lation is correct except with probability ≤ 1/(2λ). Hence

|Pr[A(Hyb′1) = 1]− Pr[A(Hyb′0) = 1| ≤ 1/(2λ).

Hyb′2 : Instead of computing evk, evk, σx, and σx as in Equation 13, Hyb′2 simulates them using
the simulator aHMAC.Sim

(evk, σx)← aHMAC.Sim(1λ), (evk, σx)← aHMAC.Sim(1λ).

The security of aHMAC ensures

|Pr[A(Hyb′2) = 1]− Pr[A(Hyb′1) = 1| ≤ negl(λ).

Note that in Hyb′2, the input keys {∆j ,∆j} are only used for deriving kf , kf from the
evaluated tags σw, σw, as in Equation 14. In particular, Hyb′2 is independent of Keys[w].

Hyb′3 : The output of this hybrid is Compsx,f (Keys
′), where Keys′[w] = Keys[w], and Keys′[w] =

0.
The same arguments from Hyb′1, Hyb

′
2, in reverse order, shows

|Pr[A(Hyb′3) = 1]− Pr[A(Hyb′2) = 1| ≤ 1/(2λ) + negl(λ).

By a hybrid argument, we conclude that |Pr[A(Hyb′3) = 1]− Pr[A(Hyb′0) = 1| ≤ 1/λ+ negl(λ),
which proves the claim. ⊓⊔
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We will then use the following lemma from [BGIK22], which is further based on a compu-
tational hardcore lemma from [MT10]. The lemma intuitively says that a δ-leaking distribution
with respect to some secret m can be simulated by another distribution that completely leaks
m with probability δ, and perfectly hides m with probability 1− δ.

Lemma 10 (Simulating Leaky Functions [BGIK22]). Let Leaky be an efficiently com-
putable randomized function with domain M(λ), and δ = δ(λ) be a bound such that for every
sequence of inputs {mλ}, {m′

λ}, every polynomial distinguisher A, it holds for sufficiently large
λ that ∣∣∣Pr[A(1λ, Leaky(mλ)) = 1]− Pr[A(1λ, Leaky(m′

λ)) = 1]
∣∣∣ < δ(λ).

Then, there exists randomized functions:

– Eraseδ :M→M∪ {⊥} such that for every m ∈M,

Pr[Eraseδ(m) = m] ≤ δ, Pr[Eraseδ(m) = ⊥] = 1− Pr[Eraseδ(m) = m].

– SimLeaky such that for every sequence {mλ},

{Leaky(mλ)} ≈c {SimLeaky(Eraseδ(mλ))},

where Eraseδ and SimLeaky depend on the same random coins.

Let Leaky(Keys[w]) := Comps(Keys), it follows that there exists Erase1/λ, SimLeaky such that
Leaky(Keys[w]) ≈c SimLeaky(Erase1/λ(Keys[w])).

We now show a series of hybrids that transitions from the real-world distribution in Defini-
tion 1 (Hyb0) to the above simulated distribution (Hyb6).

Hyb0 : We summarize the real-world distribution of the garbled circuit Ĉ = (Ĉpriv, {ctj , ctj},
{Tablest}) and labels {L(i)

x = (. . . , L
(i)
x,t, . . .)}, {L

(i)
y }.

L(i)
y = K(i)

y (y[i]), Ĉpriv,

ctj ← E.Enc(∆j ,K
(j)
w (1)),

ctj ← E.Enc(∆j ,K
(j)
w (0)),

∣∣∣∣∣∣∣∣
Ĉpriv, {K(j)

w }, {K(i)
y } ← BG.Garb(h, {Ki

z}),
∆j , ∆j ← {0, 1}λ

(15)

({L(i)
x,t},Tablest)
← Compsx,f (Keyst).

∣∣∣∣∣ {∆j,t} ← Share(∆j), {∆j,t} ← Share(∆j)

Keyst = {∆j,t, ∆j,t}j
(16)

Hyb1 : Instead of computing {L(i)
x,t},Tablest as in Equation 13, Hyb1 simulates them using the

Erase1/λ and SimLeaky algorithms from Lemma 10:

({L̃(i)
x,t}, T̃ablest)← SimLeaky(Erase1/λ(Keyst[w])).

Lemma 10 ensures that Hyb1 ≈c Hyb0.

Hyb2 : Proceeds as in Hyb1, but aborts if there are ≥ λ instances (among 3λ) of Erase1/λ that
doesn’t erase its input.

Since each instance of Erase1/λ independently erases with probability > 1−1/λ, by Chernoff
bound, abort happens with negligiable probability. Hence Hyb2 ≈ Hyb1.
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Hyb3 : Instead of computing the shares in as in Equation 13, Hyb3 simulates them according to
w as in Equation 12.
Note that the changed shares are exactly those in Keyst[w], which are erased except for
≤ λ− 1 indices t. The (λ− 1)-privacy of secret sharing (Definition 19) ensures Hyb3 ≡ Hyb2.

Hyb4 : Change back to computing ({L(i)
x,t},Tablest) from Compsx,Cpub

as in Equation 13, instead
of using Eraseλ and SimLeaky, as they are potentially inefficient. (The shares are still simu-
lated as in Equation 12.)
Lemma 10 again ensures that Hyb4 ≈c Hyb3.
We draw attention to the keys ∆j for w[j] = 0, and ∆j for w[j] = 1. Hyb3 has changed from
computing secret shares of those keys to secret shares of zeros. Hence they are not used in
the current experiment except for encrypting the corresponding ciphertexts in {ctj , ctj}.

Hyb5 : Instead of computing the ciphertexts {ctj , ctj} as in Equation 15, simulate them as in

Equation 11 (re-created here), where L
(j)
w := K

(j)
w [w[j]].

ctj ←

{
E.Enc(∆j , L

(j)
w )

E.Enc(∆j , 0)
ctj ←

{
E.Enc(∆j , 0) if w[j] = 1

E.Enc(∆j , L
(j)
w ) o/w ,

The semantic security of the encryption scheme E ensures that Hyb5 ≈c Hyb4.

Hyb6 : Instead of computing Ĉpriv, {L(i)
y } and {Lj

w = K
(j)
w [w[j]]} as in Equation 15, simulate

them using the simulator BG.Sim guaranteed by the security of Boolean garbling:

(C̃priv, {L̃(j)
w }, {L̃(i)

y })← BG.Sim(1λ, Cpriv, {L(i)
z }).

The security of Boolean garbling ensures Hyb6 ≈ Hyb5.

By a hybrid argument, we conclude that Hyb0 ≈ Hyb5, which proves the lemma. ⊓⊔

4.3 Implications: Succinct Secret Sharing, Garbling, and PSM

We first point out an immediate implication to succinct secret sharing for partite functions
(See [ABI+23] for a formal definition). Such a secret sharing scheme has n pairs of shareholders
(i.e., 2n in total), and an access structure define by a function f : {0, 1}n → {0, 1} in the
following way:

1. For all x ∈ {0, 1}n such that f(x) = 1, the subset of n share holders, one from each i-th pair
“selected” by x[i], can recover the secret.

2. A subset that contains two shareholders from any pair can recover the secret.
3. Subsets other than the above learn nothing about the secret.

Such a secret sharing scheme can be implemented by a partial garbling of the circuit C(x, s) =
f(x) · s, where s is the secret. Each of the n pairs of shareholders is assigned the two possi-
ble partial garbling input labels for x[i], and the garbled circuit Ĉ can be released as public
information or sent to all shareholders. 10

Corollary 4 (Succinct Secret Sharing for Partite Functions). There exists a succinct
secret sharing for partite functions specified as Boolean circuits (of unbounded size), where the
share sizes are poly(λ) bits, assuming any for the assumptions from Theorem 9:

10 Technically we have only ensured condition 1, 3 of the access structure. We can additionally send an additive
share of the secret to each pair of shareholders to ensure they can always jointly recover the secret.
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1. CP-DDH in either the NIDLS framework or prime-order groups;

2. the KDM-DCR assumption.

There also exists a scheme for partite functions specified as bounded-depth (and unbounded size)
Boolean circuits, where the share sizes are poly(λ) bits, assuming any for the assumptions from
Theorem 10:

1. DDH in either the NIDLS framework or prime-order groups;

2. The DCR assumption.

Next, we sketch how to “upgrade” a partial garbling to a (fully private) standard garbling
using a homomorphic encryption (HE) scheme, following the blueprint of [GKP+13]. To garble
a program P , we define

P ′(x,y) := HE.Dec(y,HE.Eval(P,x)),

which is supposed to take HE ciphertexts as the public input x, and a HE decryption key as the
private input y. A partial garbling of P ′ then implements a standard garbling of P . Intuitively,
the partial garbling security ensures the HE decryption key (as the private input y) is hidden,
while the HE security ensures the actual input encrypted in HE ciphertexts (as the public input
x) are hidden.

Assuming a succinct partial garbling for circuits and a compact HE in the above construction,
the resulting garbling scheme is also succinct (Definition 3). We further note that if the HE
evaluation algorithm HE.Eval has bounded computation depth, then a succinct partial garbling
for bounded-depth circuits suffices.

Definition 20 (Homomorphic Encryption Schemes (HE)). A (secret-key) homomorphic
encryption scheme for the class of programs P = {Pλ} with Boolean inputs consists of four
efficient algorithms.

– KeyGen(1λ) outputs public parameters pp and a secret key sk.

– Enc(pp, sk, x ∈ {0, 1}) takes a secret key sk and a message x. It outputs a ciphertext ct.

– Eval(pp, P ∈ Pλ, {cti}) takes a program P : {0, 1}ℓx → {0, 1}ℓy and ℓx ciphertexts. It outputs
a evaluated ciphertext ct∗.

– Dec(sk, ct∗) takes a (evaluated) ciphertext and outputs messages y ∈ {0, 1}ℓy .

Correctness. For every λ ∈ N, program P ∈ Pλ with ℓx inputs, and input x ∈ {0, 1}ℓx, the
following holds:

Pr

P (x) = Dec(sk, ct∗)

∣∣∣∣∣∣∣
(sk, pp)← KeyGen(1λ)

cti ← Enc(sk,x[i])

ct∗ ← Eval(pp, P, {cti})

 = 1.

Security. The standard semantic security for secret-key encryption schemes should hold. (We

omit writing it out here.)

Compactness. An evaluated ciphertext ct∗ by Eval has bit-length poly(λ, ℓy) independent of the
program size, except the output length ℓy.

Lemma 11 (HE Schemes). There exist the following constructions:
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1. [IP07, DGI+19] Assuming the DCR assumption or DDH in prime-order groups, for any
polynomial ℓ(λ), there exists a compact homomorphic encryption scheme for the class of
branching programs with bounded length by ℓ(λ) and unbounded size, i.e., Pℓ = {Pℓ

λ} where
Pℓ
λ consits of branching programs with length below ℓ(λ) and size below 2poly(λ).

2. [BGN05] Assuming the subgroup decision problem in bilinear groups of composite order, there
exists a compact somewhat homomorphic encryption scheme for the class of quadratic polyno-
mials (mod 2) of unbounded size, i.e., Q = {Qλ} where Qλ consits of quadratic polynomials
with below 2poly(λ) number of monomials.

Furthermore, the computation depth of the Eval algorithms in the above schemes are bounded by
fixed polynomials poly(λ), independent of program sizes.

Theorem 11 (Succinct Garbling for Bounded-Length BPs). There exists a succinct gar-
bling for bounded-length (and unbounded size) branching programs assuming (1) a succinct partial
garbling scheme for bounded-depth circuits and (2) a compact homomorphic encryption scheme
for bounded-length branching programs.

Theorem 12 (Succinct Garbling for Quadratic Poly). There exists a succinct garbling
for quadratic polynomials (mod 2, and unbounded size) assuming (1) a succinct partial gar-
bling scheme for bounded-depth circuits and (2) a compact homomorphic encryption scheme for
quadratic polynomials.

We point out truth tables as special cases of bounded-length branching programs: a truth table
for ℓx inputs can be represented by a decision tree of depth ℓx, which is also a branching program
of length ℓx. We therefore obtain succinct garbling for truth tables where the garbling size only
depends polynomially on the input length.

As outlined in [FKN94], a garbling scheme implements a multi-party private simultaneous
messages (PSM) protocol. we obtain the following corollary.

Corollary 5 (k-party Computational PSM for Truth Tables). For any constant k, 11 any
k-party function f : [N ]k → [N ] has a computationally secure PSM protocol with poly(λ, logN)
communication and poly(λ,N) computation.

Note that we have imposed composability of garbled circuits at the syntax level (Definition 1).
So we can use the succinct garbling schemes for a program class P = {Pλ} from Theorem 11
and 12 in an outer Boolean garbling scheme to handle general P -gates for any P ∈ Pλ.

Corollary 6. There exists a garbling scheme for circuits composed of general gates P that
each implements any bounded-length (and unbounded size) branching program or any quadratic
polynomial (mod 2, of unbounded size), where the garbling size is #wires · poly(λ), under the
union of following assumptions:

– Any of the assumptions from Theorem 10;

– The DCR assumption, or DDH in prime-order groups;

– The subgroup decision problem in bilinear groups of composite order.

11 For super-constant k, the protocol will have communication poly(λ, log(Nk)), and computation poly(λ,Nk).
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5 Application: 1-Key Selective CPRF for Circuits

The notion of constrained PRFs (CPRF) is first proposed (concurrently) in [BW13, KPTZ13,
BGI14], where besides the usual pair of algorithms KeyGen and Eval for PRFs, there exists
another pair Constrain and CEval. Constrain produces a constrained key skC with respect to a
Boolean circuit C. CEval can use skC to evaluate the PRF on any point x such that C(x) = 0.

The original definitions consider the setting where an adversary may adaptively obtain mul-
tiple constrained keys with respect to different circuits. This is referred to as multi-key CPRF.
However, for circuit constraints (even low depth ones), multi-key CPRF is only known from
heavy tools like indistinguishability obfuscation (iO) and functional encryption. Known non-iO
based constructions [BV15, CC17, BTVW17, AMN+18, CVW18, PS18, CMPR23] only achieve
the weaker definition, where the adversary obtains only a single selectively chosen constrained
key. This is referred to as 1-key selective CPRF, and is also what we achieve in this work.

Definition 21 (Constrained Pseudorandom Functions). Let C = {Cλ}λ be classes of
Boolean circuits where circuits in Cλ have domain Xλ and range {0, 1}. A constrained pseudo-
random function (CPRF) with domain X = {Xλ}λ, key space K = {Kλ}λ, and range Z = {Zλ}λ
supporting circuit constraints C consists of four efficient algorithms:

– KeyGen(1λ) outputs public parameters pp and a master secret key msk.
– Eval(pp,msk, x ∈ X ) takes as inputs the master secret key msk and an input x. It outputs an

evaluation result z0 ∈ Z.
– Constrain(pp,msk, C ∈ C) takes as inputs the master secret key msk and a constraint circuit

C. It outputs a constrained key skC .
– CEval(pp, skC , x) takes as inputs the constrained key skC and an input x. It outputs an eval-

uation result z1 ∈ Z.

Correctness: There exists a negligible function negl(λ) such that for all λ ∈ N, any circuit
C ∈ Cλ, and input x ∈ Xλ such that C(x) = 0, the following holds:

Pr

[
Eval(pp,msk, x)

= CEval(pp, skC , x)

∣∣∣∣∣ (pp,msk)← KeyGen(1λ)

skC ← Constrain(pp,msk, C)

]
≥ 1− negl(λ).

1-Key Selective Security: For any efficient adversary A, there exists a negligible function
negl(λ) such that for all λ ∈ N:∣∣∣Pr[ExpA,0

CPRF(λ) = 1]− Pr[ExpA,1
CPRF(λ) = 1]

∣∣∣ ≤ negl(λ),

where the experiment ExpA,b
CPRF is as follows:

1. Launch A(1λ) and receives a selective challenge constraint C ∈ Cλ.
2. Run (pp,msk) ← KeyGen(1λ), skC ← Constrain(msk, C), and send pp, skC to the adversary
A.

3. Answer queries x from A with evaluations z ← Eval(pp,msk, x).
4. Receive from A a challenge x∗ that’s never queried before and such that C(x∗) ̸= 0. Sends

z∗ to A computed as follows:

z∗ ← Eval(pp,msk, x∗) if b = 0

z∗ ← Zλ if b = 1.
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5. Answer queries x ̸= x∗ from A as in step 3.
6. In the end, A outputs a bit b′ as the experiment result.

As explained in the technical overview, our construction relies on an extended syntax of ho-
momorphic secret sharing schemes (HSS), formalized in Definition 22. We recap the observation
of [CMPR23] that common HSS schemes for restricted multiplication straight-line programs
(RMS) satisfy this syntax.

In an RMS program P , all inputs x are first converted into memory (i.e. intermediate) wires.
Additions are allowed between two memory wires, but multiplications are restricted to between
a memory wire and an input. Note that the initial conversion can be implemented by multiplying
input wires with a constant memory wire of 1.

The observation is that if one change the initial conversion to using a constant memory wire
of some value w instead of 1, while keeping the rest of the evaluation unchanged, then the final
result becomes w · P (x).

The observation becomes useful in the context of evaluating RMS programs using HSS,
because in common schemes the share format of memory wires are much simpler than the share
format of inputs. In particular, any subtractive share (over Z) of ∆ ·w is a valid memory share
of w, where ∆ is a secret vector in the HSS scheme.

Definition 22 (Extended Homomorphic Secret Sharing). An extended homomorphic se-
cret sharing scheme for a class of programs P (defined over a ring R) with input space I ⊆ R
consists of three efficient algorithms:

– Setup(1λ) outputs a public key pk, a pair of evaluation keys evk0, evk1, and an “extension
secret” as an integer vector ∆ ∈ [2λ]ℓd.

– Input(pk, x ∈ I) takes as inputs the public key pk and an input x. It outputs a pair of input
shares I0, I1.

– ExtEval(β ∈ {0, 1}, evkβ, Iβ,∆β, P ∈ P) takes as inputs a party identity β, its evaluation key
evkβ and input shares Iβ, its share of the extension secret ∆β, and a program P . It outputs
its share of the evaluation result zβ ∈ R.

Extended Evaluation Correctness: For all polynomial p(λ), there exists a negligible function
negl(λ) such that for all λ ∈ N, any program P ∈ P with n inputs and 1 output, and with size
|P | ≤ p(λ), any inputs x ∈ In, any extension bit w ∈ {0, 1}, and any share vector ∆0 ∈ Zℓd,
the following holds:

Pr


z1 − z0 = w · P (x)

(over R)

∣∣∣∣∣∣∣∣∣∣∣∣∣

(pk, evk0,evk1,∆)← Setup(1λ)

(I
(i)
0 , I

(i)
1 )← Input(pk,x[i])

Iβ := (I
(0)
β , . . . , I

(ℓx−1)
β )

∆1 := ∆0 +∆ · w (over Z)
zβ ← ExtEval(b, evkβ, Iβ,∆β, P )


≥ 1− negl(λ).

Security: For any efficient adversary A, there exists a negligible function negl(λ) such that for
all λ ∈ N and for all β ∈ {0, 1}:∣∣∣Pr[ExpA,β,0

HSS (λ) = 1]− Pr[ExpA,β,1
HSS (λ) = 1]

∣∣∣ ≤ negl(λ),

where the experiment ExpA,β
HSS is as follows:
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1. Launch A(1λ) and receive challenge inputs x0, x1 ∈ I.
2. Run (pk, evk0, evk1,∆)← Setup(1λ) and (I0, I1)← Input(pk, xb). Then send (pk, evkβ, Iβ) to
A.

3. In the end, A outputs a bit b′ as the experiment result.

Remark 12. From an extended HSS we can obtain a “normal” HSS by viewing each party’s
evaluation key evkβ together with a subtractive share of ∆ as its overall evaluation key: evk∗β :=
(evkβ,∆β). This corresponds to setting the extension bit w = 1. Hence the evaluated shares
satisfy z1 − z0 = w · P (x) = P (x).

Lemma 12 (Extended HSS). There exists an extended HSS scheme for NC1 assuming either
of the following:

1. [OSY21] The DCR assumption.
2. [ADOS22] DDH and the small exponent assumption (Definition 10) in the NIDLS framework.

In this section, we construct a CPRF by composing a leveled aHMAC and an HSS with extended
evaluations.

Theorem 13 (CPRF for Circuits). For any polynomial ℓ(λ), let C = {Cλ}λ be the class of
Boolean circuits with sizes bounded by ℓ(λ):

Cλ :=
{
C : {0, 1}λ → {0, 1} : |C| < ℓ(λ)

}
.

There exists a 1-key selective CPRF for C assuming either of the following:

1. DDH and the small exponent assumption in the NIDLS framework.
2. The DCR assumption.

Construction 9 (1-Key Selective CPRF for Circuits). Ingredients:

– A leveled aHMAC scheme aHMAC with negl-correctness error.
– An extended HSS scheme HSS for a class P (defined over a ring R) with input space I ⊆ R.
– A PRF F : K×{0, 1}λ → R with evaluation in P, and with a compatible key space K = Iℓk .

We construct a CPRF for the class of polynomial-sized circuits C = {Cλ}λ where

Cλ :=
{
C : {0, 1}λ → {0, 1} : |C| < poly(λ)

}
.

As shorthands, in the following we write Ux(·) = U(·,x), and Fx(·) = F(·,x), where U is a
universal circuit such that Ux(C) = C(x) for all circuits C ∈ Cλ.

(pp,msk)← KeyGen(1λ) :

Sample a PRF key s ← Iℓk , and generate HSS input shares I0 = (. . . , I
(i)
0 , . . .), and I1 =

(. . . , I
(i)
1 , . . .) of this key:

(pk,HSS.evk0,HSS.evk1,∆)← HSS.Setup(1λ),

for i ∈ [ℓk] : (I
(i)
0 , I

(i)
1 )← HSS.Input(pk, s[i]).

Next generate aHMAC keys sk, aHMAC.evk w.r.t. the extension secret ∆:

(sk, aHMAC.evk)← aHMAC.KeyGen(1λ, 1Depth(U),∆).

Output pp = pk and msk = ({Iβ,HSS.evkβ}, sk, aHMAC.evk).
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z0 ← Eval(pp,msk,x) :
Parse I0, HSS.evk0, and {skj} from msk.

Deterministically derive distinct id associated with inputs to Ux, (i.e. the constraint circuit
C,) and derive the zero-share ∆0 of the extension secret:

∆0 := kU ← aHMAC.EvalKey(sk, Ux, id), 12

Next run extended HSS evaluation on the zero-shares of the input I0 and the extension secret
∆0:

z0 ← HSS.ExtEval(0, evk0, I0,∆0,Fx).

skC ← Constrain(pp,msk, C) :
Parse I1, HSS.evk1, and sk, aHMAC.evk from msk.

Deterministically derive distinct id associated to the inputs to Ux, and derive tags σC :=

(. . . , σ
(i)
C , . . .) for C (viewed as a string):

for i ∈ bitLen(C) σ(i) ← aHMAC.Auth(sk, C[i], id[i]),

Output skC = (C, I1,HSS.evk1, σC , aHMAC.evk).

z1 ← CEval(pp, skC ,x) :
Parse C, I1, HSS.evk1, σC , and aHMAC.evk from skC .

Derive the one-share ∆1 of the extension secret:

∆1 := σw ← aHMAC.EvalTag(evk, Ux, C, σC).

Note that aHMAC correctness ensures ∆1 = ∆ · C(x) +∆0 over Z.
Next run extended HSS evaluation on the one-shares of the input I1 and the extension secret
∆1:

z1 ← HSS.ExtEval(1, evk1, I1,∆1,Fx).

Note that extended HSS correctness ensures z1 = z0 + C(x) · F(s,x).

Correctness: As noted in the construction, the evaluation results z0, z1 from Eval and CEval
satisfy z1 = z0 + C(x) · F(s,x), where C is the constraint circuit. When C(x) = 0, we have
z1 = z0 as desired.

Security: We state and prove the following security lemma.

Lemma 13. Construction 9 is a 1-key selectively secure CPRF scheme.

Proof. We show a series of hybrid experiments that transitions from the experiment Hyb0 =
ExpA,0

CPRF to Hyb5 = ExpA,1
CPRF as defined in Definition 21.

Hyb0 : For reference, we summarize the adversary A’s view, w.r.t a challenge circuit C in this
experiment:

12 The syntax of aHMAC requires an ℓd output circuit. We implicitly duplicate the one-bit output of Ux to ℓd
bits here, and also in the construction of CEval.
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– In the beginning, A receives public parameters pp = HSS.pk and a constrained key skC
the boxed terms in the following:

( HSS.pk ,HSS.evk0, HSS.evk1 ,∆)← HSS.Setup(1λ),

s← Iℓk , (I
(i)
0 , I

(i)
1 )← HSS.Input(HSS.pk, s[i]),

(17)

(aHMAC.sk, aHMAC.evk )← aHMAC.KeyGen(1λ,∆),

σ(i) ← aHMAC.Auth(aHMAC.sk, C[i], id[i]),
(18)

– For any number of (adaptively chosen) queries x ∈ {0, 1}λ, A receives evaluations

I0 = (. . . , I
(i)
0 , . . .),

∆0 = kU ← aHMAC.EvalKey(aHMAC.sk, Ux, id),

z0 ← HSS.ExtEval(0,HSS.evk0, I0,∆0,Fx).

(19)

One of the query, x∗ (with evaluation z∗0) satisfying C(x) ̸= 0 is called the challenge
query.

Hyb1 : Instead of computing the evaluations to queries x, including the challenge query, as in
Equation 19, Hyb1 simulate them as

I1 := (. . . , I
(i)
1 , . . .), σC := (. . . , σ(i), . . .),

∆1 = σw ← aHMAC.EvalTag(aHMAC.evk, Ux, C, σC),

z1 ← HSS.ExtEval(1,HSS.evk1, I1,∆1,Fx),

z0 ← z1 − C(x) · F(s,x).

The correctness of our Construction ensures that the above is an equivalent way of computing
z0, except with a negligible error probability. Hence |Pr[A(Hyb1) = 1]− Pr[A(Hyb0) = 1| ≤
negl(λ).
Note that in Hyb1, the evaluations are derived from the aHMAC tags σC and aHMAC.evk,
without depending on aHMAC.sk anymore.

Hyb2 : Instead of computing σC and aHMAC.evk as in Equation 18, Hyb2 simulates them using
the simulator aHMAC.Sim

( evk, σC )← aHMAC.Sim(1λ, 1Depth(U)).

aHMAC security ensures |Pr[A(Hyb2) = 1]− Pr[A(Hyb1) = 1| ≤ negl(λ).
Note that in Hyb2, the share of extension secret ∆1 is derived from the simulated aHMAC
tags σC and evk, without depending on the actual secret ∆ anymore.

Hyb3 : Instead of computing the HSS shares I
(i)
1 according to the PRF secret key s as in Equa-

tion 17, Hyb3 simulate them as

(I
(i)
0 , I

(i)
1 )← HSS.Input(HSS.pk, 0).

The security of HSS ensures |Pr[A(Hyb3) = 1]− Pr[A(Hyb2) = 1| ≤ negl(λ).
Note that in Hyb3, the PRF secret key s is only used for evaluating F (s,x), and nowhere
else.
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Hyb4 : Instead of answering the challenge query x∗, satisfying C(x) = 1, as z∗0 ← z1− 1 ·F(s,x),
Hyb4 simulates it as

z∗0 ← z1 − Uniform(Zλ) ≡ Uniform(Zλ),

where Zλ is the output space of the CPRF and F.
PRF security (of F) ensures |Pr[A(Hyb4) = 1]− Pr[A(Hyb3) = 1| ≤ negl(λ).

Hyb5 : This is the experiment Exp1,λCPRF. The same arguments from Hyb1 to Hyb4, in reverse
order, shows |Pr[A(Hyb5) = 1]− Pr[A(Hyb4) = 1| ≤ negl(λ).

By a hybrid argument, we conclude that |Pr[A(Hyb5) = 1]− Pr[A(Hyb0) = 1| ≤ negl(λ)| which
proves the lemma. ⊓⊔
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from LWE. In Jean-Sébastien Coron and Jesper Buus Nielsen, editors, EURO-
CRYPT 2017, Part I, volume 10210 of LNCS, pages 446–476. Springer, Cham,
April / May 2017.

[CF13] Dario Catalano and Dario Fiore. Practical homomorphic MACs for arithmetic
circuits. In Thomas Johansson and Phong Q. Nguyen, editors, EUROCRYPT 2013,
volume 7881 of LNCS, pages 336–352. Springer, Berlin, Heidelberg, May 2013.

[CFGN14] Dario Catalano, Dario Fiore, Rosario Gennaro, and Luca Nizzardo. Generalizing
homomorphic MACs for arithmetic circuits. In Hugo Krawczyk, editor, PKC 2014,
volume 8383 of LNCS, pages 538–555. Springer, Berlin, Heidelberg, March 2014.

[CFOR12] Alfonso Cevallos, Serge Fehr, Rafail Ostrovsky, and Yuval Rabani. Unconditionally-
secure robust secret sharing with compact shares. In David Pointcheval and Thomas
Johansson, editors, EUROCRYPT 2012, volume 7237 of LNCS, pages 195–208.
Springer, Berlin, Heidelberg, April 2012.

[CFT22] Dario Catalano, Dario Fiore, and Ida Tucker. Additive-homomorphic functional
commitments and applications to homomorphic signatures. In Shweta Agrawal and

60



Dongdai Lin, editors, ASIACRYPT 2022, Part IV, volume 13794 of LNCS, pages
159–188. Springer, Cham, December 2022.

[CMPR23] Geoffroy Couteau, Pierre Meyer, Alain Passelègue, and Mahshid Riahinia. Con-
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A aHMAC from Lattices

While the focus of this work are group-based constructions of algebraic homomorphic MACs, in
this section we include a lattice based construction as well as a leveled variant for completeness.

The lattice construction was first presented in the subsequent work of [ILL25], based on a
circular variant of the RingLWE assumption called circular-power-RingLWE (CP-RLWE), or
alternatively a leveled variant based on power-RingLWE (P-RLWE), without the circular as-
sumption. Here we present a different leveled construction based on the more standard RingLWE
assumption with small secrets (i.e. with coefficients of polynomial magnitudes). This construc-
tion is analogous to the leveled group-based constructions in Section 3.4, and is inspired by the
techniques from the recent work of [MORS25].

Theorem 14 (aHMAC from Lattices). Let pp = (R, p, q,Derr,Dsk) be the public parameters
specified in Construction 10. We have the following constructions:

1. Assuming CP-RLWE (Definition 24) with respect to pp, then there exists an aHMAC scheme
for arbitrary Boolean circuits.

2. Assuming RLWE (Definition 23) with respect to pp, then there exists a leveled aHMAC
scheme for bounded-depth Boolean circuits.
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In the above, an authentication tag (evaluated or not) costs poly(λ) bits. In the non-leveled
scheme, an evk costs ℓz · poly(λ) bits. And in the leveled scheme for bounded depth circuits by
D, an evk costs (ℓz +D) · poly(λ) bits.

Definition 23 (RingLWE). We say the RingLWE assumption holds with respect to the ring
R(λ), a modulus q(λ), error and secret distributions Derr(λ),Dsk(λ) if the following holds for
every polynomial m(λ):{

a, s · a+ e,

(over Rq)

∣∣∣∣∣ s← Dsk, e,← Dm
err,

a← Rm
q

}
λ

≈c

{
a,b← Rm

q

}
λ

Definition 24 (Circular-Power-RingLWE). We say the circular power RingLWE (CP-RLWE)
assumption holds with respect to the ring R(λ), two modulus p(λ), q(λ) such that q = p ·α, error
and secret distributions Derr(λ),Dsk(λ) if the following holds for every polynomial m(λ):{

a, s · a+ e1, s
2 · a+ e2 + s · α

(over Rq)

∣∣∣∣∣ s← Dsk, e1, e2 ← Dm
err,

a← Rm
q

}
λ

≈c

{
a,b, c← Rm

q

}
λ

Construction 10 (aHMAC from CP-RLWE). The construction is with respect to the
following RingLWE public parameters pp = (R, p, q,Derr,Dsk):

– a polynomial ring R = Z[X]/(Xn + 1) where n ≤ poly(λ) is a power-of-two;
– two modulus p > λω(1), and q = p · α, where α > p · λω(1).
– error and secret distributions Derr,Dsk ⊆ R with coefficients bounded by poly(λ).

Additionally, it relies on a PRF F : K×{0, 1}∗ → Rp. In the following, for a ring element r ∈ R
we abuse notation to write BC(r) to mean viewing the coefficients of r as an integer vector over
Zn and applying bit-composition BC(·) it.

(sk, evk)← KeyGen(1λ, 1D,∆) : Sample a secret ring element s← Dsk, and compute ciphertexts
cts, ct∆ as follows (we abuse notations to write ∆ ∈ Rℓz

p as the vector of ring elements whose

coefficients encode the input ∆ ∈ {0, 1}ℓz×λ):

a,← Rq, a
′ ← Rℓz

q , e1, e2 ← Derr, e
′ ← Dℓz

err,

cts := (a, s · a+ e1︸ ︷︷ ︸
b

, s2 · a+ e2 − s · α︸ ︷︷ ︸
c

), ct∆ := (a′, s · a′ + e′ −∆ · α︸ ︷︷ ︸
b′

). (20)

Finally, sample PRF keys key1, key2 ← K. Output sk = (pp, a,a, s, key1, key2), and evk =
(pp, cts, ct∆, key1).

σx ← Auth(sk, x, id) : Parse the secret element s and the (secret) PRF key key2 from sk. Then
compute and output an authentication tag (technically viewing the coefficients as an integer
vector over Zn).

σx = s · x+ F(key2, id) over R.

σz ← EvalTag(evk, C,x, σx) : Parse pp, ciphertexts cts = {a, b, c}, ct∆ = {a′,b′}, and a PRF
key key1 from evk.
1. Assign the tags σx to corresponding input wires of C ′, and then a tag σ(w) to every

output wire w of some gate in C ′ (with input wires w1, w2 and values x1, x2) following
the topological order:
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– For Add gates, set σ(w) := σ(w1) + σ(w2) over R.
– For Mult gates, compute the output tag σ(w) as follows:

d(w) := a · σ(w1) · σ(w2) − b · (σ(w1) · x2 + σ(w2) · x1) + c · x1 · x2 over Rq,

σ(w) := ⌊d/α⌋+ F(key1, w) over Rp.

We note the following invariant: if the input tags have the form σ(w1) = s ·x1+k(w1),
and σ(w2) = s · x2 + k(w2), over R, then the computed tag also has the form σ(w) =
s·z+k(w) overR. For Add gates, the invariant is immediate, with k(w) := k(w1)+k(w2)

over R. For Mult gates, we note the following core identity:

σ(w1) · σ(w2) − s ·
(
σ(w1)x2 + σ(w2)x1

)
+ s2z = k(w1) · k(w2) over Rq.

Plugging in the fact that b = s · a+ e1, c = s2 · a+ e2 − s · α, we obtain

d(w) = s · z · α+ a · k(w1) · k(w2) + error, where

error = e1(σ
(w1)x2 + σ(w2)x1) + e2z, and ∥error∥∞ ≤ p · poly(λ)≪ α.

We have shown that the error term from d(w) is much smaller than α. Hence the
rounding step removes it, except with negligible probability. (See Lemma 1 in [BKS19].)

σ(w) = ⌊d(w)/α⌋+ F(key1, w) = sz + ⌊ak(w1)k(w2)/α⌋+ F(key1, w)︸ ︷︷ ︸
k(w)

over Rp.

Shifting by the (pseudo-)random factor F(key1, w) ensures that σ
(w) = sz+k(w) holds

over R except with negligible probability, as long as ∥sz∥∞ ≪ p.

2. Compute the final output tags σz = (. . . ,BC(σ′(oj)), . . .)j∈[ℓz ], where {oj} are output
wires of C ′ (with values {zj}):

d′
(oj) := a′[j] · σ(oj) − b′[j] · zj ,

σ′(oj) = ⌊d′(oj)/α⌋+ F(key1, oj) over Rp

Similarly, we note if the tags σ(oj) have the form σ(oj) = s · zj + k(oj), then we have

σ′(oj) = ∆[j] · zj + k′
(oj) over R,

w/ k′
(oj) := ⌊a′[j] · k(oj)/α⌋+ F(key1, oj) over Rp

⇒σz = ∆⊙ zj + kC over R w/ kC := BC(k′
(oj)),

where in the last line we abuse notations to write ∆ as a vector in Zℓz .

kC ← EvalKey(sk, C, id) : Parse the PRF keys key1, key2 and ring elements a,a′ from sk. Then
compute MAC keys k(wj) associated with each input wire wj of C ′:

k(wj) = F(key2, id[j]).
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1. Assign a MAC key to every output wire w of some gate in C ′ (with input wires w1, w2)
following the topological order:
– For Add gates, set k(w) := k(w1) + k(w2) over R.
– For Mult gates, compute the output MAC key k(w) as follows:

k(w) = ⌊ak(w1)k(w2)/α⌋+ F(key1, w) over Rp.

As noted before, we have σ(w) = s · z + k(w) over R.

2. Compute the final output MAC keys kC = (. . . ,BC(k′(oj)), . . .)j∈ℓz , where {oj} are the
output wires of C ′:

k′
(oj) = ⌊a′[j] · k(oj)/α⌋+ F(key1, oj) over Rp.

As noted before, we have σz = ∆⊙ z+ kC over R as desired.

Correctness, Efficiency, and Security. As in the group-based constructions, we have broken
up and embedded correctness analysis as notes in the above. We note that the tags output
by Auth and the EvalTag all have bounded coefficients by O(2λ). Hence they have bit-lengths
bounded by O(λ ·n) = poly(λ), and satisfy succinctness. The evaluation key evk contains mainly
the ciphertexts cts, ct∆, which are O(ℓz) ring elements. In total, evk has bit-length ℓz · poly(λ).

We state and prove the following security lemma.

Lemma 14. Under CP-RLWE with respect to the public parameters pp = (R, p, q,Derr,Dsk) in
Construction 10, then Construction 10 is a secure aHMAC scheme.

Proof. The security of an aHMAC scheme (Definition 13) requires simulators Sim1, Sim2 to
simulate an evaluation key evk and adaptively queried authentication tags σ.

– Sim1 samples all components of the simulated evk = (pp, cts, ct∆, key1) at random. In more
detail, it samples a random PRF key key1 ← K1, and random ciphertexts cts = (a, b, c), and
ct∆ = (a′,b′):

a, b, c← Rq, a′,b′ ← Rℓz
q .

– Sim2 samples the authentication tag at random σ̃ ← [2λ]n.

We show a series of hybrids that transitions from the real-world experiment Hyb0 = Exp0priv in

Definition 13 to the simulation-world experiment Hyb3 = Exp1priv.

Hyb0 : We summarize the real-world distribution of the evaluation key evk = (pp, cts, ct∆, key1),
where cts = (h,h1,h2), and ct∆ = (H,H1), and of the authentication tag σ for some query
(x, id).

key1 ← K1,

a← Rq, b = s · a+ e1, c = s2 · a+ e2 + s · α
a′ ← Rℓz

q , b′ = s · a′ + e′ −∆ · α,

∣∣∣∣∣s← Dsk, e1, e2 ← Derr,

e′ ← Dℓz
err,

(21)

σ = s · x+ F(key2, id) over R |key2 ← K2, (22)
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Hyb1 : Instead of computing each tag σ as in Equation 22, Hyb1 simulates it as σ̃ ← [2λ]ℓs . The
PRF security of F2 ensures that Hyb1 ≈c Hyb0.

Hyb2 : Instead of computing b, c,b′ as in Equation 21, sample them directly at random:

a← Rq, b← Rq, c← Rq

a′ ← Rℓz
q , b′ ← Rℓz

q .

CP-RLWE ensures that Hyb3 ≈c Hyb2.

By a hybrid argument, we conclude that Hyb0 ≈c Hyb3, which proves the lemma. ⊓⊔

Construction 11 (Leveled aHMAC from RLWE). This construction relies on the same
ingradients as Construction 10.

(sk, evk)← KeyGen(1λ, 1D,∆) : Compared to Construction 10, the only difference is that the
ciphertexts cts, ct∆ (Equation 20) are replaced with per-level ciphertexts ct(j) for j ∈ [D],
and a final one ct∆ computed as follows. First, sample two secret exponents per level

∀j = 0, . . . , D, s
(j)
L , s

(j)
R ← Dsk.

Then compute the ciphertexts {ct(j)} and ct∆.

∀j ∈ [D], a(j) ← R2
q , e

(j)
1,L, e

(j)
1,R ← D

2
err, e

(j)
2 ← Rp

ct(j) :=
(
a(j), s

(j)
L a(j) + e

(j)
1,L, s

(j)
R a(j) + e

(j)
1,R,

s
(j)
L · s

(j)
R a+ e

(j)
2 + (s

(j+1)
L , s

(j+1)
R ) · α

)
,

for j = D, a′ ← Rℓz
q , e′ ← Dℓz

err,

ct∆ := (a′, s
(D)
L · a′ + e′ +∆ · α).

σx ← Auth(sk, x, id) : Compared to Construction 10, the only difference is that the global secret
s now becomes the level-0 secrets:

σx = (s
(0)
L , s

(0)
R ) · x+ F2(key2, id) over R2.

σz ← EvalTag(evk, C,x, σx) : Compared to Construction 10, there are two overall differences:

– Each tag assigned to an intermediate wire w, of depth j and with value x, used to have
the form s · x+ k(w) for a global secret s, but now will have the form s(j) · x+ k(w) for a

per-level secret vector s(j) := (s
(j)
L , s

(j)
R ).

– Before evaluating a gate, an additional step is required to ensure the tags on both input
wires have the same-level secret vector.

We first present evaluation procedures for Add and Mult gates assuming both input tags
σ(w1), σ(w2) have the same level-j secret vector.

– For Add gates, set σ(w) := σ(w1) + σ(w2) over R2.

Note that if the input tags have the form σ(w1) = s(j) · x1 + k(w1), and σ(w2) =
s(j) ·x2+k(w2) over R, then the computed tag also has the form σ(w) = s(j) · z+k(w)

over R2, where k(w) = k(w1) + k(w2).

69



– For Mult gates, parse σ(w1) = (σ
(w1)
L , σ

(w1)
R ), σ(w2) = (σ

(w2)
L , σ

(w2)
R ), and ct(j) = (a(j),b

(j)
L ,

b
(j)
R , c(j)). Compute

d(w) := a(j) · σ(w1)
L · σ(w2)

R − b
(j)
R · σ

(w1)
L · x2 − b

(j)
L · σ

(w2)
R · x1 + c(j) · x1 · x2 over R2

q ,

σ(w) := ⌊d(w)/α⌋+ F2(key1, w) over R2
p.

We show if the input tags have the form σ(w1) = s(j) · x1 + k(w1), and σ(w2) =
s(j) · x2 + k(w2) over R2, then the computed tag has the form σ(w) = s(j+1) · z+ k(w)

over R2, with the level-(j + 1) secret vector. We rely on the following core identity:

σ
(w1)
L σ

(w2)
R − s

(j)
R ·

(
σ
(w1)
L x2

)
− s

(j)
L ·

(
σ
(w2)
R x1

)
+ s

(j)
L s

(j)
R z = k

(w1)
L k

(w2)
R over Rq.

Plugging in b
(j)
L = s

(j)
L a(j)+e

(j)
1,L, b

(j)
R = s

(j)
R a(j)+e

(j)
1,R, c = s

(j)
L s

(j)
R a(j)+e

(j)
2 +s(j+1)·α,

we obtain

d(w) = s(j+1) · z · α+ a · k(w1)
L k

(w2)
R + error, where

error = e
(j)
1,Rσ

(w1)
L x2 + e

(j)
1,Lσ

(w2)
R x1 + e

(j)
2 z and ∥error∥∞ ≤ p · poly(λ)≪ α,

⇒⌊d(w)/α⌋+ F2(key1, w) = s(j+1) · z + ⌊a · k(w1)
L k

(w2)
R /α⌋+ F2(key1, w)︸ ︷︷ ︸

k(w)

over Rp.

⇒σ(w) = s(j+1) · z + k(w) over R,

where the last two equalities hold except with negligible probability, by the same
arguments as in Construction 10.

We can now transform any level-j tag to a level-(j+1) tag of the same value by applying the
described Mult procedure with another level-j tag of the constant value 1. We can obtain
level-j tag of 1 for all levels, by starting from an arbitray input tag (of level-0) and squaring
it j times.

kC ← EvalKey(sk, C, id) : As in Construction 10, perform matching evaluations over MAC keys
in the same order as EvalTag. We present evaluation procedures for Add and Mult gates
assuming the input MAC keys are k(w1),k(w2), and the output wire w has depth j.
– For Add gates, set k(w) := k(w1) + k(w2) over R2.

As noted in EvalTag, the matching evaluated tag equals σ(w) = s(j)z+k(w) over R2.

– For Mult gates, parse k(w1) = (k
(w1)
L ,k

(w1)
R ), and k(w2) = (k

(w2)
L ,k

(w2)
R ). Read a(j) from

sk, and compute

k(w) := ⌊a(j) · k(w1)
L k

(w2)
R /α⌋+ F2(key1, w) over Rp.
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As noted in EvalTag, the matching evaluated tag equals σ(w) = s(j+1)z + k(w) over
R2.

Correctness, Efficiency, and Security. As before, we have broken up and embedded correct-
ness analysis as notes in the above. Compared to Construction 10, the leveled construction has
a larger evk consisting of per-level ciphertexts {ct(j)}[D] of poly(λ) bits each, and a final one ct∆
of ℓz · poly(λ) bits. In total, the bit-length of evk is bounded by (D + ℓz) · poly(λ). Finally, we
state and prove the following security lemma.

Lemma 15. Under RingLWE with respect to the public parameters pp = (R, p, q,Derr,Dsk) in
Construction 10, Construction 11, is a secure leveled aHMAC scheme.

Proof. The security of an aHMAC scheme (Definition 13) requires a pair of simulators Sim1, Sim2

to simulate an evaluation key evk and adaptively queried authentication tags σ.

– Sim1 samples all components of the simulated evk = (pp, {ct(j)}[D], ct∆, key1) at random.

In more detail, it samples a random PRF key key1 ← K, and random ciphertexts ct(j) =

(a(j),b
(j)
L ,b

(j)
R , c(j)), and ct∆ = (a′,b′):

∀j ∈ [D], a(j),b
(j)
L ,b

(j)
R , c(j) ← R2

q , a′,b′ ← Rℓz
q .

– Sim2 samples the authentication tag at random σ̃ ← [p]2n.

We show a series of hybrids that transitions from the real-world experiment Hyb0 = Exp0priv in

Definition 13 to the simulation-world experiment Hyb3 = Exp1priv.

Hyb0 : We summarize the real-world distribution of the evaluation key evk = (pp, {ct(j)}, ct∆, key1),
where ct(j) = (a(j),b

(j)
L ,b

(j)
R , c(j)), and ct∆ = (a′,b′), and of the authentication tag σ for

some query (x, id).

key1 ← K,
∣∣∣s(j)L , s

(j)
R ← Dsk, ∀j = 0, . . . , D,

∀j ∈ [D] :
a(j) ← R2

q , b
(j)
L = s

(j)
L a(j) + e

(j)
1,L,

b
(j)
R = s

(j)
R a(j) + e

(j)
1,R,

c(j) = s
(j)
L s

(j)
R a(j) + e

(j)
2 − s(j+1) · α,

∣∣∣∣∣∣∣∣
e
(j)
1,L, e

(j)
2,L ← D

2
err,

e
(j)
2 ← R

2
p,

s(j+1) := (s
(j+1)
L , s

(j+1)
R ),

(23)

a′ ← Rℓz
q , b′ = s

(D)
L a′ + e′ −∆ · α,

∣∣∣e′ ← Dℓz
err. (24)

σ = s(0) · x+ F2(key2, id) over R |key2 ← K, (25)

Hyb1 : Instead of computing each tag σ as in Equation 25, Hyb1 simulates it as σ̃ ← [p]2n. The
PRF security of F ensures that Hyb1 ≈c Hyb0.

Hyb2,0,0 : Instead of computing c(0) as in Equation 23, compute it in terms of b
(0)
R :

c(0) = s
(0)
L (s

(0)
R a(0) + e

(0)
1,R)︸ ︷︷ ︸

b
(0)
R

+e′
(0)
2 + e

(0)
2 − s(1) · α

∣∣∣e′(0)2 ← D
2
err, e

(0)
2 ← R

2
p.

By our setting, we have ∥s(0)L e
(0)
1,R∥∞ ≪ p and ∥e′(0)2 ∥∞ ≪ p. Hence Hyb2,0,0 ≈ Hyb1.
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Hyb2,0,1 : Instead of computing b
(0)
L ,b

(0)
R as in Equation 23, sample them at random:

a(0),b
(0)
L ,b

(0)
R ← R

2
q ,

c(0) = s
(0)
L b

(0)
R + e′2 + e2 − s(1) · α,

∣∣∣∣∣ e′2 ← D2
err, e2 ← R2

p.

By RingLWE, we have Hyb2,0,1 ≈c Hyb2,0,0.

Hyb2,0,2: Instead of computing c(0) as the previous hybrid, directly sample it at random:

c(0) ← R2
q ,

without depending on the secret vector s(1). By RingLWE, we have Hyb2,0,2 ≈ Hyb2,0,1.

Hyb2,j : for j = 1, . . . D − 1, instead of computing a(j),b
(j)
L ,b

(j)
R , c(j) as in Equation 7, sample

them at random:
a(j),b

(j)
L ,b

(j)
R , c(j) ← R2

q .

By analogous arguments from Hyb2,0,0 and Hyb2,0,2, we have Hyb2,j ≈c Hyb2,j−1.
Hyb3 Instead of computing a′,b′ as in Equation 8, sample them at random:

a′,b′ ← Rℓz
q .

By RingLWE, we have Hyb3 ≈c Hyb2,D−1.

By a hybrid argument, we conclude that Hyb0 ≈c Hyb3, which proves the lemma. ⊓⊔
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