2000 results sorted by ID
Learning with Errors from Nonassociative Algebras
Andrew Mendelsohn, Cong Ling
Public-key cryptography
We construct a provably-secure structured variant of Learning with Errors (LWE) using nonassociative cyclic division algebras, assuming the hardness of worst-case structured lattice problems, for which we are able to give a full search-to-decision reduction, improving upon the construction of Grover et al. named `Cyclic Learning with Errors' (CLWE). We are thus able to create structured LWE over cyclic algebras without any restriction on the size of secret spaces, which was required for CLWE...
Decompressing Dilithium's Public Key with Fewer Signatures Using Side Channel Analysis
Ruize Wang, Joel Gärtner, Elena Dubrova
Attacks and cryptanalysis
The CRYSTALS-Dilithium digital signature scheme, selected by NIST as a post-quantum cryptography (PQC) standard under the name ML-DSA, employs a public key compression technique intended for performance optimization. Specifically, the module learning with error instance $({\bf A}, {\bf t})$ is compressed by omitting the low-order bits ${\bf t_0}$ of the vector ${\bf t}$. It was recently shown that knowledge of ${\bf t_0}$ enables more effective side-channel attacks on Dilithium...
Multivariate Encryptions with LL’ perturbations - Is it possible to repair HFE in encryption? -
Jacques Patarin, Pierre Varjabedian
Public-key cryptography
We will present here new multivariate encryption algorithms. This is interesting since few multivariate encryption scheme currently exist, while their exist many more multivariate signature schemes. Our algorithms will combine several ideas, in particular the idea of the LL’ perturbation originally introduced, but only for signature, in [GP06]. In this paper, the LL’ perturbation will be used for encryption and will greatly differ from [GP06]. As we will see, our algorithms resists to all...
Bounded CCA Secure Proxy Re-encryption Based on Kyber
Shingo Sato, Junji Shikata
Public-key cryptography
Proxy re-encryption (PRE) allows semi-honest party (called proxy) to convert a ciphertext under a public key into a ciphertext under another public key. Due to this functionality, there are various applications such as encrypted email forwarding, key escrow, and securing distributed file systems. Meanwhile, post-quantum cryptography (PQC) is one of the most important research areas because development of quantum computers has been advanced recently. In particular, there are many researches...
NICE-PAKE: On the Security of KEM-Based PAKE Constructions without Ideal Ciphers
Nouri Alnahawi, Jacob Alperin-Sheriff, Daniel Apon, Alexander Wiesmaier
Cryptographic protocols
The interest in realizing generic PQC KEM-based PAKEs has increased significantly in the last few years. One such PAKE is the CAKE protocol, proposed by Beguinet et al. (ACNS ’23). However, despite its simple design based on the well-studied PAKE protocol EKE by Bellovin and Merritt (IEEE S&P ’92), both CAKE and its variant OCAKE do not fully protect against quantum adversaries, as they rely on the Ideal Cipher (IC) model. Related and follow-up works, including Pan and Zeng (ASIACRYPT ’23),...
Shifting our knowledge of MQ-Sign security
Lars Ran, Monika Trimoska
Attacks and cryptanalysis
Unbalanced Oil and Vinegar (UOV) is one of the oldest, simplest, and most studied ad-hoc multivariate signature schemes. UOV signature schemes are attractive because they have very small signatures and fast verification. On the downside, they have large public and secret keys. As a result, variations of the traditional UOV scheme are usually developed with the goal to reduce the key sizes. Seven variants of UOV were submitted to the additional call for digital signatures by NIST, prior to...
Practical Zero-Knowledge PIOP for Public Key and Ciphertext Generation in (Multi-Group) Homomorphic Encryption
Intak Hwang, Hyeonbum Lee, Jinyeong Seo, Yongsoo Song
Cryptographic protocols
Homomorphic encryption (HE) is a foundational technology in privacy-enhancing cryptography, enabling non-interactive computation over encrypted data. Recently, generalized HE primitives designed for multi-party applications, such as multi-group HE (MGHE), have gained significant research interest.
While constructing secure multi-party protocols from (MG)HE in the semi-honest model is straightforward, zero-knowledge techniques are essential for ensuring security against malicious...
Unbounded Leakage-Resilient Encryption and Signatures
Alper Çakan, Vipul Goyal
Foundations
Given the devastating security compromises caused by side-channel attacks on existing classical systems, can we store our private data encoded as a quantum state so that they can be kept private in the face of arbitrary side-channel attacks?
The unclonable nature of quantum information allows us to build various quantum protection schemes for cryptographic information such as secret keys. Examples of quantum protection notions include copy-protection, secure leasing, and finally,...
Single-trace side-channel attacks on MAYO exploiting leaky modular multiplication
Sönke Jendral, Elena Dubrova
Attacks and cryptanalysis
In response to the quantum threat, new post-quantum cryptographic algorithms will soon be deployed to replace existing public-key schemes. MAYO is a quantum-resistant digital signature scheme whose small keys and signatures make it suitable for widespread adoption, including on embedded platforms with limited security resources. This paper demonstrates two single-trace side-channel attacks on a MAYO implementation in ARM Cortex-M4 that recover a secret key with probabilities of 99.9% and...
The LaZer Library: Lattice-Based Zero Knowledge and Succinct Proofs for Quantum-Safe Privacy
Vadim Lyubashevsky, Gregor Seiler, Patrick Steuer
Implementation
The hardness of lattice problems offers one of the most promising
security foundations for quantum-safe cryptography. Basic schemes
for public key encryption and digital signatures are already close to
standardization at NIST and several other standardization bodies,
and the research frontier has moved on to building primitives with
more advanced privacy features. At the core of many such primi-
tives are zero-knowledge proofs. In recent years, zero-knowledge
proofs for (and using)...
Ideal Pseudorandom Codes
Omar Alrabiah, Prabhanjan Ananth, Miranda Christ, Yevgeniy Dodis, Sam Gunn
Foundations
Pseudorandom codes are error-correcting codes with the property that no efficient adversary can distinguish encodings from uniformly random strings. They were recently introduced by Christ and Gunn [CRYPTO 2024] for the purpose of watermarking the outputs of randomized algorithms, such as generative AI models. Several constructions of pseudorandom codes have since been proposed, but none of them are robust to error channels that depend on previously seen codewords. This stronger kind of...
On the Power of Oblivious State Preparation
James Bartusek, Dakshita Khurana
Cryptographic protocols
We put forth Oblivious State Preparation (OSP) as a cryptographic primitive that unifies techniques developed in the context of a quantum server interacting with a classical client. OSP allows a classical polynomial-time sender to input a choice of one out of two public observables, and a quantum polynomial-time receiver to recover an eigenstate of the corresponding observable -- while keeping the sender's choice hidden from any malicious receiver.
We obtain the following results:
- The...
Pseudorandom Function-like States from Common Haar Unitary
Minki Hhan, Shogo Yamada
Foundations
Recent active studies have demonstrated that cryptography without one-way functions (OWFs) could be possible in the quantum world. Many fundamental primitives that are natural quantum analogs of OWFs or pseudorandom generators (PRGs) have been introduced, and their mutual relations and applications have been studied. Among them, pseudorandom function-like state generators (PRFSGs) [Ananth, Qian, and Yuen, Crypto 2022] are one of the most important primitives. PRFSGs are a natural quantum...
Isogeny interpolation and the computation of isogenies from higher dimensional representations
David Jao, Jeanne Laflamme
Implementation
The Supersingular Isogeny Diffie-Hellman (SIDH) scheme is a public key cryptosystem that was submitted to the National Institute of Standards and Technology's competition for the standardization of post-quantum cryptography protocols. The private key in SIDH consists of an isogeny whose degree is a prime power. In July 2022, Castryck and Decru discovered an attack that completely breaks the scheme by recovering Bob's secret key, using isogenies between higher dimensional abelian varieties to...
Resilience-Optimal Lightweight High-threshold Asynchronous Verifiable Secret Sharing
Hao Cheng, Jiliang Li, Yizhong Liu, Yuan Lu, Weizhi Meng, Zhenfeng Zhang
Cryptographic protocols
Shoup and Smart (SS24) recently introduced a lightweight asynchronous verifiable secret sharing (AVSS) protocol with optimal resilience directly from cryptographic hash functions (JoC 2024), offering plausible quantum resilience and computational efficiency. However, SS24 AVSS only achieves standard secrecy to keep the secret confidential against $n/3$ corrupted parties \textit{if no honest party publishes its share}. In contrast, from ``heavyweight'' public-key cryptography, one can...
A Forgery Attack on a Code-based Signature Scheme
Ali Babaei, Taraneh Eghlidos
Attacks and cryptanalysis
With the advent of quantum computers, the security of cryptographic primitives, including digital signature schemes, has been compromised. To deal with this issue, some signature schemes have been introduced to resist against these computers. These schemes are known as post-quantum signature schemes. One group of these schemes is based on the hard problems of coding theory, called code-based cryptographic schemes. Several code-based signature schemes are inspired by the McEliece encryption...
A comprehensive analysis of Regev's quantum algorithm
Razvan Barbulescu, Mugurel Barcau, Vicentiu Pasol
Attacks and cryptanalysis
Public key cryptography can be based on integer factorization and
the discrete logarithm problem (DLP), applicable in multiplicative groups and
elliptic curves. Regev’s recent quantum algorithm was initially designed for the
factorization and was later extended to the DLP in the multiplicative group.
In this article, we further extend the algorithm to address the DLP for elliptic
curves. Notably, based on celebrated conjectures in Number Theory, Regev’s
algorithm is asymptotically...
On the Sample Complexity of Linear Code Equivalence for all Code Rates
Alessandro Budroni, Andrea Natale
Attacks and cryptanalysis
In parallel with the standardization of lattice-based cryptosystems, the research community in Post-quantum Cryptography focused on non-lattice-based hard problems for constructing public-key cryptographic primitives. The Linear Code Equivalence (LCE) Problem has gained attention regarding its practical applications and cryptanalysis.
Recent advancements, including the LESS signature scheme and its candidacy in the NIST standardization for additional signatures, supported LCE as a...
State of the art of HFE variants Is it possible to repair HFE with appropriate perturbations?
Benoit COGLIATI, Gilles Macariot-Rat, Jacques Patarin, Pierre Varjabedian
Public-key cryptography
HFE (that stands for Hidden Field Equations) belongs to
multivariate cryptography and was designed by Jacques Patarin in 1996
as a public key trapdoor suitable for encryption or signature. This original basic version is unfortunately known to have a super-polynomial
attack, but as imagined since the beginning, it comes with various variants, one can describe as combinations of “modifiers”.
In this work, we first present the state of the art of these HFE modifiers,
along with their...
Computational Analysis of Plausibly Post-Quantum-Secure Recursive Arguments of Knowledge
Dustin Ray, Paulo L. Barreto
Implementation
With the recent standardization of post-quantum cryptographic algorithms, research efforts have largely remained centered on public key exchange and encryption schemes. Argument systems, which allow a party to efficiently argue the correctness of a computation, have received comparatively little attention regarding their quantum-resilient design. These computational integrity frameworks often rely on cryptographic assumptions, such as pairings or group operations, which are vulnerable to...
On the practicality of quantum sieving algorithms for the shortest vector problem
Joao F. Doriguello, George Giapitzakis, Alessandro Luongo, Aditya Morolia
Attacks and cryptanalysis
One of the main candidates of post-quantum cryptography is lattice-based cryptography. Its cryptographic security against quantum attackers is based on the worst-case hardness of lattice problems like the shortest vector problem (SVP), which asks to find the shortest non-zero vector in an integer lattice. Asymptotic quantum speedups for solving SVP are known and rely on Grover's search. However, to assess the security of lattice-based cryptography against these Grover-like quantum speedups,...
Efficient Quantum Pseudorandomness from Hamiltonian Phase States
John Bostanci, Jonas Haferkamp, Dominik Hangleiter, Alexander Poremba
Foundations
Quantum pseudorandomness has found applications in many areas of quantum information, ranging from entanglement theory, to models of scrambling phenomena in chaotic quantum systems, and, more recently, in the foundations of quantum cryptography. Kretschmer (TQC '21) showed that both pseudorandom states and pseudorandom unitaries exist even in a world without classical one-way functions. To this day, however, all known constructions require classical cryptographic building blocks which are...
Shaking up authenticated encryption
Joan Daemen, Seth Hoffert, Silvia Mella, Gilles Van Assche, Ronny Van Keer
Secret-key cryptography
Authenticated encryption (AE) is a cryptographic mechanism that allows communicating parties to protect the confidentiality and integrity of messages exchanged over a public channel, provided they share a secret key. In this work, we present new AE schemes leveraging the SHA-3 standard functions SHAKE128 and SHAKE256, offering 128 and 256 bits of security strength, respectively, and their “Turbo” counterparts. They support session-based communication, where a ciphertext authenticates the...
On the security of the initial tropical Stickel protocol and its modification based on Linde-de la Puente matrices
Sulaiman Alhussaini, Serge˘ı Sergeev
Attacks and cryptanalysis
Recently, a more efficient attack on the initial tropical Stickel protocol has been proposed, different from the previously known Kotov-Ushakov attack, yet equally guaranteed to succeed. Given that the Stickel protocol can be implemented in various ways, such as utilizing platforms beyond the tropical semiring or employing alternative commutative matrix ``classes'' instead of polynomials, we firstly explore the generalizability of this new attack across different implementations of the...
Efficiently-Thresholdizable Batched Identity Based Encryption, with Applications
Amit Agarwal, Rex Fernando, Benny Pinkas
Cryptographic protocols
We propose a new cryptographic primitive called "batched identity-based encryption" (Batched IBE) and its thresholdized version. The new primitive allows encrypting messages with specific identities and batch labels, where the latter can represent, for example, a block number on a blockchain. Given an arbitrary subset of identities for a particular batch, our primitive enables efficient issuance of a single decryption key that can be used to decrypt all ciphertexts having identities that are...
OML: Open, Monetizable, and Loyal AI
Zerui Cheng, Edoardo Contente, Ben Finch, Oleg Golev, Jonathan Hayase, Andrew Miller, Niusha Moshrefi, Anshul Nasery, Sandeep Nailwal, Sewoong Oh, Himanshu Tyagi, Pramod Viswanath
Applications
Artificial Intelligence (AI) has steadily improved across a wide range of tasks, and a significant breakthrough towards general intelligence was achieved with the rise of generative deep models, which have garnered worldwide attention. However, the development and deployment of AI are almost entirely controlled by a few powerful organizations and individuals who are racing to create Artificial General Intelligence (AGI). These centralized entities make decisions with little public oversight,...
A Simple Framework for Secure Key Leasing
Fuyuki Kitagawa, Tomoyuki Morimae, Takashi Yamakawa
Public-key cryptography
Secure key leasing (a.k.a. key-revocable cryptography) enables us to lease a cryptographic key as a quantum state in such a way that the key can be later revoked in a verifiable manner. We propose a simple framework for constructing cryptographic primitives with secure key leasing via the certified deletion property of BB84 states. Based on our framework, we obtain the following schemes.
- A public key encryption scheme with secure key leasing that has classical revocation based on any...
Optimized One-Dimensional SQIsign Verification on Intel and Cortex-M4
Marius A. Aardal, Gora Adj, Arwa Alblooshi, Diego F. Aranha, Isaac A. Canales-Martínez, Jorge Chavez-Saab, Décio Luiz Gazzoni Filho, Krijn Reijnders, Francisco Rodríguez-Henríquez
Public-key cryptography
SQIsign is a well-known post-quantum signature scheme due to its small combined signature and public-key size. However, SQIsign suffers from notably long signing times, and verification times are not short either. To improve this, recent research has explored both one-dimensional and two-dimensional variants of SQIsign, each with distinct characteristics. In particular, SQIsign2D's efficient signing and verification times have made it a focal point of recent research. However, the absence of...
MAYO Key Recovery by Fixing Vinegar Seeds
Sönke Jendral, Elena Dubrova
Attacks and cryptanalysis
As the industry prepares for the transition to post-quantum secure public key cryptographic algorithms, vulnerability analysis of their implementations is gaining importance. A theoretically secure cryptographic algorithm should also be able to withstand the challenges of physical attacks in real-world environments. MAYO is a candidate in the ongoing first round of the NIST post-quantum standardization process for selecting additional digital signature schemes. This paper demonstrates three...
Relaxed Lattice-Based Programmable Hash Functions: New Efficient Adaptively Secure IBEs
Xingye Lu, Jingjing Fan, Man Ho AU
Public-key cryptography
In this paper, we introduce the notion of relaxed lattice-based programmable hash function (RPHF), which is a novel variant of lattice-based programmable hash functions (PHFs). Lattice-based PHFs, together with preimage trapdoor functions (TDFs), have been widely utilized (implicitly or explicitly) in the construction of adaptively secure identity-based encryption (IBE) schemes. The preimage length and the output length of the underlying PHF and TDF together determine the user secret key and...
Beware of Keccak: Practical Fault Attacks on SHA-3 to Compromise Kyber and Dilithium on ARM Cortex-M Devices
Yuxuan Wang, Jintong Yu, Shipei Qu, Xiaolin Zhang, Xiaowei Li, Chi Zhang, Dawu Gu
Attacks and cryptanalysis
Keccak acts as the hash algorithm and eXtendable-Output Function (XOF) specified in the NIST standard drafts for Kyber and Dilithium. The Keccak output is highly correlated with sensitive information. While in RSA and ECDSA, hash-like components are only used to process public information, such as the message. The importance and sensitivity of hash-like components like Keccak are much higher in Kyber and Dilithium than in traditional public-key cryptography. However, few works study Keccak...
Hard Quantum Extrapolations in Quantum Cryptography
Luowen Qian, Justin Raizes, Mark Zhandry
Foundations
Although one-way functions are well-established as the minimal primitive for classical cryptography, a minimal primitive for quantum cryptography is still unclear. Universal extrapolation, first considered by Impagliazzo and Levin (1990), is hard if and only if one-way functions exist. Towards better understanding minimal assumptions for quantum cryptography, we study the quantum analogues of the universal extrapolation task. Specifically, we put forth the classical$\rightarrow$quantum...
Founding Quantum Cryptography on Quantum Advantage, or, Towards Cryptography from $\#\mathsf{P}$-Hardness
Dakshita Khurana, Kabir Tomer
Foundations
Recent oracle separations [Kretschmer, TQC'21, Kretschmer et. al., STOC'23] have raised the tantalizing possibility of building quantum cryptography from sources of hardness that persist even if the polynomial hierarchy collapses. We realize this possibility by building quantum bit commitments and secure computation from unrelativized, well-studied mathematical problems that are conjectured to be hard for $\mathsf{P}^{\#\mathsf{P}}$ -- such as approximating the permanents of complex Gaussian...
PPSA: Polynomial Private Stream Aggregation for Time-Series Data Analysis
Antonia Januszewicz, Daniela Medrano Gutierrez, Nirajan Koirala, Jiachen Zhao, Jonathan Takeshita, Jaewoo Lee, Taeho Jung
Cryptographic protocols
Modern data analytics requires computing functions on streams of data points from many users that are challenging to calculate, due to both the high scale and nontrivial nature of the computation at hand. The need for data privacy complicates this matter further, as general-purpose privacy-enhancing technologies face limitations in at least scalability or utility. Existing work has attempted to improve this by designing purpose-built protocols for the use case of Private Stream Aggregation;...
Code-Based Zero-Knowledge from VOLE-in-the-Head and Their Applications: Simpler, Faster, and Smaller
Ying Ouyang, Deng Tang, Yanhong Xu
Cryptographic protocols
Zero-Knowledge (ZK) protocols allow a prover to demonstrate the truth of a statement without disclosing additional information about the underlying witness. Code-based cryptography has a long history but did suffer from periods of slow development. Recently, a prominent line of research have been contributing to designing efficient code-based ZK from MPC-in-the-head (Ishai et al., STOC 2007) and VOLE-in-the head (VOLEitH) (Baum et al., Crypto 2023) paradigms, resulting in quite efficient...
Lifting approach against the SNOVA scheme
Shuhei Nakamura, Yusuke Tani, Hiroki Furue
Attacks and cryptanalysis
In 2022, Wang et al. proposed the multivariate signature scheme SNOVA as a UOV variant over the non-commutative ring of $\ell \times \ell $ matrices over $\mathbb{F}_q$.
This scheme has small public key and signature size and is a first round candidate of NIST PQC additional digital signature project.
Recently, Ikematsu and Akiyama, and Li and Ding show that the core matrices of SNOVA with $v$ vinegar-variables and $o$ oil-variables are regarded as the representation matrices of UOV with...
CPA-secure KEMs are also sufficient for Post-Quantum TLS 1.3
Biming Zhou, Haodong Jiang, Yunlei Zhao
Cryptographic protocols
In the post-quantum migration of TLS 1.3, an ephemeral Diffie-Hellman must be replaced with a post-quantum key encapsulation mechanism (KEM). At EUROCRYPT 2022, Huguenin-Dumittan and Vaudenay [EC:HugVau22] demonstrated that KEMs with standard CPA security are sufficient for the security of the TLS1.3 handshake. However, their result is only proven in the random oracle model (ROM), and as the authors comment, their reduction is very much non-tight and not sufficient to guarantee security in...
Scloud+: a Lightweight LWE-based KEM without Ring/Module Structure
Anyu Wang, Zhongxiang Zheng, Chunhuan Zhao, Zhiyuan Qiu, Guang Zeng, Ye Yuan, Changchun Mu, Xiaoyun Wang
Public-key cryptography
We present Scloud+, an LWE-based key encapsulation mechanism (KEM). The key feature of Scloud+ is its use of the unstructured-LWE problem (i.e., without algebraic structures such as rings or modules) and its incorporation of ternary secrets and lattice coding to enhance performance. A notable advantage of the unstructured-LWE problem is its resistance to potential attacks exploiting algebraic structures, making it a conservative choice for constructing high-security schemes. However, a...
Improved Cryptanalysis of SNOVA
Ward Beullens
Attacks and cryptanalysis
SNOVA is a multivariate signature scheme submitted to the NIST project for additional signature schemes by Cho, Ding, Kuan, Li, Tseng, Tseng, and Wang. With small key and signature sizes good performance, SNOVA is one of the more efficient schemes in the competition, which makes SNOVA an important target for cryptanalysis.
In this paper, we observe that SNOVA implicitly uses a structured version of the ``whipping'' technique developed for the MAYO signature scheme. We show that the...
Don't Trust Setup! New Directions in Pre-Constrained Cryptography
Shweta Agrawal, Simran Kumari, Ryo Nishimaki
Public-key cryptography
The recent works of Ananth et al. (ITCS 2022) and Bartusek et al. (Eurocrypt 2023) initiated the study of pre-constrained cryptography which achieves meaningful security even against the system authority. In this work we significantly expand this area by defining several new primitives and providing constructions from simple, standard assumptions as follows.
- Pre-Constrained Encryption. We define a weaker notion of pre-constrained encryption (PCE), as compared to the work of Ananth et...
NTRU+PKE: Efficient Public-Key Encryption Schemes from the NTRU Problem
Jonghyun Kim, Jong Hwan Park
Public-key cryptography
We propose a new NTRU-based Public-Key Encryption (PKE) scheme called $\mathsf{NTRU+}\mathsf{PKE}$, which effectively incorporates the Fujisaki-Okamoto transformation for PKE (denoted as $\mathsf{FO}_{\mathsf{PKE}}$) to achieve chosen-ciphertext security in the Quantum Random Oracle Model (QROM). While $\mathsf{NTRUEncrypt}$, a first-round candidate in the NIST PQC standardization process, was proven to be chosen-ciphertext secure in the Random Oracle Model (ROM), it lacked corresponding...
Tailorable codes for lattice-based KEMs with applications to compact ML-KEM instantiations
Thales B. Paiva, Marcos A. Simplicio Jr, Syed Mahbub Hafiz, Bahattin Yildiz, Eduardo L. Cominetti, Henrique S. Ogawa
Public-key cryptography
Compared to elliptic curve cryptography, a main drawback of lattice-based schemes is the larger size of their public keys and ciphertexts. A common procedure for compressing these objects consists essentially of dropping some of their least significant bits. Albeit effective for compression, there is a limit to the number of bits to be dropped before we get a noticeable decryption failure rate (DFR), which is a security concern. To address this issue, this paper presents a family of...
EagleSignV3 : A new secure variant of EagleSign signature over lattices
Abiodoun Clement Hounkpevi, Sidoine Djimnaibeye, Michel Seck, Djiby Sow
Public-key cryptography
With the potential arrival of quantum computers, it is essential to build cryptosystems resistant to attackers with the computing power of a quantum computer. With Shor's algorithm, cryptosystems based on discrete logarithms and factorization become obsolete. Reason why NIST has launching two competitions in 2016 and 2023 to standardize post-quantum cryptosystems (such as KEM and signature ) based on problems supposed to resist attacks using quantum computers. EagleSign was prosed to NIT...
A short-list of pairing-friendly curves resistant to the Special TNFS algorithm at the 192-bit security level
Diego F. Aranha, Georgios Fotiadis, Aurore Guillevic
Implementation
For more than two decades, pairings have been a fundamental tool for designing elegant cryptosystems, varying from digital signature schemes to more complex privacy-preserving constructions. However, the advancement of quantum computing threatens to undermine public-key cryptography. Concretely, it is widely accepted that a future large-scale quantum computer would be capable to break any public-key cryptosystem used today, rendering today's public-key cryptography obsolete and mandating the...
Inner Product Ring LWE Problem, Reduction, New Trapdoor Algorithm for Inner Product Ring LWE Problem and Ring SIS Problem
Zhuang Shan, Leyou Zhang, Qing Wu, Qiqi Lai
Foundations
Lattice cryptography is currently a major research focus in public-key encryption, renowned for its ability to resist quantum attacks. The introduction of ideal lattices (ring lattices) has elevated the theoretical framework of lattice cryptography. Ideal lattice cryptography, compared to classical lattice cryptography, achieves more acceptable operational efficiency through fast Fourier transforms. However, to date, issues of impracticality or insecurity persist in ideal lattice problems....
Towards Quantum-Safe Blockchain: Exploration of PQC and Public-key Recovery on Embedded Systems
Dominik Marchsreiter
Applications
Blockchain technology ensures accountability,
transparency, and redundancy in critical applications, includ-
ing IoT with embedded systems. However, the reliance on
public-key cryptography (PKC) makes blockchain vulnerable to
quantum computing threats. This paper addresses the urgent
need for quantum-safe blockchain solutions by integrating Post-
Quantum Cryptography (PQC) into blockchain frameworks.
Utilizing algorithms from the NIST PQC standardization pro-
cess, we aim to fortify...
Grafted Trees Bear Better Fruit: An Improved Multiple-Valued Plaintext-Checking Side-Channel Attack against Kyber
Jinnuo Li, Chi Cheng, Muyan Shen, Peng Chen, Qian Guo, Dongsheng Liu, Liji Wu, Jian Weng
Attacks and cryptanalysis
As a prominent category of side-channel attacks (SCAs), plaintext-checking (PC) oracle-based SCAs offer the advantages of generality and operational simplicity on a targeted device. At TCHES 2023, Rajendran et al. and Tanaka et al. independently proposed the multiple-valued (MV) PC oracle, significantly reducing the required number of queries (a.k.a., traces) in the PC oracle. However, in practice, when dealing with environmental noise or inaccuracies in the waveform classifier, they...
Rudraksh: A compact and lightweight post-quantum key-encapsulation mechanism
Suparna Kundu, Archisman Ghosh, Angshuman Karmakar, Shreyas Sen, Ingrid Verbauwhede
Public-key cryptography
Resource-constrained devices such as wireless sensors and Internet of Things (IoT) devices have become ubiquitous in our digital ecosystem. These devices generate and handle a major part of our digital data. In the face of the impending threat of quantum computers on our public-key infrastructure, it is impossible to imagine the security and privacy of our digital world without integrating post-quantum cryptography (PQC) into these devices. Usually, due to the resource constraints of these...
Attacking Tropical Stickel Protocol by MILP and Heuristic Optimization Techniques
Sulaiman Alhussaini, Serge˘ı Sergeev
Attacks and cryptanalysis
Known attacks on the tropical implementation of Stickel protocol involve solving a minimal covering problem, and this leads to an exponential growth in the time required to recover the secret key as the used polynomial degree increases. Consequently, it can be argued that Alice and Bob can still securely execute the protocol by utilizing very high polynomial degrees, a feasible approach due to the efficiency of tropical operations. The same is true for the implementation of Stickel protocol...
Finding Bugs and Features Using Cryptographically-Informed Functional Testing
Giacomo Fenzi, Jan Gilcher, Fernando Virdia
Implementation
In 2018, Mouha et al. (IEEE Trans. Reliability, 2018) performed a post-mortem investigation of the correctness of reference implementations submitted to the SHA3 competition run by NIST, finding previously unidentified bugs in a significant portion of them, including two of the five finalists. Their innovative approach allowed them to identify the presence of such bugs in a black-box manner, by searching for counterexamples to expected cryptographic properties of the implementations under...
Stickel’s Protocol using Tropical Increasing Matrices
Any Muanalifah, Zahari Mahad, Nurwan, Rosalio G Artes
Public-key cryptography
In this paper we introduce new concept of tropical increasing matrices and then prove that two tropical increasing matrices are commute. Using this property, we modified Stickel’s protocol. This idea similar to [5] where modified Stickel’s protocol using commuting matrices (Linde De La Puente Matrices).
QuietOT: Lightweight Oblivious Transfer with a Public-Key Setup
Geoffroy Couteau, Lalita Devadas, Srinivas Devadas, Alexander Koch, Sacha Servan-Schreiber
Cryptographic protocols
Oblivious Transfer (OT) is at the heart of secure computation and is a foundation for many applications in cryptography. Over two decades of work have led to extremely efficient protocols for evaluating OT instances in the preprocessing model, through a paradigm called OT extension.
A few OT instances generated in an offline phase can be used to perform many OTs in an online phase efficiently, i.e., with very low communication and computational overheads.
Specifically, traditional OT...
On Sequential Functions and Fine-Grained Cryptography
Jiaxin Guan, Hart Montgomery
Foundations
A sequential function is, informally speaking, a function $f$ for which a massively parallel adversary cannot compute "substantially" faster than an honest user with limited parallel computation power. Sequential functions form the backbone of many primitives that are extensively used in blockchains such as verifiable delay functions (VDFs) and time-lock puzzles. Despite this widespread practical use, there has been little work studying the complexity or theory of sequential...
GRASP: Accelerating Hash-based PQC Performance on GPU Parallel Architecture
Yijing Ning, Jiankuo Dong, Jingqiang Lin, Fangyu Zheng, Yu Fu, Zhenjiang Dong, Fu Xiao
Implementation
$SPHINCS^+$, one of the Post-Quantum Cryptography Digital Signature Algorithms (PQC-DSA) selected by NIST in the third round, features very short public and private key lengths but faces significant performance challenges compared to other post-quantum cryptographic schemes, limiting its suitability for real-world applications. To address these challenges, we propose the GPU-based paRallel Accelerated $SPHINCS^+$ (GRASP), which leverages GPU technology to enhance the efficiency of...
Supersonic OT: Fast Unconditionally Secure Oblivious Transfer
Aydin Abadi, Yvo Desmedt
Cryptographic protocols
Oblivious Transfer (OT) is a fundamental cryptographic protocol with applications in secure Multi-Party Computation, Federated Learning, and Private Set Intersection. With the advent of quantum computing, it is crucial to develop unconditionally secure core primitives like OT to ensure their continued security in the post-quantum era. Despite over four decades since OT's introduction, the literature has predominantly relied on computational assumptions, except in cases using unconventional...
PIR with Client-Side Preprocessing: Information-Theoretic Constructions and Lower Bounds
Yuval Ishai, Elaine Shi, Daniel Wichs
Cryptographic protocols
It is well-known that classical Private Information Retrieval (PIR) schemes without preprocessing must suffer from linear server computation per query. Moreover, any such single-server PIR with sublinear bandwidth must rely on public-key cryptography. Several recent works showed that these barriers pertaining to classical PIR can be overcome by introducing a preprocessing phase where each client downloads a small hint that helps it make queries subsequently. Notably, the Piano PIR scheme...
Designs for practical SHE schemes based on Ring-LWR
Madalina Bolboceanu, Anamaria Costache, Erin Hales, Rachel Player, Miruna Rosca, Radu Titiu
Public-key cryptography
The Learning with Errors problem (LWE) and its variants are among the most popular assumptions underlying lattice-based cryptography. The Learning with Rounding problem (LWR) can be thought of as a deterministic variant of LWE. While lattice-based cryptography is known to enable many advanced constructions, constructing Fully Homomorphic Encryption schemes based on LWR remains an under-explored part of the literature. In this work, we present a thorough study of Somewhat Homomorphic...
Distributing Keys and Random Secrets with Constant Complexity
Benny Applebaum, Benny Pinkas
Cryptographic protocols
In the *Distributed Secret Sharing Generation* (DSG) problem $n$ parties wish to obliviously sample a secret-sharing of a random value $s$ taken from some finite field, without letting any of the parties learn $s$. *Distributed Key Generation* (DKG) is a closely related variant of the problem in which, in addition to their private shares, the parties also generate a public ``commitment'' $g^s$ to the secret. Both DSG and DKG are central primitives in the domain of secure multiparty...
How (not) to Build Quantum PKE in Minicrypt
Longcheng Li, Qian Li, Xingjian Li, Qipeng Liu
Foundations
The seminal work by Impagliazzo and Rudich (STOC'89) demonstrated the impossibility of constructing classical public key encryption (PKE) from one-way functions (OWF) in a black-box manner. However, the question remains: can quantum PKE (QPKE) be constructed from quantumly secure OWF?
A recent line of work has shown that it is indeed possible to build QPKE from OWF, but with one caveat --- they rely on quantum public keys, which cannot be authenticated and reused. In this work, we...
Faster verifications and smaller signatures: Trade-offs for ALTEQ using rejections
Arnaud Sipasseuth
Public-key cryptography
In this paper, we introduce a new probability function parameter in the instantiations of the Goldreich-Micali-Wigderson with Fiat-Shamir and unbalanced challenges used in ALTEQ, a recent NIST PQC candidate in the call for additional signatures. This probability set at 100% does not bring any changes in the scheme, but modifies the public challenge generation process when below 100%, by injecting potential rejections in otherwise completely valid inputs.
From a theoretical point of view,...
Detecting Rogue Decryption in (Threshold) Encryption via Self-Incriminating Proofs
James Hsin-yu Chiang, Bernardo David, Tore Kasper Frederiksen, Arup Mondal, Esra Yeniaras
Public-key cryptography
Keeping decrypting parties accountable in public key encryption is notoriously hard since the secret key owner can decrypt any arbitrary ciphertext. Threshold encryption aims to solve this issue by distributing the power to decrypt among a set of parties, who must interact via a decryption protocol. However, such parties can employ cryptographic tools such as Multiparty Computation (MPC) to decrypt arbitrary ciphertexts without being detected. We introduce the notion of (threshold)...
Incorporating SIS Problem into Luby-Rackoff Cipher
Yu Morishima, Masahiro Kaminaga
Secret-key cryptography
With the rise of quantum computing, the security of traditional cryptographic systems, especially those vulnerable to quantum attacks, is under threat. While public key cryptography has been widely studied in post-quantum security, symmetric-key cryptography has received less attention. This paper explores using the Ajtai-Micciancio hash function, based on the Short Integer Solution (SIS) problem, as a pseudorandom function in the Luby-Rackoff cipher. Since lattice-based problems like SIS...
Admissible Parameters for the Crossbred Algorithm and Semi-regular Sequences over Finite Fields
John Baena, Daniel Cabarcas, Sharwan K. Tiwari, Javier Verbel, Luis Villota
Attacks and cryptanalysis
Multivariate public key cryptography (MPKC) is one of the most promising alternatives to build quantum-resistant signature schemes, as evidenced in NIST's call for additional post-quantum signature schemes. The main assumption in MPKC is the hardness of the Multivariate Quadratic (MQ) problem, which seeks for a common root to a system of quadratic polynomials over a finite field. Although the Crossbred algorithm is among the most efficient algorithm to solve MQ over small fields, its...
Reducing the CRS Size in Registered ABE Systems
Rachit Garg, George Lu, Brent Waters, David J. Wu
Public-key cryptography
Attribute-based encryption (ABE) is a generalization of public-key encryption that enables fine-grained access control to encrypted data. In (ciphertext-policy) ABE, a central trusted authority issues decryption keys for attributes $x$ to users. In turn, ciphertexts are associated with a decryption policy $\mathcal{P}$. Decryption succeeds and recovers the encrypted message whenever $\mathcal{P}(x) = 1$. Recently, Hohenberger, Lu, Waters, and Wu (Eurocrypt 2023) introduced the notion of...
Compact Encryption based on Module-NTRU problems
Shi Bai, Hansraj Jangir, Hao Lin, Tran Ngo, Weiqiang Wen, Jinwei Zheng
Public-key cryptography
The Module-NTRU problem, introduced by Cheon, Kim,
Kim, Son (IACR ePrint 2019/1468), and Chuengsatiansup, Prest, Stehlé,
Wallet, Xagawa (ASIACCS ’20), generalizes the versatile NTRU assump-
tion. One of its main advantages lies in its ability to offer greater flexibil-
ity on parameters, such as the underlying ring dimension. In this work,
we present several lattice-based encryption schemes, which are IND-CPA
(or OW-CPA) secure in the standard model based on the Module-NTRU
and...
A New Cryptographic Algorithm
Ali Mahdoum
Cryptographic protocols
The advent of quantum computing technology will compromise many of the current cryptographic algorithms, especially public-key cryptography, which is widely used to protect digital information. Most algorithms on which we depend are used worldwide in components of many different communications, processing, and storage systems. Once access to practical quantum computers becomes available, all public-key algorithms and associated protocols will be vulnerable to criminals, competitors, and...
Learning with Quantization: Construction, Hardness, and Applications
Shanxiang Lyu, Ling Liu, Cong Ling
Foundations
This paper presents a generalization of the Learning With Rounding (LWR) problem, initially introduced by Banerjee, Peikert, and Rosen, by applying the perspective of vector quantization. In LWR, noise is induced by scalar quantization. By considering a new variant termed Learning With Quantization (LWQ), we explore large-dimensional fast-decodable lattices with superior quantization properties, aiming to enhance the compression performance over scalar quantization. We identify polar...
BUFFing FALCON without Increasing the Signature Size
Samed Düzlü, Rune Fiedler, Marc Fischlin
Public-key cryptography
This work shows how FALCON can achieve the Beyond UnForgeability Features (BUFF) introduced by Cremers et al. (S&P'21) more efficiently than by applying the generic BUFF transform. Specifically, we show that applying a transform of Pornin and Stern (ACNS'05), dubbed PS-3 transform, already suffices for FALCON to achieve BUFF security. For FALCON, this merely means to include the public key in the hashing step in signature generation and verification, instead of hashing only the nonce and the...
Quantum-Safe Account Recovery for WebAuthn
Douglas Stebila, Spencer Wilson
Cryptographic protocols
WebAuthn is a passwordless authentication protocol which allows users to authenticate to online services using public-key cryptography. Users prove their identity by signing a challenge with a private key, which is stored on a device such as a cell phone or a USB security token. This approach avoids many of the common security problems with password-based authentication.
WebAuthn's reliance on proof-of-possession leads to a usability issue, however: a user who loses access to their...
Asynchronous Consensus without Trusted Setup or Public-Key Cryptography
Sourav Das, Sisi Duan, Shengqi Liu, Atsuki Momose, Ling Ren, Victor Shoup
Cryptographic protocols
Byzantine consensus is a fundamental building block in distributed cryptographic problems. Despite decades of research, most existing asynchronous consensus protocols require a strong trusted setup and expensive public-key cryptography. In this paper, we study asynchronous Byzantine consensus protocols that do not rely on a trusted setup and do not use public-key cryptography such as digital signatures. We give an Asynchronous Common Subset (ACS) protocol whose security is only based on...
Agile, Post-quantum Secure Cryptography in Avionics
Karolin Varner, Wanja Zaeske, Sven Friedrich, Aaron Kaiser, Alice Bowman
Cryptographic protocols
To introduce a post-quantum-secure encryption scheme specifically for use in flight-computers, we used avionics’ module-isolation methods to wrap a recent encryption standard (HPKE – Hybrid Public Key Encryption) within a software partition. This solution proposes an upgrade to HPKE, using quantum-resistant ciphers (Kyber/ML-KEM and Dilithium/ML-DSA) redundantly alongside well-established ciphers, to achieve post-quantum security.
Because cryptographic technology can suddenly become...
2024/652
Last updated: 2024-05-08
Compact and Secure Zero-Knowledge Proofs for Quantum-Resistant Cryptography from Modular Lattice Innovations
Samuel Lavery
Public-key cryptography
This paper presents a comprehensive security analysis of the Adh zero-knowledge proof system, a novel lattice-based, quantum-resistant proof of possession system. The Adh system offers compact key and proof sizes, making it suitable for real-world digital signature and public key agreement protocols. We explore its security by reducing it to the hardness of the Module-ISIS problem and introduce three new variants: Module-ISIS+, Module-ISIS*, and Module-ISIS**. These constructions enhance...
Pairing Optimizations for Isogeny-based Cryptosystems
Shiping Cai, Kaizhan Lin, Chang-An Zhao
Implementation
In isogeny-based cryptography, bilinear pairings are regarded as a powerful tool in various applications, including key compression, public-key validation and torsion basis generation. However, in most isogeny-based protocols, the performance of pairing computations is unsatisfactory due to the high computational cost of the Miller function. Reducing the computational expense of the Miller function is crucial for enhancing the overall performance of pairing computations in isogeny-based...
Efficient Permutation Correlations and Batched Random Access for Two-Party Computation
Stanislav Peceny, Srinivasan Raghuraman, Peter Rindal, Harshal Shah
Cryptographic protocols
In this work we formalize the notion of a two-party permutation correlation $(A, B), (C, \pi)$ s.t. $\pi(A)=B+C$ for a random permutation $\pi$ of $n$ elements and vectors $A,B,C\in \mathbb{F}^n$. This correlation can be viewed as an abstraction and generalization of the Chase et al. (Asiacrypt 2020) share translation protocol. We give a systematization of knowledge for how such a permutation correlation can be derandomized to allow the parties to perform a wide range of oblivious...
LIT-SiGamal: An efficient isogeny-based PKE based on a LIT diagram
Tomoki Moriya
Public-key cryptography
In this paper, we propose a novel isogeny-based public key encryption (PKE) scheme named LIT-SiGamal. This is based on a LIT diagram and SiGamal. SiGamal is an isogeny-based PKE scheme that uses a commutative diagram with an auxiliary point. LIT-SiGamal uses a LIT diagram which is a commutative diagram consisting of large-degree horizontal isogenies and relatively small-degree vertical isogenies, while the original SiGamal uses a CSIDH diagram.
A strength of LIT-SiGamal is efficient...
On implementation of Stickel's key exchange protocol over max-min and max-$T$ semirings
Sulaiman Alhussaini, Serge˘ı Sergeev
Public-key cryptography
Given that the tropical Stickel protocol and its variants are all vulnerable to the generalized Kotov-Ushakov attack, we suggest employing the max-min semiring and, more generally, max-$T$ semiring where the multiplication is based on a $T-$norm, as a framework to implement the Stickel protocol. While the Stickel protocol over max-min semiring or max-$T$ semiring remains susceptible to a form of Kotov-Ushakov attack, we demonstrate that it exhibits significantly increased resistance against...
The Insecurity of SHA2 under the Differential Fault Characteristic of Boolean Functions
Weiqiong Cao, Hua Chen, Hongsong Shi, Haoyuan Li, Jian Wang
Attacks and cryptanalysis
SHA2 is widely used in various traditional public key ryptosystems, post-quantum cryptography, personal identification, and network communication protocols. Therefore, ensuring its robust security is of critical importance. Several differential fault attacks based on random word fault have targeted SHA1 and SHACAL-2. However, extending such random word-based fault attacks to SHA2 proves to be much more difficult due to the increased complexity of the Boolean functions in SHA2.
In this...
Knot-based Key Exchange protocol
Silvia Sconza, Arno Wildi
Public-key cryptography
We propose a new key exchange protocol based on the Generalised Diffie-Hellman Key Exchange. In the latter, instead of using a group-action, we consider a semigroup action. In our proposal, the semigroup is the set of oriented knots in $\mathbb{S}^3$ with the operation of connected sum. As a semigroup action, we choose the action of the semigroup on itself through the connected sum. For the protocol to work, we need to use knot invariants, which allow us to create the shared secret key...
Polytopes in the Fiat-Shamir with Aborts Paradigm
Henry Bambury, Hugo Beguinet, Thomas Ricosset, Eric Sageloli
Public-key cryptography
The Fiat-Shamir with Aborts paradigm (FSwA) uses rejection sampling to remove a secret’s dependency on a given source distribution. Recent results revealed that unlike the uniform distribution in the hypercube, both the continuous Gaussian and the uniform distribution within the hypersphere minimise the rejection rate and the size of the proof of knowledge. However, in practice both these distributions suffer from the complexity of their sampler. So far, those three distributions are the...
SILBE: an Updatable Public Key Encryption Scheme from Lollipop Attacks
Max Duparc, Tako Boris Fouotsa, Serge Vaudenay
Public-key cryptography
We present a new post-quantum Public Key Encryption scheme (PKE) named Supersingular Isogeny Lollipop Based Encryption or SILBE. SILBE is obtained by leveraging the generalised lollipop attack of Castryck and Vercauteren on the M-SIDH Key exchange by Fouotsa, Moriya and Petit.
Doing so, we can in fact make SILBE a post-quantum secure Updatable Public Key Encryption scheme (UPKE). SILBE is in fact the first isogeny-based UPKE which is not based on group actions. Hence, SILBE overcomes the...
A New Public Key Cryptosystem Based on the Cubic Pell Curve
Michel Seck, Abderrahmane Nitaj
Public-key cryptography
Since its invention in 1978 by Rivest, Shamir and Adleman, the public key cryptosystem RSA has become a widely popular and a widely useful scheme in cryptography. Its security is related to the difficulty of factoring large integers which are the product of two large prime numbers. For various reasons, several variants of RSA have been proposed, and some have different arithmetics such as elliptic and singular cubic curves. In 2018, Murru and Saettone proposed another variant of RSA based on...
An Efficient Adaptive Attack Against FESTA
Guoqing Zhou, Maozhi Xu
Attacks and cryptanalysis
At EUROCRYPT’23, Castryck and Decru, Maino et al., and Robert present efficient attacks against supersingular isogeny Diffie-Hellman key exchange protocol (SIDH). Drawing inspiration from these attacks, Andrea Basso, Luciano Maino, and Giacomo Pope introduce FESTA, an isogeny-based trapdoor function, along with a corresponding IND-CCA secure public key encryption (PKE) protocol at ASIACRYPT’23. FESTA incorporates either a diagonal or circulant matrix into the secret key to mask torsion...
Practical Attack on All Parameters of the DME Signature Scheme
Pierre Briaud, Maxime Bros, Ray Perlner, Daniel Smith-Tone
Attacks and cryptanalysis
DME is a multivariate scheme submitted to the call for additional signatures recently launched by NIST. Its performance is one of the best among all the candidates. The public key is constructed from the alternation of very structured linear and non-linear components that constitute the private key, the latter being defined over an extension field. We exploit these structures by proposing an algebraic attack which is practical on all DME parameters.
Fault Attacks on UOV and Rainbow
Juliane Krämer, Mirjam Loiero
Attacks and cryptanalysis
Multivariate cryptography is one of the main candidates for
creating post-quantum public key cryptosystems. Especially in the area of digital signatures, there exist many practical and secure multivariate schemes. The signature schemes UOV and Rainbow are two of the most promising and best studied multivariate schemes which have proven secure
for more than a decade. However, so far the security of multivariate signature schemes towards physical attacks has not been appropriately assessed....
Beyond the circuit: How to Minimize Foreign Arithmetic in ZKP Circuits
Michele Orrù, George Kadianakis, Mary Maller, Greg Zaverucha
Cryptographic protocols
Zero-knowledge circuits are frequently required to prove gadgets that are not optimised for the constraint system in question. A particularly daunting task is to embed foreign arithmetic such as Boolean operations, field arithmetic, or public-key cryptography.
We construct techniques for offloading foreign arithmetic from a zero-knowledge circuit including:
(i) equality of discrete logarithms across different groups;
(ii) scalar multiplication without requiring elliptic curve...
Public-Key Cryptography through the Lens of Monoid Actions
Hart Montgomery, Sikhar Patranabis
Foundations
We provide a novel view of public-key cryptography by showing full equivalences of certain primitives to "hard" monoid actions. More precisely, we show that key exchange and two-party computation are exactly equivalent to monoid actions with certain structural and hardness properties. To the best of our knowledge, this is the first "natural" characterization of the mathematical structure inherent to any key exchange or two-party computation protocol, and the first explicit proof of the...
Singular points of UOV and VOX
Pierre Pébereau
Attacks and cryptanalysis
In this work, we study the singular locus of the varieties defined by the public keys of UOV and VOX, two multivariate quadratic signature schemes submitted to the additional NIST call for signature schemes.
Singular points do not exist for generic quadratic systems, which enables us to introduce a new algebraic attack against UOV-based schemes.
We show that this attack can be seen as an algebraic variant of the Kipnis-Shamir attack, which can be obtained in our framework as an...
2024/208
Last updated: 2024-05-08
Asymmetric Cryptography from Number Theoretic Transformations
Samuel Lavery
Public-key cryptography
In this work, we introduce a family of asymmetric cryptographic functions based on dynamic number theoretic transformations with multiple rounds of modular arithmetic to enhance diffusion and difficulty of inversion. This function acts as a basic cryptographic building block for a novel communication-efficient zero-knowledge crypto-system. The system as defined exhibits partial homomorphism and behaves as an additive positive accumulator. By using a novel technique to constructively embed...
QPP and HPPK: Unifying Non-Commutativity for Quantum-Secure Cryptography with Galois Permutation Group
Randy Kuang
Cryptographic protocols
In response to the evolving landscape of quantum computing and the heightened vulnerabilities in classical cryptographic systems, our paper introduces a comprehensive cryptographic framework. Building upon the pioneering work of Kuang et al., we present a unification of two innovative primitives: the Quantum Permutation Pad (QPP) for symmetric key encryption and the Homomorphic Polynomial Public Key (HPPK) for Key Encapsulation Mechanism (KEM) and Digital Signatures (DS). By harnessing...
Machine Learning based Blind Side-Channel Attacks on PQC-based KEMs - A Case Study of Kyber KEM
Prasanna Ravi, Dirmanto Jap, Shivam Bhasin, Anupam Chattopadhyay
Attacks and cryptanalysis
Kyber KEM, the NIST selected PQC standard for Public Key Encryption and Key Encapsulation Mechanisms (KEMs) has been subjected to a variety of side-channel attacks, through the course of the NIST PQC standardization process. However, all these attacks targeting the decapsulation procedure of Kyber KEM either require knowledge of the ciphertexts or require to control the value of ciphertexts for key recovery. However, there are no known attacks in a blind setting, where the attacker does not...
Broadcast Encryption using Sum-Product decomposition of Boolean functions
Aurélien Dupin, Simon Abelard
Cryptographic protocols
The problem of Broadcast Encryption (BE) consists in broadcasting an encrypted message to a large number of users or receiving devices in such a way that the emitter of the message can control which of the users can or cannot decrypt it.
Since the early 1990's, the design of BE schemes has received significant interest and many different concepts were proposed. A major breakthrough was achieved by Naor, Naor and Lotspiech (CRYPTO 2001) by partitioning cleverly the set of authorized...
Correction Fault Attacks on Randomized CRYSTALS-Dilithium
Elisabeth Krahmer, Peter Pessl, Georg Land, Tim Güneysu
Attacks and cryptanalysis
After NIST’s selection of Dilithium as the primary future standard for quantum-secure digital signatures, increased efforts to understand its implementation security properties are required to enable widespread adoption on embedded devices. Concretely, there are still many open questions regarding the susceptibility of Dilithium to fault attacks. This is especially the case for Dilithium’s randomized (or hedged) signing mode, which, likely due to devastating implementation attacks on the...
R3PO: Reach-Restricted Reactive Program Obfuscation and its Application to MA-ABE
Kaartik Bhushan, Sai Lakshmi Bhavana Obbattu, Manoj Prabhakaran, Rajeev Raghunath
Foundations
In recent breakthrough results, novel use of garbled circuits yielded constructions for several primitives like Identity-Based Encryption (IBE) and 2-round secure multi-party computation, based on standard assumptions in public-key cryptography. While the techniques in these different results have many common elements, these works did not offer a modular abstraction that could be used across them.
Our main contribution is to introduce a novel notion of obfuscation, called Reach-Restricted...
A Novel Power Analysis Attack against CRYSTALS-Dilithium Implementation
Yong Liu, Yuejun Liu, Yongbin Zhou, Yiwen Gao, Zehua Qiao, Huaxin Wang
Attacks and cryptanalysis
Post-Quantum Cryptography (PQC) was proposed due to the potential threats quantum computer attacks against conventional public key cryptosystems, and four PQC algorithms besides CRYSTALS-Dilithium (Dilithium for short) have so far been selected for NIST standardization. However, the selected algorithms are still vulnerable to side-channel attacks in practice, and their physical security need to be further evaluated.
This study introduces two efficient power analysis attacks, the optimized...
Short Code-based One-out-of-Many Proofs and Applications
Xindong Liu, Li-Ping Wang
Public-key cryptography
In this work, we propose two novel succinct one-out-of-many proofs from coding theory, which can be seen as extensions of the Stern's framework and Veron's framework from proving knowledge of a preimage to proving knowledge of a preimage for one element in a set, respectively. The size of each proof is short and scales better with the size of the public set than the code-based accumulator in \cite{nguyen2019new}. Based on our new constructions, we further present a logarithmic-size ring...
X-Wing: The Hybrid KEM You’ve Been Looking For
Manuel Barbosa, Deirdre Connolly, João Diogo Duarte, Aaron Kaiser, Peter Schwabe, Karoline Varner, Bas Westerbaan
Public-key cryptography
X-Wing is a hybrid key-encapsulation mechanism based on X25519 and ML-KEM-768. It is designed to be the sensible choice for most applications. The concrete choice of X25519 and ML-KEM-768 allows X-Wing to achieve improved efficiency compared to using a generic KEM combiner. In this paper, we introduce the X-Wing hybrid KEM construction and provide a proof of security. We show (1) that X-Wing is a classically IND-CCA secure KEM if the strong Diffie-Hellman assumption holds in the X25519...
Towards Compact Identity-based Encryption on Ideal Lattices
Huiwen Jia, Yupu Hu, Chunming Tang, Lin Wang
Public-key cryptography
Basic encryption and signature on lattices have comparable efficiency to their classical counterparts in terms of speed and key size. However, Identity-based Encryption (IBE) on lattices is much less efficient in terms of compactness, even when instantiated on ideal lattices and in the Random Oracle Model (ROM). This is because the underlying preimage sampling algorithm used to extract the users' secret keys requires huge public parameters. In this work, we specify a compact IBE...
Benchmark Performance of Homomorphic Polynomial Public Key Cryptography for Key Encapsulation and Digital Signature Schemes
Randy Kuang, Maria Perepechaenko, Dafu Lou, Brinda Tank
Public-key cryptography
This paper conducts a comprehensive benchmarking analysis of the performance of two innovative cryptographic schemes: Homomorphic Polynomial Public Key (HPPK)-Key Encapsulation Mechanism (KEM) and Digital Signature (DS), recently proposed by Kuang et al. These schemes represent a departure from traditional cryptographic paradigms, with HPPK leveraging the security of homomorphic symmetric encryption across two hidden rings without reliance on NP-hard problems. HPPK can be viewed as a...
On the tropical two-sided discrete logarithm and a key exchange protocol based on the tropical algebra of pairs
Sulaiman Alhussaini, Craig Collett, Serge˘ı Sergeev
Attacks and cryptanalysis
Since the existing tropical cryptographic protocols are either susceptible to the Kotov-Ushakov attack and its generalization, or to attacks based on tropical matrix periodicity and predictive behaviour, several attempts have been made to propose protocols that resist such attacks. Despite these attempts, many of the proposed protocols remain vulnerable to attacks targeting the underlying hidden problems, one of which we call the tropical two-sided discrete logarithm with shift. An...
On short digital signatures with Eulerian transformations
Vasyl Ustimenko
Foundations
Let n stands for the length of digital signatures with quadratic multivariate public rule in n variables. We construct postquantum secure procedure to sign O(n^t), t ≥1 digital documents with the signature of size n in time O(n^{3+t}). It allows to sign O(n^t), t <1 in time O(n^4). The procedure is defined in terms of Algebraic Cryptography. Its security rests on the semigroup based protocol of Noncommutative Cryptography referring to complexity of the decomposition of the collision...
We construct a provably-secure structured variant of Learning with Errors (LWE) using nonassociative cyclic division algebras, assuming the hardness of worst-case structured lattice problems, for which we are able to give a full search-to-decision reduction, improving upon the construction of Grover et al. named `Cyclic Learning with Errors' (CLWE). We are thus able to create structured LWE over cyclic algebras without any restriction on the size of secret spaces, which was required for CLWE...
The CRYSTALS-Dilithium digital signature scheme, selected by NIST as a post-quantum cryptography (PQC) standard under the name ML-DSA, employs a public key compression technique intended for performance optimization. Specifically, the module learning with error instance $({\bf A}, {\bf t})$ is compressed by omitting the low-order bits ${\bf t_0}$ of the vector ${\bf t}$. It was recently shown that knowledge of ${\bf t_0}$ enables more effective side-channel attacks on Dilithium...
We will present here new multivariate encryption algorithms. This is interesting since few multivariate encryption scheme currently exist, while their exist many more multivariate signature schemes. Our algorithms will combine several ideas, in particular the idea of the LL’ perturbation originally introduced, but only for signature, in [GP06]. In this paper, the LL’ perturbation will be used for encryption and will greatly differ from [GP06]. As we will see, our algorithms resists to all...
Proxy re-encryption (PRE) allows semi-honest party (called proxy) to convert a ciphertext under a public key into a ciphertext under another public key. Due to this functionality, there are various applications such as encrypted email forwarding, key escrow, and securing distributed file systems. Meanwhile, post-quantum cryptography (PQC) is one of the most important research areas because development of quantum computers has been advanced recently. In particular, there are many researches...
The interest in realizing generic PQC KEM-based PAKEs has increased significantly in the last few years. One such PAKE is the CAKE protocol, proposed by Beguinet et al. (ACNS ’23). However, despite its simple design based on the well-studied PAKE protocol EKE by Bellovin and Merritt (IEEE S&P ’92), both CAKE and its variant OCAKE do not fully protect against quantum adversaries, as they rely on the Ideal Cipher (IC) model. Related and follow-up works, including Pan and Zeng (ASIACRYPT ’23),...
Unbalanced Oil and Vinegar (UOV) is one of the oldest, simplest, and most studied ad-hoc multivariate signature schemes. UOV signature schemes are attractive because they have very small signatures and fast verification. On the downside, they have large public and secret keys. As a result, variations of the traditional UOV scheme are usually developed with the goal to reduce the key sizes. Seven variants of UOV were submitted to the additional call for digital signatures by NIST, prior to...
Homomorphic encryption (HE) is a foundational technology in privacy-enhancing cryptography, enabling non-interactive computation over encrypted data. Recently, generalized HE primitives designed for multi-party applications, such as multi-group HE (MGHE), have gained significant research interest. While constructing secure multi-party protocols from (MG)HE in the semi-honest model is straightforward, zero-knowledge techniques are essential for ensuring security against malicious...
Given the devastating security compromises caused by side-channel attacks on existing classical systems, can we store our private data encoded as a quantum state so that they can be kept private in the face of arbitrary side-channel attacks? The unclonable nature of quantum information allows us to build various quantum protection schemes for cryptographic information such as secret keys. Examples of quantum protection notions include copy-protection, secure leasing, and finally,...
In response to the quantum threat, new post-quantum cryptographic algorithms will soon be deployed to replace existing public-key schemes. MAYO is a quantum-resistant digital signature scheme whose small keys and signatures make it suitable for widespread adoption, including on embedded platforms with limited security resources. This paper demonstrates two single-trace side-channel attacks on a MAYO implementation in ARM Cortex-M4 that recover a secret key with probabilities of 99.9% and...
The hardness of lattice problems offers one of the most promising security foundations for quantum-safe cryptography. Basic schemes for public key encryption and digital signatures are already close to standardization at NIST and several other standardization bodies, and the research frontier has moved on to building primitives with more advanced privacy features. At the core of many such primi- tives are zero-knowledge proofs. In recent years, zero-knowledge proofs for (and using)...
Pseudorandom codes are error-correcting codes with the property that no efficient adversary can distinguish encodings from uniformly random strings. They were recently introduced by Christ and Gunn [CRYPTO 2024] for the purpose of watermarking the outputs of randomized algorithms, such as generative AI models. Several constructions of pseudorandom codes have since been proposed, but none of them are robust to error channels that depend on previously seen codewords. This stronger kind of...
We put forth Oblivious State Preparation (OSP) as a cryptographic primitive that unifies techniques developed in the context of a quantum server interacting with a classical client. OSP allows a classical polynomial-time sender to input a choice of one out of two public observables, and a quantum polynomial-time receiver to recover an eigenstate of the corresponding observable -- while keeping the sender's choice hidden from any malicious receiver. We obtain the following results: - The...
Recent active studies have demonstrated that cryptography without one-way functions (OWFs) could be possible in the quantum world. Many fundamental primitives that are natural quantum analogs of OWFs or pseudorandom generators (PRGs) have been introduced, and their mutual relations and applications have been studied. Among them, pseudorandom function-like state generators (PRFSGs) [Ananth, Qian, and Yuen, Crypto 2022] are one of the most important primitives. PRFSGs are a natural quantum...
The Supersingular Isogeny Diffie-Hellman (SIDH) scheme is a public key cryptosystem that was submitted to the National Institute of Standards and Technology's competition for the standardization of post-quantum cryptography protocols. The private key in SIDH consists of an isogeny whose degree is a prime power. In July 2022, Castryck and Decru discovered an attack that completely breaks the scheme by recovering Bob's secret key, using isogenies between higher dimensional abelian varieties to...
Shoup and Smart (SS24) recently introduced a lightweight asynchronous verifiable secret sharing (AVSS) protocol with optimal resilience directly from cryptographic hash functions (JoC 2024), offering plausible quantum resilience and computational efficiency. However, SS24 AVSS only achieves standard secrecy to keep the secret confidential against $n/3$ corrupted parties \textit{if no honest party publishes its share}. In contrast, from ``heavyweight'' public-key cryptography, one can...
With the advent of quantum computers, the security of cryptographic primitives, including digital signature schemes, has been compromised. To deal with this issue, some signature schemes have been introduced to resist against these computers. These schemes are known as post-quantum signature schemes. One group of these schemes is based on the hard problems of coding theory, called code-based cryptographic schemes. Several code-based signature schemes are inspired by the McEliece encryption...
Public key cryptography can be based on integer factorization and the discrete logarithm problem (DLP), applicable in multiplicative groups and elliptic curves. Regev’s recent quantum algorithm was initially designed for the factorization and was later extended to the DLP in the multiplicative group. In this article, we further extend the algorithm to address the DLP for elliptic curves. Notably, based on celebrated conjectures in Number Theory, Regev’s algorithm is asymptotically...
In parallel with the standardization of lattice-based cryptosystems, the research community in Post-quantum Cryptography focused on non-lattice-based hard problems for constructing public-key cryptographic primitives. The Linear Code Equivalence (LCE) Problem has gained attention regarding its practical applications and cryptanalysis. Recent advancements, including the LESS signature scheme and its candidacy in the NIST standardization for additional signatures, supported LCE as a...
HFE (that stands for Hidden Field Equations) belongs to multivariate cryptography and was designed by Jacques Patarin in 1996 as a public key trapdoor suitable for encryption or signature. This original basic version is unfortunately known to have a super-polynomial attack, but as imagined since the beginning, it comes with various variants, one can describe as combinations of “modifiers”. In this work, we first present the state of the art of these HFE modifiers, along with their...
With the recent standardization of post-quantum cryptographic algorithms, research efforts have largely remained centered on public key exchange and encryption schemes. Argument systems, which allow a party to efficiently argue the correctness of a computation, have received comparatively little attention regarding their quantum-resilient design. These computational integrity frameworks often rely on cryptographic assumptions, such as pairings or group operations, which are vulnerable to...
One of the main candidates of post-quantum cryptography is lattice-based cryptography. Its cryptographic security against quantum attackers is based on the worst-case hardness of lattice problems like the shortest vector problem (SVP), which asks to find the shortest non-zero vector in an integer lattice. Asymptotic quantum speedups for solving SVP are known and rely on Grover's search. However, to assess the security of lattice-based cryptography against these Grover-like quantum speedups,...
Quantum pseudorandomness has found applications in many areas of quantum information, ranging from entanglement theory, to models of scrambling phenomena in chaotic quantum systems, and, more recently, in the foundations of quantum cryptography. Kretschmer (TQC '21) showed that both pseudorandom states and pseudorandom unitaries exist even in a world without classical one-way functions. To this day, however, all known constructions require classical cryptographic building blocks which are...
Authenticated encryption (AE) is a cryptographic mechanism that allows communicating parties to protect the confidentiality and integrity of messages exchanged over a public channel, provided they share a secret key. In this work, we present new AE schemes leveraging the SHA-3 standard functions SHAKE128 and SHAKE256, offering 128 and 256 bits of security strength, respectively, and their “Turbo” counterparts. They support session-based communication, where a ciphertext authenticates the...
Recently, a more efficient attack on the initial tropical Stickel protocol has been proposed, different from the previously known Kotov-Ushakov attack, yet equally guaranteed to succeed. Given that the Stickel protocol can be implemented in various ways, such as utilizing platforms beyond the tropical semiring or employing alternative commutative matrix ``classes'' instead of polynomials, we firstly explore the generalizability of this new attack across different implementations of the...
We propose a new cryptographic primitive called "batched identity-based encryption" (Batched IBE) and its thresholdized version. The new primitive allows encrypting messages with specific identities and batch labels, where the latter can represent, for example, a block number on a blockchain. Given an arbitrary subset of identities for a particular batch, our primitive enables efficient issuance of a single decryption key that can be used to decrypt all ciphertexts having identities that are...
Artificial Intelligence (AI) has steadily improved across a wide range of tasks, and a significant breakthrough towards general intelligence was achieved with the rise of generative deep models, which have garnered worldwide attention. However, the development and deployment of AI are almost entirely controlled by a few powerful organizations and individuals who are racing to create Artificial General Intelligence (AGI). These centralized entities make decisions with little public oversight,...
Secure key leasing (a.k.a. key-revocable cryptography) enables us to lease a cryptographic key as a quantum state in such a way that the key can be later revoked in a verifiable manner. We propose a simple framework for constructing cryptographic primitives with secure key leasing via the certified deletion property of BB84 states. Based on our framework, we obtain the following schemes. - A public key encryption scheme with secure key leasing that has classical revocation based on any...
SQIsign is a well-known post-quantum signature scheme due to its small combined signature and public-key size. However, SQIsign suffers from notably long signing times, and verification times are not short either. To improve this, recent research has explored both one-dimensional and two-dimensional variants of SQIsign, each with distinct characteristics. In particular, SQIsign2D's efficient signing and verification times have made it a focal point of recent research. However, the absence of...
As the industry prepares for the transition to post-quantum secure public key cryptographic algorithms, vulnerability analysis of their implementations is gaining importance. A theoretically secure cryptographic algorithm should also be able to withstand the challenges of physical attacks in real-world environments. MAYO is a candidate in the ongoing first round of the NIST post-quantum standardization process for selecting additional digital signature schemes. This paper demonstrates three...
In this paper, we introduce the notion of relaxed lattice-based programmable hash function (RPHF), which is a novel variant of lattice-based programmable hash functions (PHFs). Lattice-based PHFs, together with preimage trapdoor functions (TDFs), have been widely utilized (implicitly or explicitly) in the construction of adaptively secure identity-based encryption (IBE) schemes. The preimage length and the output length of the underlying PHF and TDF together determine the user secret key and...
Keccak acts as the hash algorithm and eXtendable-Output Function (XOF) specified in the NIST standard drafts for Kyber and Dilithium. The Keccak output is highly correlated with sensitive information. While in RSA and ECDSA, hash-like components are only used to process public information, such as the message. The importance and sensitivity of hash-like components like Keccak are much higher in Kyber and Dilithium than in traditional public-key cryptography. However, few works study Keccak...
Although one-way functions are well-established as the minimal primitive for classical cryptography, a minimal primitive for quantum cryptography is still unclear. Universal extrapolation, first considered by Impagliazzo and Levin (1990), is hard if and only if one-way functions exist. Towards better understanding minimal assumptions for quantum cryptography, we study the quantum analogues of the universal extrapolation task. Specifically, we put forth the classical$\rightarrow$quantum...
Recent oracle separations [Kretschmer, TQC'21, Kretschmer et. al., STOC'23] have raised the tantalizing possibility of building quantum cryptography from sources of hardness that persist even if the polynomial hierarchy collapses. We realize this possibility by building quantum bit commitments and secure computation from unrelativized, well-studied mathematical problems that are conjectured to be hard for $\mathsf{P}^{\#\mathsf{P}}$ -- such as approximating the permanents of complex Gaussian...
Modern data analytics requires computing functions on streams of data points from many users that are challenging to calculate, due to both the high scale and nontrivial nature of the computation at hand. The need for data privacy complicates this matter further, as general-purpose privacy-enhancing technologies face limitations in at least scalability or utility. Existing work has attempted to improve this by designing purpose-built protocols for the use case of Private Stream Aggregation;...
Zero-Knowledge (ZK) protocols allow a prover to demonstrate the truth of a statement without disclosing additional information about the underlying witness. Code-based cryptography has a long history but did suffer from periods of slow development. Recently, a prominent line of research have been contributing to designing efficient code-based ZK from MPC-in-the-head (Ishai et al., STOC 2007) and VOLE-in-the head (VOLEitH) (Baum et al., Crypto 2023) paradigms, resulting in quite efficient...
In 2022, Wang et al. proposed the multivariate signature scheme SNOVA as a UOV variant over the non-commutative ring of $\ell \times \ell $ matrices over $\mathbb{F}_q$. This scheme has small public key and signature size and is a first round candidate of NIST PQC additional digital signature project. Recently, Ikematsu and Akiyama, and Li and Ding show that the core matrices of SNOVA with $v$ vinegar-variables and $o$ oil-variables are regarded as the representation matrices of UOV with...
In the post-quantum migration of TLS 1.3, an ephemeral Diffie-Hellman must be replaced with a post-quantum key encapsulation mechanism (KEM). At EUROCRYPT 2022, Huguenin-Dumittan and Vaudenay [EC:HugVau22] demonstrated that KEMs with standard CPA security are sufficient for the security of the TLS1.3 handshake. However, their result is only proven in the random oracle model (ROM), and as the authors comment, their reduction is very much non-tight and not sufficient to guarantee security in...
We present Scloud+, an LWE-based key encapsulation mechanism (KEM). The key feature of Scloud+ is its use of the unstructured-LWE problem (i.e., without algebraic structures such as rings or modules) and its incorporation of ternary secrets and lattice coding to enhance performance. A notable advantage of the unstructured-LWE problem is its resistance to potential attacks exploiting algebraic structures, making it a conservative choice for constructing high-security schemes. However, a...
SNOVA is a multivariate signature scheme submitted to the NIST project for additional signature schemes by Cho, Ding, Kuan, Li, Tseng, Tseng, and Wang. With small key and signature sizes good performance, SNOVA is one of the more efficient schemes in the competition, which makes SNOVA an important target for cryptanalysis. In this paper, we observe that SNOVA implicitly uses a structured version of the ``whipping'' technique developed for the MAYO signature scheme. We show that the...
The recent works of Ananth et al. (ITCS 2022) and Bartusek et al. (Eurocrypt 2023) initiated the study of pre-constrained cryptography which achieves meaningful security even against the system authority. In this work we significantly expand this area by defining several new primitives and providing constructions from simple, standard assumptions as follows. - Pre-Constrained Encryption. We define a weaker notion of pre-constrained encryption (PCE), as compared to the work of Ananth et...
We propose a new NTRU-based Public-Key Encryption (PKE) scheme called $\mathsf{NTRU+}\mathsf{PKE}$, which effectively incorporates the Fujisaki-Okamoto transformation for PKE (denoted as $\mathsf{FO}_{\mathsf{PKE}}$) to achieve chosen-ciphertext security in the Quantum Random Oracle Model (QROM). While $\mathsf{NTRUEncrypt}$, a first-round candidate in the NIST PQC standardization process, was proven to be chosen-ciphertext secure in the Random Oracle Model (ROM), it lacked corresponding...
Compared to elliptic curve cryptography, a main drawback of lattice-based schemes is the larger size of their public keys and ciphertexts. A common procedure for compressing these objects consists essentially of dropping some of their least significant bits. Albeit effective for compression, there is a limit to the number of bits to be dropped before we get a noticeable decryption failure rate (DFR), which is a security concern. To address this issue, this paper presents a family of...
With the potential arrival of quantum computers, it is essential to build cryptosystems resistant to attackers with the computing power of a quantum computer. With Shor's algorithm, cryptosystems based on discrete logarithms and factorization become obsolete. Reason why NIST has launching two competitions in 2016 and 2023 to standardize post-quantum cryptosystems (such as KEM and signature ) based on problems supposed to resist attacks using quantum computers. EagleSign was prosed to NIT...
For more than two decades, pairings have been a fundamental tool for designing elegant cryptosystems, varying from digital signature schemes to more complex privacy-preserving constructions. However, the advancement of quantum computing threatens to undermine public-key cryptography. Concretely, it is widely accepted that a future large-scale quantum computer would be capable to break any public-key cryptosystem used today, rendering today's public-key cryptography obsolete and mandating the...
Lattice cryptography is currently a major research focus in public-key encryption, renowned for its ability to resist quantum attacks. The introduction of ideal lattices (ring lattices) has elevated the theoretical framework of lattice cryptography. Ideal lattice cryptography, compared to classical lattice cryptography, achieves more acceptable operational efficiency through fast Fourier transforms. However, to date, issues of impracticality or insecurity persist in ideal lattice problems....
Blockchain technology ensures accountability, transparency, and redundancy in critical applications, includ- ing IoT with embedded systems. However, the reliance on public-key cryptography (PKC) makes blockchain vulnerable to quantum computing threats. This paper addresses the urgent need for quantum-safe blockchain solutions by integrating Post- Quantum Cryptography (PQC) into blockchain frameworks. Utilizing algorithms from the NIST PQC standardization pro- cess, we aim to fortify...
As a prominent category of side-channel attacks (SCAs), plaintext-checking (PC) oracle-based SCAs offer the advantages of generality and operational simplicity on a targeted device. At TCHES 2023, Rajendran et al. and Tanaka et al. independently proposed the multiple-valued (MV) PC oracle, significantly reducing the required number of queries (a.k.a., traces) in the PC oracle. However, in practice, when dealing with environmental noise or inaccuracies in the waveform classifier, they...
Resource-constrained devices such as wireless sensors and Internet of Things (IoT) devices have become ubiquitous in our digital ecosystem. These devices generate and handle a major part of our digital data. In the face of the impending threat of quantum computers on our public-key infrastructure, it is impossible to imagine the security and privacy of our digital world without integrating post-quantum cryptography (PQC) into these devices. Usually, due to the resource constraints of these...
Known attacks on the tropical implementation of Stickel protocol involve solving a minimal covering problem, and this leads to an exponential growth in the time required to recover the secret key as the used polynomial degree increases. Consequently, it can be argued that Alice and Bob can still securely execute the protocol by utilizing very high polynomial degrees, a feasible approach due to the efficiency of tropical operations. The same is true for the implementation of Stickel protocol...
In 2018, Mouha et al. (IEEE Trans. Reliability, 2018) performed a post-mortem investigation of the correctness of reference implementations submitted to the SHA3 competition run by NIST, finding previously unidentified bugs in a significant portion of them, including two of the five finalists. Their innovative approach allowed them to identify the presence of such bugs in a black-box manner, by searching for counterexamples to expected cryptographic properties of the implementations under...
In this paper we introduce new concept of tropical increasing matrices and then prove that two tropical increasing matrices are commute. Using this property, we modified Stickel’s protocol. This idea similar to [5] where modified Stickel’s protocol using commuting matrices (Linde De La Puente Matrices).
Oblivious Transfer (OT) is at the heart of secure computation and is a foundation for many applications in cryptography. Over two decades of work have led to extremely efficient protocols for evaluating OT instances in the preprocessing model, through a paradigm called OT extension. A few OT instances generated in an offline phase can be used to perform many OTs in an online phase efficiently, i.e., with very low communication and computational overheads. Specifically, traditional OT...
A sequential function is, informally speaking, a function $f$ for which a massively parallel adversary cannot compute "substantially" faster than an honest user with limited parallel computation power. Sequential functions form the backbone of many primitives that are extensively used in blockchains such as verifiable delay functions (VDFs) and time-lock puzzles. Despite this widespread practical use, there has been little work studying the complexity or theory of sequential...
$SPHINCS^+$, one of the Post-Quantum Cryptography Digital Signature Algorithms (PQC-DSA) selected by NIST in the third round, features very short public and private key lengths but faces significant performance challenges compared to other post-quantum cryptographic schemes, limiting its suitability for real-world applications. To address these challenges, we propose the GPU-based paRallel Accelerated $SPHINCS^+$ (GRASP), which leverages GPU technology to enhance the efficiency of...
Oblivious Transfer (OT) is a fundamental cryptographic protocol with applications in secure Multi-Party Computation, Federated Learning, and Private Set Intersection. With the advent of quantum computing, it is crucial to develop unconditionally secure core primitives like OT to ensure their continued security in the post-quantum era. Despite over four decades since OT's introduction, the literature has predominantly relied on computational assumptions, except in cases using unconventional...
It is well-known that classical Private Information Retrieval (PIR) schemes without preprocessing must suffer from linear server computation per query. Moreover, any such single-server PIR with sublinear bandwidth must rely on public-key cryptography. Several recent works showed that these barriers pertaining to classical PIR can be overcome by introducing a preprocessing phase where each client downloads a small hint that helps it make queries subsequently. Notably, the Piano PIR scheme...
The Learning with Errors problem (LWE) and its variants are among the most popular assumptions underlying lattice-based cryptography. The Learning with Rounding problem (LWR) can be thought of as a deterministic variant of LWE. While lattice-based cryptography is known to enable many advanced constructions, constructing Fully Homomorphic Encryption schemes based on LWR remains an under-explored part of the literature. In this work, we present a thorough study of Somewhat Homomorphic...
In the *Distributed Secret Sharing Generation* (DSG) problem $n$ parties wish to obliviously sample a secret-sharing of a random value $s$ taken from some finite field, without letting any of the parties learn $s$. *Distributed Key Generation* (DKG) is a closely related variant of the problem in which, in addition to their private shares, the parties also generate a public ``commitment'' $g^s$ to the secret. Both DSG and DKG are central primitives in the domain of secure multiparty...
The seminal work by Impagliazzo and Rudich (STOC'89) demonstrated the impossibility of constructing classical public key encryption (PKE) from one-way functions (OWF) in a black-box manner. However, the question remains: can quantum PKE (QPKE) be constructed from quantumly secure OWF? A recent line of work has shown that it is indeed possible to build QPKE from OWF, but with one caveat --- they rely on quantum public keys, which cannot be authenticated and reused. In this work, we...
In this paper, we introduce a new probability function parameter in the instantiations of the Goldreich-Micali-Wigderson with Fiat-Shamir and unbalanced challenges used in ALTEQ, a recent NIST PQC candidate in the call for additional signatures. This probability set at 100% does not bring any changes in the scheme, but modifies the public challenge generation process when below 100%, by injecting potential rejections in otherwise completely valid inputs. From a theoretical point of view,...
Keeping decrypting parties accountable in public key encryption is notoriously hard since the secret key owner can decrypt any arbitrary ciphertext. Threshold encryption aims to solve this issue by distributing the power to decrypt among a set of parties, who must interact via a decryption protocol. However, such parties can employ cryptographic tools such as Multiparty Computation (MPC) to decrypt arbitrary ciphertexts without being detected. We introduce the notion of (threshold)...
With the rise of quantum computing, the security of traditional cryptographic systems, especially those vulnerable to quantum attacks, is under threat. While public key cryptography has been widely studied in post-quantum security, symmetric-key cryptography has received less attention. This paper explores using the Ajtai-Micciancio hash function, based on the Short Integer Solution (SIS) problem, as a pseudorandom function in the Luby-Rackoff cipher. Since lattice-based problems like SIS...
Multivariate public key cryptography (MPKC) is one of the most promising alternatives to build quantum-resistant signature schemes, as evidenced in NIST's call for additional post-quantum signature schemes. The main assumption in MPKC is the hardness of the Multivariate Quadratic (MQ) problem, which seeks for a common root to a system of quadratic polynomials over a finite field. Although the Crossbred algorithm is among the most efficient algorithm to solve MQ over small fields, its...
Attribute-based encryption (ABE) is a generalization of public-key encryption that enables fine-grained access control to encrypted data. In (ciphertext-policy) ABE, a central trusted authority issues decryption keys for attributes $x$ to users. In turn, ciphertexts are associated with a decryption policy $\mathcal{P}$. Decryption succeeds and recovers the encrypted message whenever $\mathcal{P}(x) = 1$. Recently, Hohenberger, Lu, Waters, and Wu (Eurocrypt 2023) introduced the notion of...
The Module-NTRU problem, introduced by Cheon, Kim, Kim, Son (IACR ePrint 2019/1468), and Chuengsatiansup, Prest, Stehlé, Wallet, Xagawa (ASIACCS ’20), generalizes the versatile NTRU assump- tion. One of its main advantages lies in its ability to offer greater flexibil- ity on parameters, such as the underlying ring dimension. In this work, we present several lattice-based encryption schemes, which are IND-CPA (or OW-CPA) secure in the standard model based on the Module-NTRU and...
The advent of quantum computing technology will compromise many of the current cryptographic algorithms, especially public-key cryptography, which is widely used to protect digital information. Most algorithms on which we depend are used worldwide in components of many different communications, processing, and storage systems. Once access to practical quantum computers becomes available, all public-key algorithms and associated protocols will be vulnerable to criminals, competitors, and...
This paper presents a generalization of the Learning With Rounding (LWR) problem, initially introduced by Banerjee, Peikert, and Rosen, by applying the perspective of vector quantization. In LWR, noise is induced by scalar quantization. By considering a new variant termed Learning With Quantization (LWQ), we explore large-dimensional fast-decodable lattices with superior quantization properties, aiming to enhance the compression performance over scalar quantization. We identify polar...
This work shows how FALCON can achieve the Beyond UnForgeability Features (BUFF) introduced by Cremers et al. (S&P'21) more efficiently than by applying the generic BUFF transform. Specifically, we show that applying a transform of Pornin and Stern (ACNS'05), dubbed PS-3 transform, already suffices for FALCON to achieve BUFF security. For FALCON, this merely means to include the public key in the hashing step in signature generation and verification, instead of hashing only the nonce and the...
WebAuthn is a passwordless authentication protocol which allows users to authenticate to online services using public-key cryptography. Users prove their identity by signing a challenge with a private key, which is stored on a device such as a cell phone or a USB security token. This approach avoids many of the common security problems with password-based authentication. WebAuthn's reliance on proof-of-possession leads to a usability issue, however: a user who loses access to their...
Byzantine consensus is a fundamental building block in distributed cryptographic problems. Despite decades of research, most existing asynchronous consensus protocols require a strong trusted setup and expensive public-key cryptography. In this paper, we study asynchronous Byzantine consensus protocols that do not rely on a trusted setup and do not use public-key cryptography such as digital signatures. We give an Asynchronous Common Subset (ACS) protocol whose security is only based on...
To introduce a post-quantum-secure encryption scheme specifically for use in flight-computers, we used avionics’ module-isolation methods to wrap a recent encryption standard (HPKE – Hybrid Public Key Encryption) within a software partition. This solution proposes an upgrade to HPKE, using quantum-resistant ciphers (Kyber/ML-KEM and Dilithium/ML-DSA) redundantly alongside well-established ciphers, to achieve post-quantum security. Because cryptographic technology can suddenly become...
This paper presents a comprehensive security analysis of the Adh zero-knowledge proof system, a novel lattice-based, quantum-resistant proof of possession system. The Adh system offers compact key and proof sizes, making it suitable for real-world digital signature and public key agreement protocols. We explore its security by reducing it to the hardness of the Module-ISIS problem and introduce three new variants: Module-ISIS+, Module-ISIS*, and Module-ISIS**. These constructions enhance...
In isogeny-based cryptography, bilinear pairings are regarded as a powerful tool in various applications, including key compression, public-key validation and torsion basis generation. However, in most isogeny-based protocols, the performance of pairing computations is unsatisfactory due to the high computational cost of the Miller function. Reducing the computational expense of the Miller function is crucial for enhancing the overall performance of pairing computations in isogeny-based...
In this work we formalize the notion of a two-party permutation correlation $(A, B), (C, \pi)$ s.t. $\pi(A)=B+C$ for a random permutation $\pi$ of $n$ elements and vectors $A,B,C\in \mathbb{F}^n$. This correlation can be viewed as an abstraction and generalization of the Chase et al. (Asiacrypt 2020) share translation protocol. We give a systematization of knowledge for how such a permutation correlation can be derandomized to allow the parties to perform a wide range of oblivious...
In this paper, we propose a novel isogeny-based public key encryption (PKE) scheme named LIT-SiGamal. This is based on a LIT diagram and SiGamal. SiGamal is an isogeny-based PKE scheme that uses a commutative diagram with an auxiliary point. LIT-SiGamal uses a LIT diagram which is a commutative diagram consisting of large-degree horizontal isogenies and relatively small-degree vertical isogenies, while the original SiGamal uses a CSIDH diagram. A strength of LIT-SiGamal is efficient...
Given that the tropical Stickel protocol and its variants are all vulnerable to the generalized Kotov-Ushakov attack, we suggest employing the max-min semiring and, more generally, max-$T$ semiring where the multiplication is based on a $T-$norm, as a framework to implement the Stickel protocol. While the Stickel protocol over max-min semiring or max-$T$ semiring remains susceptible to a form of Kotov-Ushakov attack, we demonstrate that it exhibits significantly increased resistance against...
SHA2 is widely used in various traditional public key ryptosystems, post-quantum cryptography, personal identification, and network communication protocols. Therefore, ensuring its robust security is of critical importance. Several differential fault attacks based on random word fault have targeted SHA1 and SHACAL-2. However, extending such random word-based fault attacks to SHA2 proves to be much more difficult due to the increased complexity of the Boolean functions in SHA2. In this...
We propose a new key exchange protocol based on the Generalised Diffie-Hellman Key Exchange. In the latter, instead of using a group-action, we consider a semigroup action. In our proposal, the semigroup is the set of oriented knots in $\mathbb{S}^3$ with the operation of connected sum. As a semigroup action, we choose the action of the semigroup on itself through the connected sum. For the protocol to work, we need to use knot invariants, which allow us to create the shared secret key...
The Fiat-Shamir with Aborts paradigm (FSwA) uses rejection sampling to remove a secret’s dependency on a given source distribution. Recent results revealed that unlike the uniform distribution in the hypercube, both the continuous Gaussian and the uniform distribution within the hypersphere minimise the rejection rate and the size of the proof of knowledge. However, in practice both these distributions suffer from the complexity of their sampler. So far, those three distributions are the...
We present a new post-quantum Public Key Encryption scheme (PKE) named Supersingular Isogeny Lollipop Based Encryption or SILBE. SILBE is obtained by leveraging the generalised lollipop attack of Castryck and Vercauteren on the M-SIDH Key exchange by Fouotsa, Moriya and Petit. Doing so, we can in fact make SILBE a post-quantum secure Updatable Public Key Encryption scheme (UPKE). SILBE is in fact the first isogeny-based UPKE which is not based on group actions. Hence, SILBE overcomes the...
Since its invention in 1978 by Rivest, Shamir and Adleman, the public key cryptosystem RSA has become a widely popular and a widely useful scheme in cryptography. Its security is related to the difficulty of factoring large integers which are the product of two large prime numbers. For various reasons, several variants of RSA have been proposed, and some have different arithmetics such as elliptic and singular cubic curves. In 2018, Murru and Saettone proposed another variant of RSA based on...
At EUROCRYPT’23, Castryck and Decru, Maino et al., and Robert present efficient attacks against supersingular isogeny Diffie-Hellman key exchange protocol (SIDH). Drawing inspiration from these attacks, Andrea Basso, Luciano Maino, and Giacomo Pope introduce FESTA, an isogeny-based trapdoor function, along with a corresponding IND-CCA secure public key encryption (PKE) protocol at ASIACRYPT’23. FESTA incorporates either a diagonal or circulant matrix into the secret key to mask torsion...
DME is a multivariate scheme submitted to the call for additional signatures recently launched by NIST. Its performance is one of the best among all the candidates. The public key is constructed from the alternation of very structured linear and non-linear components that constitute the private key, the latter being defined over an extension field. We exploit these structures by proposing an algebraic attack which is practical on all DME parameters.
Multivariate cryptography is one of the main candidates for creating post-quantum public key cryptosystems. Especially in the area of digital signatures, there exist many practical and secure multivariate schemes. The signature schemes UOV and Rainbow are two of the most promising and best studied multivariate schemes which have proven secure for more than a decade. However, so far the security of multivariate signature schemes towards physical attacks has not been appropriately assessed....
Zero-knowledge circuits are frequently required to prove gadgets that are not optimised for the constraint system in question. A particularly daunting task is to embed foreign arithmetic such as Boolean operations, field arithmetic, or public-key cryptography. We construct techniques for offloading foreign arithmetic from a zero-knowledge circuit including: (i) equality of discrete logarithms across different groups; (ii) scalar multiplication without requiring elliptic curve...
We provide a novel view of public-key cryptography by showing full equivalences of certain primitives to "hard" monoid actions. More precisely, we show that key exchange and two-party computation are exactly equivalent to monoid actions with certain structural and hardness properties. To the best of our knowledge, this is the first "natural" characterization of the mathematical structure inherent to any key exchange or two-party computation protocol, and the first explicit proof of the...
In this work, we study the singular locus of the varieties defined by the public keys of UOV and VOX, two multivariate quadratic signature schemes submitted to the additional NIST call for signature schemes. Singular points do not exist for generic quadratic systems, which enables us to introduce a new algebraic attack against UOV-based schemes. We show that this attack can be seen as an algebraic variant of the Kipnis-Shamir attack, which can be obtained in our framework as an...
In this work, we introduce a family of asymmetric cryptographic functions based on dynamic number theoretic transformations with multiple rounds of modular arithmetic to enhance diffusion and difficulty of inversion. This function acts as a basic cryptographic building block for a novel communication-efficient zero-knowledge crypto-system. The system as defined exhibits partial homomorphism and behaves as an additive positive accumulator. By using a novel technique to constructively embed...
In response to the evolving landscape of quantum computing and the heightened vulnerabilities in classical cryptographic systems, our paper introduces a comprehensive cryptographic framework. Building upon the pioneering work of Kuang et al., we present a unification of two innovative primitives: the Quantum Permutation Pad (QPP) for symmetric key encryption and the Homomorphic Polynomial Public Key (HPPK) for Key Encapsulation Mechanism (KEM) and Digital Signatures (DS). By harnessing...
Kyber KEM, the NIST selected PQC standard for Public Key Encryption and Key Encapsulation Mechanisms (KEMs) has been subjected to a variety of side-channel attacks, through the course of the NIST PQC standardization process. However, all these attacks targeting the decapsulation procedure of Kyber KEM either require knowledge of the ciphertexts or require to control the value of ciphertexts for key recovery. However, there are no known attacks in a blind setting, where the attacker does not...
The problem of Broadcast Encryption (BE) consists in broadcasting an encrypted message to a large number of users or receiving devices in such a way that the emitter of the message can control which of the users can or cannot decrypt it. Since the early 1990's, the design of BE schemes has received significant interest and many different concepts were proposed. A major breakthrough was achieved by Naor, Naor and Lotspiech (CRYPTO 2001) by partitioning cleverly the set of authorized...
After NIST’s selection of Dilithium as the primary future standard for quantum-secure digital signatures, increased efforts to understand its implementation security properties are required to enable widespread adoption on embedded devices. Concretely, there are still many open questions regarding the susceptibility of Dilithium to fault attacks. This is especially the case for Dilithium’s randomized (or hedged) signing mode, which, likely due to devastating implementation attacks on the...
In recent breakthrough results, novel use of garbled circuits yielded constructions for several primitives like Identity-Based Encryption (IBE) and 2-round secure multi-party computation, based on standard assumptions in public-key cryptography. While the techniques in these different results have many common elements, these works did not offer a modular abstraction that could be used across them. Our main contribution is to introduce a novel notion of obfuscation, called Reach-Restricted...
Post-Quantum Cryptography (PQC) was proposed due to the potential threats quantum computer attacks against conventional public key cryptosystems, and four PQC algorithms besides CRYSTALS-Dilithium (Dilithium for short) have so far been selected for NIST standardization. However, the selected algorithms are still vulnerable to side-channel attacks in practice, and their physical security need to be further evaluated. This study introduces two efficient power analysis attacks, the optimized...
In this work, we propose two novel succinct one-out-of-many proofs from coding theory, which can be seen as extensions of the Stern's framework and Veron's framework from proving knowledge of a preimage to proving knowledge of a preimage for one element in a set, respectively. The size of each proof is short and scales better with the size of the public set than the code-based accumulator in \cite{nguyen2019new}. Based on our new constructions, we further present a logarithmic-size ring...
X-Wing is a hybrid key-encapsulation mechanism based on X25519 and ML-KEM-768. It is designed to be the sensible choice for most applications. The concrete choice of X25519 and ML-KEM-768 allows X-Wing to achieve improved efficiency compared to using a generic KEM combiner. In this paper, we introduce the X-Wing hybrid KEM construction and provide a proof of security. We show (1) that X-Wing is a classically IND-CCA secure KEM if the strong Diffie-Hellman assumption holds in the X25519...
Basic encryption and signature on lattices have comparable efficiency to their classical counterparts in terms of speed and key size. However, Identity-based Encryption (IBE) on lattices is much less efficient in terms of compactness, even when instantiated on ideal lattices and in the Random Oracle Model (ROM). This is because the underlying preimage sampling algorithm used to extract the users' secret keys requires huge public parameters. In this work, we specify a compact IBE...
This paper conducts a comprehensive benchmarking analysis of the performance of two innovative cryptographic schemes: Homomorphic Polynomial Public Key (HPPK)-Key Encapsulation Mechanism (KEM) and Digital Signature (DS), recently proposed by Kuang et al. These schemes represent a departure from traditional cryptographic paradigms, with HPPK leveraging the security of homomorphic symmetric encryption across two hidden rings without reliance on NP-hard problems. HPPK can be viewed as a...
Since the existing tropical cryptographic protocols are either susceptible to the Kotov-Ushakov attack and its generalization, or to attacks based on tropical matrix periodicity and predictive behaviour, several attempts have been made to propose protocols that resist such attacks. Despite these attempts, many of the proposed protocols remain vulnerable to attacks targeting the underlying hidden problems, one of which we call the tropical two-sided discrete logarithm with shift. An...
Let n stands for the length of digital signatures with quadratic multivariate public rule in n variables. We construct postquantum secure procedure to sign O(n^t), t ≥1 digital documents with the signature of size n in time O(n^{3+t}). It allows to sign O(n^t), t <1 in time O(n^4). The procedure is defined in terms of Algebraic Cryptography. Its security rests on the semigroup based protocol of Noncommutative Cryptography referring to complexity of the decomposition of the collision...