Guaranteed Scalable Learning of Latent Tree Models
[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content
eScholarship
Open Access Publications from the University of California

UC Irvine

UC Irvine Previously Published Works bannerUC Irvine

Guaranteed Scalable Learning of Latent Tree Models

Abstract

We present an integrated approach for structure and parameter estimation in latent tree graphical models. Our overall approach follows a "divide-and-conquer" strategy that learns models over small groups of variables and iteratively merges onto a global solution. The structure learning involves combinatorial operations such as minimum spanning tree construction and local recursive grouping; the parameter learning is based on the method of moments and on tensor decompositions. Our method is guaranteed to correctly recover the unknown tree structure and the model parameters with low sample complexity for the class of linear multivariate latent tree models which includes discrete and Gaussian distributions, and Gaussian mixtures. Our bulk asynchronous parallel algorithm is implemented in parallel and the parallel computation complexity increases only logarithmically with the number of variables and linearly with dimensionality of each variable.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View