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Scalable Latent Tree Model and its Application to Health ities

Furong Huanty Niranjan U.N*, loakeim Perros Robert Cheh Jimeng Suh Anima Anandkumar

Abstract

We present an integrated approach to structure and panaesti@ation in latent tree graphical models, where
some nodes are hidden. Our overall approach follows a “eigidd-conquer” strategy that learns models over small
groups of variables and iteratively merges into a globaltsah. The structure learning involves combinatorial eper
ations such as minimum spanning tree construction and tecalsive grouping; the parameter learning is based on
the method of moments and on tensor decompositions. Ourhéttguaranteed to correctly recover the unknown
tree structure and the model parameters with low sample lesitpfor the class of linear multivariate latent tree
models which includes discrete and Gaussian distributiang Gaussian mixtures. Our bulk asynchronous parallel
algorithm is implemented in parallel using the OpenMP fraenmiéx and scales logarithmically with the number of
variables and linearly with dimensionality of each vareahDur experiments confirm a high degree of efficiency and
accuracy on large datasets of electronic health recordspiidposed algorithm also generates intuitive and clilyical
meaningful disease hierarchies.

1 Introduction

Latent tree graphical models are a popular class of latatahia models, where a probability distribution involving
observed and hidden variables are Markovian on a tree. Dtigetéact that structure of (observable and hidden)
variable interactions are approximated as a tree, inferendatent trees can be carried out exactly through a simple
belief propagation [PeaB8]. Therefore, latent tree gredhmodels present a good trade-off between model accuracy
and computational complexity. They are applicable in maomains, where it is natural to expect hierarchical or
sequential relationships among the variables (througk@em-Markov model). For instance, latent tree models have
been employed for phylogenetic reconstruction [DEKM9®jjeat recognition [CTW12a, CTW12b] and human pose
estimation [WL13]. In this paper, we use latent tree modeldiscovering a hierarchy among diseases based on
comorbidities exhibited in patients’ health records, t@-occurrences of diseases in patients. In particular)dvee
healthcare datasets of 30K and 1.6M patients are used 1 thaillatent disease trees, where clinically meaningful
disease clusters are identified as shown ifilfig 3[@nd 4.

The task of learning a latent tree models consists of twespbgarning the tree structure, and learning the parame-
ters of the tree. There exist many challenges which proéffitient or guaranteed learning of the latent tree graphica
model, which will be addressed in this paper:

1. The location and the number of latent variables are hiddehthe marginalized graph over the observable

variables no longer conforms to a tree structure.

2. Structure learning algorithms are typically of compiataal complexity polynomial witlp (number of variables)
as discussed in [ACHL1[CTAW11]. These methods are serial in nature and thezefie not scalable for large
p.

3. Parameter estimation in latent tree models is typicalyried out through Expectation Maximization (EM)
or other local search heuristids [CTAW11]. These method& m consistency guarantees, suffer from the
problem of local optima and are not easily parallelizable .

4. Typically structure learning and parameter estimati@ti@ated sequentially, not together.
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Contributions:  In this work, we present an integrated approach to struetmdegparameter estimation in latent tree
models. Our method overcomes all the above shortcominggtsineously. First, it automatically learns the latent
variables and their locations. Second, our method ach@wesistent structure estimation wikhy(p) computational
complexity with enough computational resources via “dévethd-conquer” manner. We also present a rigorous proof
on the global consistency of the structure and parametienatitn under the “divide-and-conquer” framework. Our
consistency guarantees are applicable to a broad classeaf Imultivariate latent tree models including discrege di
tributions, continuous multivariate distributions (e@aussian), and mixed distributions such as Gaussian rastur
This model class is much more general than discrete modegalpnt in most of the previous works on latent tree
models [MR05, MosQ7,. ESSWH&9, AM3]. Third, our algorithm considers the inverse method ofmmants, and es-
timates the model parameters via tensor decomposition lasthperturbation guarantees. Moreover, we carefully
integrate structure learning with parameter estimati@aseld on tensor spectral decompositions [AGR]. Finally,
our approach has a high degree of parallelism, ahdlis asynchronouparallel [GV94].

In addition to the aforementioned technical contributjome showcase the impact of our work by applying it to
two real datasets originating from the healthcare domaime dlgorithm was used to discover hidden patterns, or
concepts reflecting co-occurrences of particular diaghospatients in outpatient and intensive care settings.l&Vhi
such a task is currently done through manual analysis of ditee dur method provides an automated method for the
discovery of novel clinical concepts from high dimensigmallti-modal data.

Related works:  There has been widespread interest in developing disédbletarning techniques, e.g. the recent
works of [SN10] and [WDK 13]. These works consider parameter estimation via likelthbased optimizations such

as Gibbs sampling, while our method involves more challegitisks where both the structure and the parameters are
estimated. Simple methods such as local neighborhoodtiegidbrough?, -regularization[[MBOB] or local condi-
tional independence testing [ATHW/12] can be parallelizad, these methods do not incorporate hidden variables.
Finally, note that the latent tree models provide a statibtiescription, in addition to revealing the hierarchycém-

trast, hierarchical clustering techniques are not based statistical mode[ [KBXS12] and cannot provide valuable
information such as the level of correlation between oteand hidden variables.

2 Latent Tree Graphical Model Preliminaries

We denoten] := {1,...,n}. LetT := (V,&) denote an undirected tree with vertex $etand edge sef. The
neighborhoodf a nodev;, nbdv;), is the set of nodes to which is directly connected on the tree. Leaves which
have a common neighboring node are knowsiaings and the common node is referred to as tipairent Let N
denote the number of samples. An example of latent tree isteejdin Figurd 1L(a).

There are two types of variables on the nodes, namely, theradisle variables, denoted By := {z1,...,z,}
(p := |X]), and hidden variables, denoted Hy:= {h1,..., hy} (m := |H]). LetY := X U H denote the complete
set of variables and let; denote the random variable at nodec V, and similarly lety 4 denote the set of random
variables in set.

A graphical model is defined as follows: given the neighborhnbdv;) of any nodev; € V, the variabley; is
conditionally independent of the rest of the variable®jn.e.,y; L y;|ynbaw,), Yvj € V\ {vi Unbdw;)}.

Linear Models:  We consider the class of linear latent tree models. The wbderriables:; are random vectors
of lengthd;, i.e.,z; € R4, Vi € [p] while the latent nodes arestate categorical variables, i.&,, € {ei,...,ex},
wheree; € R¥ is thej" standard basis vector. Althoughcan vary across variables, we ustor notation simplicity.
In other words, for notation simplicity;; € R?, Vi € [p] is equivalenttar; € R%, Vi € [p]. For any variabley; with
neighboring hidden variable;, we assume a linear relationship:

Elyi|h;] = A, |, hy, 1)

yi|hj

where transition matrix4y,|h_ € R4*k js assumed to have full column ranky;, h; € V. This implies that: < d,
i Ity

which is natural if we want to enforce a parsimonious modefifting the observed data.



For a pair of (observed or hidden) variabigsandy, consider thepairwise correlation matrixt [y,y, | where
the expectation is over samples. Since our model assumesvha@abservable variables interact through at least a
hidden variable, we have

Elyayy ] := Y E[h; = €4y, | hj:ei,A;er| hy—e: (2

We see thaE[y,y, | is of rankk sinceAya| hy—e; OF A is of rankk.

yb| hj=e;

3 Overview of Approach

(@) (b) (c2) (d2) (e)

Figure 1: (a) Ground truth latent tree to be estimated, numbers on edgesaltivariate information distances(b) MST
constructed using thaultivariate information distancess andvs are internal nodes (leaders). Note thatltivariate information
distancesare additive on latent tree, not on MS€1) LCR on nbdus, MST] to get local structurg\’s. Pink shadow denotes the
active set. Local parameter estimation is carried out aygets with joint node, such as4, vs, vs) with joint nodeh;. (c2) LCR
on nbdvs, MST] to get local structurdy’s. Cyan shadow denotes the active ¢df.)(d2) Merging local sub-trees. Path(vs; A'3)
and pathgs,vs; N's) conflict. (e) Final recovery.

The overall approach is depicted in Figlie 1, where (a) apshbw the data preprocessing step, (c) - (e) illustrate
the divide-and-conquer step for structure and paramedenileg.

More specifically, we start with the parallel computationpafirwise multivariate information distancesinfor-
mation distance roughly measures the extent of correlétidween different pairs of observed variables and requires
SVD computations in step (a). Then in step (b) a Minimum Spaniiree (MST) is constructed over observable
variables in paralle[[BC06] using thaultivariate information distanceThe local groups are also obtained through
MST so that they are available for the structure and parartesteing step that follows.

The structure and parameter learning is done jointly thhoaiglivide-and-conquer strategy. Step-(c) illustrates
the divide step (or local learning), where local structurd parameter estimation is performed. It also performs the
local merge to obtain group level structure and parameteanates. After the local structure and parameter learning
is finished within the groups, we perform merge operationsregrgroups, again guided by the Minimum Spanning
Tree structure. For the structure estimation it consistswofion operation of sub-trees; for the parameter estimatio
consists of linear algebraic operations. Since our methodsupervised, an alignment procedure of the hidden states
is carried out which finalizes the global estimates of the steucture and the parameters.

4 Structure Learning

Structure learning in graphical models involves findinguhderlying Markov graph, given the observed samples. For
latent tree models, structure can be estimated via distzas®d methods. This involves computing certiaiarmation
distances between any pair of observed variables, and thdingdia tree which fits the computed distances.

Multivariate information distances: We propose an additive distance for multivariate lineagriatree mod-
els. For a pair of (observed or hidden) variabljgsandy;,, consider the pairwise correlation matﬁx[yayﬂ (the
expectation is over samples). Note that its rank, idimension of the hidden variables.



Definition 4.1. The multivariate information distance between nodasd j is defined as

ﬁ oi (E(Yayy )
dist(v,, vp) := — log =1 (3
\/det(Elyay])) det (E(unyy )

where{o1(-),...,ok(-)} are the topk singular values.

Note that definitiofi 4]1 suggests that this multivariat®infation distance allows heterogeneous settings where
the dimensions af, andy, are different (an@> k).

For latent tree models, we can find information distancecwhre provabladditiveon the underlying tree in
expectation, i.e. the expected distance between any twesrindhe tree is the sum of distances along the path between
them.

Lemma 4.2. The multivariate information distance is additive on theetfT, i.e., distv,,v.) = dist(v,,vp) +
dist(vy, v.), whereu, is a node in the path from, to v. andv,,vp,v. € V.

Refer to AppendikA for proof. The empirical distances cactmputed via rank SVD of the empirical pairwise
moment matriﬂ[yayg] Note that the distances for all the pairs can be computedrallph

Formation of local groups via MST: Once the empirical distances are computed, we constructnamdm
Spanning Tree (MST), based on those distances. Note thit$fiecan be computed efficiently in parallel [VHPNO9,
Mic12]. We now form groups of observed variables over whiah earry out learning independently, without any
coordination. These groups are obtained by the (closedjpnéioods in the MST, i.e. an internal node and its
one-hop neighbors form a group. The corresponding interodé is referred to as thggoup leader See Figurgll(b).

Local recursive grouping (LRG): Once the groups are constructed via neighborhoods of MSTonstruct a
sub-tree with hidden variables in each group (in parallsipg the recursive grouping introduced(in [CTAW11]. The
recursive grouping uses the multivariate informationatises and decides the locations and numbers of hidden nodes.
It proceeds by deciding which nodes are siblings, which@eds as follows: consider two observed nages; which
are siblings on the tree with a common parentand consider any other observed negde From additivity of the
(expected) information distances, we have(dist,,) = dist(v;, v;) + dist(v;, v,) and similarly for distv;, v, ). Thus,
we haved (v;, vj; v,) 1= dist(v;, v, ) —dist(v;, v,) = dist(v;, v;) —dist(v;, v;), which is independent of nodg. Thus,
comparing the quantit® (v;, v;; v,) for different nodes,, allows us to conclude that andv; are siblings. Once the
siblings are inferred, the hidden nodes are introducedil@mdame procedure repeats to construct the higher layers.
Note that whenever we introduce a new hidden nbglg as a parent, we need to estimate multivariate information
distance betweehy,ey and nodes in active s€t This is discussed in [CTAW11] with details.

We will describe the LRG in details with integrated parametestimation in Procudufé 1 in Sectioh 6. In the
end, we obtain a sub-tree over the local group of variablefier Ahis local recursive grouping testve store the
neighborhood relationship for the leadgrusing an adjacency list/;. We call the resultant local structure lagent
sub-tree

5 Parameter Estimation

Along with the structure learning, we adopt a moment-bagedtsal learning technique for parameter estimation.
This is a guaranteed and fast approach to recover paranviemsoment matching for third order moments of the
observed data. In contrast, traditional approaches suEl@eactation Maximization (EM) suffer from spurious local
optima and cannot provably recover the parameters.

A latent tree with three leaves: We first consider an example of three observable leayes,, x5 (i.e., a triplet)
with a common hidden pareht We then clarify how this can be generalized to learn therpatars of the latent tree
Pty B (TR DS R RS ek BRI ATRIA fteht e BGLTMER 1ifc? ShEdrved nodesn, vy
with joint hidden nodé, we have

k
E(z1 ® 2 ® x3) :Z]P’[h:er]Agl‘h@)A;Q‘h@A;ﬂh, (4)

r=1



whereA;i‘h = E(z;|h = e,), i€, r column of the transition matrices fromto z;. The tensor decomposition
method of [AGH 12] provably recovers the parametefs,, |, Vi € (3], andP[h].

Tensor decomposition for learning latent tree models\We employ the above approach for learning latent tree
model parameters as follows: for every triplet of variablgsy,, andy. (hidden or observed), we consider the hidden
variableh; which is the joining point ofy,, y, andy. on the tree. They form @iplet model, for which we employ the
tensor decomposition procedure. However, it is wastefdbtd over all the triplets in the latent tree.

In the next section, we demonstrate how we efficiently egtntiae parameters as we learn the structure, and
minimize the tensor decompositions required for estinmatissues such as alignment of hidden labels across differen
decompositions will also be addressed.

6 Integrated Struct. and Param. Estimation

So far, we described high-level procedures of structuimmasipn through local recursive grouping (LRG) and param-

eter estimation through tensor decomposition over tigpbétvariables, respectively. We now describe an integrated
and efficient approach which brings all these ingrediergsttoer. In addition, we provide merging steps to obtain a
global model, using the sub-trees and parameters learntanad groups.

6.1 Local recursive grouping with tensor decomp.

Next we present an integrated procedure where the paraesti@ation goes hand-in-hand with structure estimation.
Intuitively, we find efficient groups of triplets to carry ot#nsor decomposition simultaneously, as we estimate the
structure through recursive grouping. In recursive grogppairs of nodes are recursively grouped as siblings or as
parent-child. As this process continues, we carry out tedsoompositions whenever there are siblings present as
triplets. If there are only a pair of siblings, we find an olvsernode with closest distance to the pair. Once the tensor
decompositions are carried out on the observed nodes, wegquido structure and parameter estimation of the added
hidden variables. The samples of the hidden variables cabtaéned via the posterior distribution, which is learnt
earlier through tensor decomposition. This allows us taisténformation distances and third order moments among
the hidden variables as process continues. The full algaris given in Procedufd 1.

Procedure 1LRG with Parameter Estimation

Input: for eachv; € Xy, active sef? := nbdv;; MST].

Output: for eachv; € Xjni, local sub-tree adjacency matikX;, andE[y, |ys] for all (v, vp) € N.
1: Active set) < nbdv;; MST]
2: while || > 2 do

3. forall v, v, € Qdo
4: if ®(vg,vp;v.) = dist(vg,vp), ¥V v. € Q\{va, v} then
5: v, IS a leaf node and, is its parent,
6: Eliminatev, from €.
7 if —dist(vy, v) < P(vg, Vp;e) = P(vg, vp; L) < dist(vg, vp), Yo, vl € Q\{vqe, v} then
8: v, andv, are siblings,eliminate, andwv;, from €2, addhpe to 2.
9: Introduce new hidden nodg., as parent of,, andvy.
10: if more than 3 siblings undér,e, then
11: find v, in siblings,
12: else
13: find v, = argmin,,_cq dist(vg, ve).
14: Estimate empirical third order momerﬁ@a R Yp D Ye)
15: Decompos@(ya ® Yp @ ye) to getPr|hnen] aNdE(y, |hnew), Vr = {a, b, c}.

The divide-and-conquerlocal spectral parameter estimadisuperior compared to popular EM-based method [CTAW11]
which is slow and prone to local optima. More importantly, E&h only be applied on a stable structure since it is a



global update procedure. Our proposed spectral learningadein contrast, is applied locally over small groups of
variables, and is a guaranteed learning with sufficient remolb samples [AGFi12]. Moreover, since we integrate
structure and parameter learning, we avoid recomputingdhee quantities, e.g. SVD computations are required both
for structure estimation (for computing distances) andhpeater estimation (for whitening the tensor). Combining
these operations results in huge computational savingsS3eetiori 7 for the exact computational complexity of our
method).

Procedure 2Merging and Alignment Correction (MAC)

Input: Latent sub-treed/; for all internal nodes.
Output: Global latent tred” structure and parameters.

1: for N; and N in all the sub-treedo

2. if there are common nodes betwe¥nandA/; then
Find the shortest path pdth, v;; ;) betweerv; andv; onN; and patltv;, vj; N;) in Nj;
Union the only conflicting patfv;, v;; \V;) and patlfv;, v;; NV ;) according to equatiof(7) ;
Attach other nodes iV, and.V; to the union path;
Perform alignment correction as described in Procedure 3.

o9 r®

6.2 Merging and Alignment Correction

We have so far learnt sub-trees and parameters over locapgaf variables, where the groups are determined by
the neighborhoods of the MST. The challenge now is to comthi@m to obtain a globally consistent estimate. There
are non-trivial obstacles to achieving this: first, the ¢arted local sub-trees span overlapping groups of obderve
nodes, and possess conflicting paths. Second, local paamnetid to be re-aligned as we merge the subtrees to obtain
globally consistent estimates due to the nature of unsigeshlearning. To be precise, different tensor decom mossti
lead to permutation of the hidden labels (i.e. columns otithiesition matrices) across triplets. Thus, we need to find
the permutation matrix correcting the alignment of hiddites of the transition matrices, so as to guarantee global
consistency.

Structure Union: We now describe the procedure to merge the local structivesmerge them in pairs to obtain
the final global latent tree. Recall thaf; denotes a sub-tree constructed locally over a group, wheesket is node

v;. Consider a pair of subtre@§; and\V;, whose group leadets andv, are neighbors on the MST. Sinegandv;

are neighbors, both the sub-trees contain them, and hdeeatif paths between them (with hidden variables added).
Moreover, note that this is the only conflicting path in th@tsubtrees. We now describe how we can resolve this:
in \V;, let ¢ be the neighboring hidden node farandhi be the neighbor of;. There could be more hidden nodes
betweerh! andhi. Similarly, in NV, let h{ andh% be the corresponding nodesAn;. The shortest path between
andv; in the two sub-trees are given as follows:

patl’(vi,vj;/\/'i) = [’Ui—hi—...—hé—vj] (5)
path(v;, vj; Nj) = [v; — h] — ... — h} —v}] (6)
Then the union path is formed as follows:
mergepath(v;, v;; NVs), path(vi, v;; V)
= [v; — ht — ... —hY —hl .. bl — ] (7)
In other words, we retain the immediate hidden neighbor ohepoup leader, and break the paths on the other end.
For example in Figuriel1(d1,d2), we have the path- 7, — vs in M'3 and pathuz — hs — he — v5 in AV5. The resulting

path isvs — hy — hs — ha — vs, as see in Figurgl 1(e). After the union of the conflicting pathe other nodes are
attached to the resultant latent tree. We present the psmualdoin Proceduid 2 in AppendiX E.



Procedure 3Parameter Alignment Correction
(G, denotes reference grou@, denotes the list of other groups, each group has a refereutedenoted aR;, and
the reference node i, is R,. The details on alignment at line 8 is in Appenidi} E.

Input: Triplets and unaligned parameters estimated for thedetsiglenoted as Trig;, v;, yx)-
Output: Aligned parameters for the entire latent tiEe
1: SelectG, which hassufficient children
2: Select refer nod®, in G,;
3: forall a, binG, do
Align Tripi, (ya, ye, Ry);
: forall i in G, do
Select refer nod®&; in G,[i4];
Align Tripg(Rg, Ya, Re) and Trig(Ri, vi, Ry);
forall i, jin G,[iy] do
Align Trip (yi, yj, Ra);

© XN Ok

Parameter Alignment Correction: As mentioned before, our parameter estimation is unsugealyiand there-
fore, columns of the estimated transition matrices may bmpted for different triplets over which tensor decompo-
sition is carried out. Note that the parameter estimatighiwithe triplet is automatically acquired through the tans
decomposition technique, so that the alignment issue oidgsacross triplets. We refer to this as the alignmengissu
and it is required at various levels.

There are two types of triplets, namaly;groupandout-grouptriplets. A triplet of nodes Trify;, y;, v;) is said to
bein-group (denoted by Trip (v:, y;,v:) ) if its containing nodes share a joint noklg and there are no other hidden
nodes in pathy;, hx), pathg;, ki) or pathg;, hi). Otherwise, this triplet iut-groupdenoted by Trig,(v:, v, yi)-

We define a group asufficient childrergroup if it contains at least thrée-groupnodes.

Designing ann-groupalignment correction witsufficient childrens relatively simple: we achieve this by includ-
ing a local reference node for all the-grouptriplets. Thus, all the triplets are aligned with the refexe node. The
alignment correction is more challenging if lackiggfficient children We propos@ut-groupalignment to solve this
problem. We first assign one group aeference groupand thdocal reference nodin thatreference groupecomes
theglobal reference noddn this way, we align all recovered transition matricestia same order of hidden states as
in the reference node. Overall, we merge the local strustame align the parameters from LRG local sub-trees using
Procedurél2 arld 3.

7 Theoretical Gaurantees

Correctness of Proposed Parallel Algorithm:We now provide the main result of this paper on global coasist
for our method, despite the high degree of parallelism.

Theorem 7.1. Given samples from an identifiable latent tree model, thg@sed method consistently recovers the
structure withO(log p) sample complexity and parameters wilipoly p) sample complexity.

The proof sketch is in AppendixIC.

Computational Complexity: We recall some notations heréis the observable node dimensiéris the hidden
node dimensionk < d), N is the number of sampleg,is the number of observable nodes, and the number of
non-zero elements in each sample.

Let I" denote the maximum size of the groups, over which we opehatéotal recursive grouping procedure.
Thus,T" affects the degree of parallelism for our method. Recall itha given by the neighborhoods on MST, i.e.,
I' := max;|nbdi; MST]|. Below, we provide a bound dn

Lemma 7.2. The maximum size of neighborhoods on MST, denot&d setisfies

D<A ®)



whered := max;{min,{path(v;, v;; T)}} is the effective depth is the maximum degree @, and theu, and!, are
the upper and lower bound of information distances betwedghtors orn7 .

Thus, we see that for many natural cases, where the degrabeddpth in the latent tree are bounded (e.g. the
hidden Markov model), and the parameters are mostly homezges(i.e.n.q /14 is small), the group sizes are bounded,
leading to a high degree of parallelism.

We summarize the computational complexity in Tdlle 1. Detan be found in AppendiX F.

| Algorithm Steps| Time per worker | Degree of parallelisn]

Distance Est. | O(Nz +d+ k%) | O(p?)
MST O(log p) O(p®)
LRG o(I3) O(p/T)
Tensor Decomp| O(Tk® +T'dk?) | O(p/T")
Merging step O(dk?) O(p/T)

Table 1: Worst-case computational complexity of our algorithm. Tdal complexity is the product of the time per
work and degree of parallelism.

8 Experiments

Setup Experiments are conducted on a server running the Red Hatiise 6.6 with 64 AMD Opteron processors
and 265 GBRAM. The program is written in C++, coupled with thelti-threading capabilities of the OpenMP
environment/[DM98] (version 1.8.1). We use the Eigen td@lkihere BLAS operations are incorporated. For SVDs
of large matrices, we use randomized projection metHodsl&Hlas described in Appendi¥ H.

Healthcare data analysisThe goal of our analysis is to discover a disease hierarchgdan their co-occurring
relationships in the patient records. In general, longitabpatient records store the diagnosed diseases on fzatien
over time, where the diseases are encoded with Internh@assification of Diseases (ICD) code.

Data description We used two large patient datasets of different sizes wipeaet to the number of samples,
variables and dimensionality.

(1) MIMIC2: The MIMIC?2 dataset record disease history of 29,862 patieshiere a overall of 314,647 diagnostic
events over time representing 5675 diseases are logged oigder patients as samples and groups of diseases as
variables. We analyze and compare the results by varyingrthe size (therefore varyingandp).

(2) CMS:The CMS dataset includes 1.6 million patients, for whom I&ilion medical encounter events are
logged. Across all events, 11,434 distinct diseases (septed by ICD codes) are logged. We consider patients as
samples and groups of diseases as variables. We considd#ficsdeseases within each group as dimensions. We
analyze and compare the results by varying the group sieeefibre varyingl andp). While the MIMIC2 dataset
and CMS dataset both contain logged diagnostic eventsatggerl volume of data in CMS provides an opportunity
for testing the algorithm’s scalability. We qualitativedyaluate biological implications on MIMIC2 and quantivadiy
evaluate algorithm performance and scalability on CMS.

To learn the disease hierarchy from data, we also leverage sxisting domain knowledge about diseases. In
particular, we use an existing mapping between ICD codesaitr-level Phenome-wide Association Study (Phe-
WAS) codes|[DRB 10]. We use (about 200) PheWAS codes as observed nodes aolsiwed node dimension is
set to be binaryd = 2) or the maximum number of ICD codes within a pheWAS cadle=(31). The goal is to learn
the latent nodes and the disease hierarchy and associasedgiars from data.

8.1 Experimental results - Validation

We conduct both quantitative and qualitative validatiothaf resulting disease hierarchy.
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(a) Running time vs Number of samples

(b) Fiunning time vs Number of nodes
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(c) Speed-up vs available threads
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Figure 2: (a) CMS dataset sub-sampling w.r.t. varying number of samplgg. MIMIC2 dataset sub-sampling
w.r.t. varying number of observed nodes. Each one of therebdenodes is binaryd(= 2). (c) MIMIC2 dataset:
Scaling w.r.t. varying computational power, establishimg scalability of our method even in the langesgime. The

number of observed nodesli83 and each one of them is binany £ 1083, d = 2).

Quantitative Analysis We first compare our resulting hierarchy with a ground trugle based on medical knowl-
edg. The standard Robinson Foulds (RF) meiric [RF81](betwermstimated latent tree and the ground truth tree)
is computed to evaluate the structure recovery in Table 2 srhaller the metric is, the better the recovered tree is.
We also compare our results with a baseline: the agglomeraliistering. The proposed method are slightly better
than the baseline and the advantage is increased with mdesnblowever, the proposed method provides an efficient
probabilistic graphical model that can support generarigrfice which is beyond the baseline.

| Data | p | RF(agglo.)| RF(proposed)
MIMIC2 | 163 0.0061 0.0061
CMS 168 0.0060 0.0059
MIMIC2 | 952 0.0060 0.0011

Table 2: Robinson Foulds (RF) metric compared with the “groundkititee for both MIMIC2 and CMS dataset.
Our proposed results are better as we increase the numbede$n

Qualitative analysis The qualitative analysis is done by a senior MD-PhD studeour team.

(a) Case d=2: Here we report the results from the 2-dimenticase (i.e., observed variable is binary). In
figure[3, we show a portion of the learned tree using the MIMh@althcare data. The yellow nodes are latent nodes
from the learned subtrees while the blue nodes represeenaas nodes(diagnosis codes) in the original dataset.
Diagnoses that are similar were generally grouped together example, many neoplastic diseases were grouped
under the same latent node (node 1135). While some dissididleases were grouped together, there usually exists a
known or plausible association of the diseases in the eisietting. For example, in figulé 3, clotting-related déssa
and altered mental status were grouped under the same hatdatas several neoplasms. This may reflect the fact
that altered mental status and clotting conditions sucH@asrtbophlebitis can occur as complications of neoplastic
diseased [FMVBOQ3]. The association of malignant neoplasipsostate and colon polyps, two common cancers in
males, is captured under latent node 1136 14].

(b) Case d =31: We also learn a tree from the MIMIC2 datasethich we grouped diseases into 163 pheWAS
codes and up to 31 dimensions per variable. Figlire 4 showsti@pof the learned tree of four subtrees which all
reflect similar diseases relating to trauma. A majority @fldarned subtrees reflected clinically meaningful cors;ept
in that related and commonly co-occurring diseases teragaup together in the same subtrees or in nearby subtrees.
We also learn the disease tree from the larger CMS datasehigh we group diseases into 168 variables and up to
31 dimensions per variable. Similar to the case from the MdRIdataset, a majority of learned subtrees reflected
clinically meaningful concepts.

2The ground truth tree is the PheWAS hierarchy provided irctimical study [DRBF10]



Neoplasms 194.1 780,1 ) Altered mental status
P lcer di " . .
' Rl "o oo e Diseases of digestive system
225.1 ) 555.1
X Other diseases of digestive system
453.1 Venous thrombosis and embolism
451.1 | Thrombophisbitis Clotting-related
) diseases and
/ conditions
[ 435.1 | Transient ischemic attack
‘ 173.1
; 1135 289.3
| Diseases of bload and
| blood-forming organs
\ 170.1 185.1
\ Malignant neoplasm of prostate
\ 1136
193.1 \
1911 Malignant neoplasm of thyroid Associated
186.1 e conditions
1904 e
2011 211.2
238.1 Colon polyps
189.1
172.1 ~ Malignant neoplasm of urinary organs
Malignant melanoma of skin =

Figure 3: An example of two subtrees which represent groups of sindileases which may commonly co-occur.
Nodes colored yellow are latent nodes from learned subtrees

Superficial, contusion, crushing injuries . ’ Open wound
Symptoms involving L Joint sprains
910-919.99 cardiovascular system 870-897.99 and strains
Unknown causes of morbidity and mortality 7§5’785'99 “0'79478'99
797-799.99
Crushing injuries 920.9&9,99 350'{54j99 905'909'9.9
- ftraEraRET il Late effects of injuries,
189 ury poisonings, toxic effects
Traumatic complications and
unspecified injuries 188 860-869.99
958-959.99 191 Injury to blood vessels Injury of thorax,
- abdomen and pelvis
900-904.99
192 Other non-specific . ' g ;
abnormal findings . 796-796.99 X 53,‘_]'339'99
800-829.99 Joint dislocation
960-979.99
== > Fractures
Drug poisoning Effects of external causes

(e.g., shock, angioedema, sepsis)
990-995.99

Figure 4: An example of four subtrees which represent groups of similseases which may commonly co-occur.
Most variables in this subtree are related to trauma.
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For both the MIMIC2 and CMS datasets, we performed a quaitatomparison of the resulting trees while
varying the hidden dimensidnfor the algorithm. The resulting trees for different valoés did not exhibit significant
differences. This implies that our algorithm is robust vdiffierent choices of hidden dimensions. The estimated inode
parameters are also robust for different valuek based on the results.

Scalability Our algorithm is scalable w.r.t. varying characteristi€she input data. First, it can handle a large
number of patients efficiently, as shown in Figlite 2(a). K hso a linear scaling behavior as we vary the number
observed nodes, as shown in Figlie 2(b). Furthermore, eveases where the number of observed variables is
large, our method maintains an almost linear scale-up asamethe computational power available, as shown in
Figure[2(c). As such, by providing the respective resoymesalgorithm is practical under any variation of the input
data characteristics.

9 Conclusion

We present an integrated approach to structure and panags@taation in latent tree models. Our method overcomes
challenges such as uncertainty of location and number dimigariables, problem of local optima with no consistency
guarantees, difficulty in scalability with respect to numbgvariables. The proposed algorithm is ideal for parallel
computing and highly scalable. We successfully appliedalgerithm to a real application for disease hierarchy
discovery using large patient data for 1.6m patients.
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Appendix

A Additivity of the Multivariate Information Distance

Recall that the additive information distance between sadue categorical variables; and z; was defined in
[CTAW1T]. We extend the notation of information distancehigh dimensional variables via Definitign #.1 and
present the proof of its additivity in Lemrha%.2 here.

Proof.
E[z,z!] = E[E[zaz, |13]] = AE[zpx, | BT

Consider three nodes b, ¢ such that there are edges betweeandb, andb andc. Let theA = E(z,|x) and
B = E(z.|x). From Definitior{ 4.1, we have, assuming thdtr, = ), E(z,z)] ) andE(z.2 ) are full rank.

| i (E(zaz))

H:]a—

dist(v,, v.) = —

\/det ) det(E(z.z]))
efdist(va,vc) :det( ( ) 1/2UTE(xa )VE( ) 1/2)

wherek-SVD((E(z,z))) = ULV T). Similarly,
e~ distva,v) — det (IE(J: N Y2UTE (] YWE(zpz) )™ 1/2)

e~ dist(vs,0e) _ ot (E(xbx VVPW T E(zpa) )VE(zex] )™ 1/2)

wherek-SVD((E(z,z) )) = USW ) andk-SVD((E(zpz/) ) = WEV ).
Therefore,

ef(dist(a,b)erist(b,c)):det(E(x T)il/QUTE(IaI;)E(beCb) 1/2— 1/2E(I ] )VE(x ] ) 1/2)

= det(E(zaz, )" ?U T AR(zp2) )BT VE(zox) ) ~1/?) = e7@oHawe)
We conclude that the multivariate information distancedslitve. Note thatE [z, | = E (E (zez) |zs)) =
E (Azpz, ) = AE(zpzy ). O
We note that when the second moments are not full rank, theeatistance can be extended as follows:
k

11 o:(E(a z!))

7

\/H ai( :CaxT ) lf[ O’z(]E(chfch))

dist(v,, v.) = — log

B Local Recursive Grouping

The Local Recursive Grouping (LRG) algorithm is a local deviand conquer procedure for learning the structure
and parameter of the latent tree (Algorithin 1). We perforoursive grouping simultaneously on the sub-trees of
the MST. Each of the sub-tree consists of an internal nodetameighborhood nodes. We keep track of the internal
nodes of the MST, and their neighbors. The resultant latétiees after LRG can be merged easily to recover the
final latent tree. Consider a pair of neighboring sub-treethé MST. They have two common nodes (the internal
nodes) which are neighbors on MST. Firstly we identify ththdeom one internal node to the other in the trees to
be merged, then compute the multivariate information dista between the internal nodes and the introduced hidden
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nodes. We recover the path between the two internal nodégimerged tree by inserting the hidden nodes closely
to their surrogate node. Secondly, we merge all the leavéshvelne not in this path by attaching them to their parent.
Hence, the recursive grouping can be done in parallel andanea@cover the latent tree structure via this merging
method.

Lemma B.1. If an observable node; is the surrogate node of a hidden nollg then the hidden nodk; can be
discovered using; and the neighbors af; in the MST.

This is due to the additive property of the multivariate imiation distance on the tree and the definition of a
surrogate node. This observation is crucial for a compfédtelal and parallel structure and parameter estimatias. It
also easy to see that all internal nodes in the MST are sugogales.

After the parallel construction of the MST, we look at all tiiernal nodesYi,;.. Forv; € Xin, we denote the
neighborhood of; on MST as nbdsul;; MST) which is a small sub-tree. Note that the number of such sedstis
equal to the number of internal nodes in MST.

For any pair of sub-trees, nhg(v;; MST) and nbd,p(v;; MST), there are two topological relationships, namely
overlapping (i.e., when the sub-trees share at least oreinadbmmon) and non-overlapping (i.e., when the sub-trees
do not share any nodes).

Since we define a neighborhood centered, as only its immediate neighbors and itself on MST, the oygilag
neighborhood pair nlgy(v;; MST) and nbd,(v;; MST) can only have conflicting paths, namely pathv,; ;) and
path(v;, v;; NV;), if v; andv; are neighbors in MST.

With this in mind, we locally estimate all the latent subese denoted ad/;, by applying Recursive Group-
ing [CTAW11] in a parallel manner on nbdsul; MST), Vv; € Aiy. Note that the latent nodes automatically in-
troduced by RGu;) havev; as their surrogate. We update the tree structure by joinaufy éevel in a bottom-up
manner. The testing of the relationship among nodes [CTAW&é&s the additive multivariate information distance
metric (AppendiXA)®(v;, v;; k) = dist(v;, vi,) — dist(v;, v) to decide whether the nodesandv; are parent-child
or siblings. If they are siblings, they should be joined byiddien parent. If they are parent and child, the child node
is placed as a lower level node and we add the other node astjie parent node, which is then joined in the next
level.

Finally, for each internal edge of MST connecting two insmodesy; andv;, we consider merging the latent
sub-trees. In the example of two local estimated latenttsess in Figur€]l, we illustrate the complete local merging
algorithm that we propose.

C Proof Sketch for Theorem[7.1

We argue for the correctness of the method under exact meniené sample complexity follows from the previous
works. In order to clarify the proof ideas, we define the notidsurrogate nod§CTAW11] as follows.

Definition C.1. Surrogate node for hidden node on the latent tree] = (V,&) is defined as S¢,;7) :=
arg HliI)l( dist(v;, v;).
v; €

In other words, the surrogate for a hidden node is an obskervadzle which has the minimum multivariate in-
formation distance from the hidden node. See Figlire 1(e)stinrogate node df;, Sghi; T), isvs, SQha; T) =
Sg(hs; T) = vs. Note that the notion of the surrogate node is only requioe@halysis, and our algorithm does not
need to know this information.

The notion of surrogacy allows us to relate the construct&d Nover observed nodes) with the underlying latent
tree. It can be easily shown that contracting the hidden sital¢heir surrogates on latent tree leads to MST. Local
recursive grouping procedure can be viewed as reversirgg tbentractions, and hence, we obtain consistent local
sub-trees.

We now argue the correctness of the structure union proeedinich merges the local sub-trees. In each recon-
structed sub-tred/;, whereu; is the group leader, the discovered hidden nodés form a surrogate relationship
with v;, i.e. Sgh’;T) = v;. Our merging approach maintains these surrogate rel&ijpsns For example in Fig-
ure[1(d1,d2), we have the path — h; — v5 in A3 and pathvs — hs — ho — vs in N'5. The resulting path is
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v3 — hy — hs — ha — vy, as seen in Figufd 1(e). We now argue why this is correct. saudsed before, $iy1; 7) = v3

and Sdhq; T) = Sg(hs; T) = vs. When we merge the two subtrees, we want to preserve the fpathghe group
leaders to the added hidden nodes, and this ensures thatrtiogate relationships are preserved in the resulting
merged tree. Thus, we obtain a global consistent tree steitty merging the local structures. The correctness of
parameter learning comes from the consistency of the tetesmmmposition techniques and careful alignments of the
hidden labels across different decompositions. Refer foefydiXD [ G for proof details and the sample complexity.

D Proof of Correctness for LRG

Definition D.1. A latent tree7>3 is defined to be a minimal (or identifiable) latent tree if itishes that each latent
variable has at least 3 neighbors.

Definition D.2. Surrogate node for hidden nodg in latent tree7 = (V, &) is defined as

Sqhi; T) = arg mir)l( dist(v;, v;).
v €

There are some useful observations about the MST in [CTAWHI¢h we recall here.

Property D.3 (MST — surrogate neighborhood preservatiofjhe surrogate nodes of any two neighboring nodes in
£ are also neighbors in the MST. l.e.,

(hi,hy) € € = (Sdhi), Sdh;)) € MST.

Property D.4 (MST — surrogate consistency along patfi)v; € X andv, € Sg‘l(vj), then every node along the
path connecting; andv;, belongs to the inverse surrogate set’S@j), ie.,

v; € Sgﬁl(vj), Yu; € Path(v;, vp,)

vy, € Sg 1 (v;).

The MST properties observed connect the MST over observatdles with the original latent trég. We obtain
MST by contracting all the latent nodes to its surrogate node

Given that the correctness of CLRG algorithm is proved inA@M 1], we prove the equivalence between the
CLRG and PLRG.

Lemma D.5. For any sub-tree pairs nid;; MST and nbdv;; MST], there is at most one overlapping edge. The
overlapping edge exists if and onlyif € nbd(v;; MST).

This is easy to see.

Lemma D.6. Denote the latent tree recovered from flgeMST as\; and similarly for nbdv,;; MST]. The incon-
sistency, if any, betweek’; and \/; occurs in the overlapping path;, v;; \;) in and pati{v;, v;; ;) after LRG
implementation on each subtrees.

We now prove the correctness of LRG. Let us denote the latemtésulting from merging a subset of small latent
trees a¥| rc(S), whereS is the set of center of subtrees that are merged pair-wi€&IRG algorithm in [CTAW11]
implements the RG in a serial manner. Let us denote the la®mtiearned at iterationfrom CLRG isT¢ira(5),
where S is the set of internal nodes visited by CLRG at current iterat We prove the correctness of LRG by
induction on the iterations.

At the initial stepS = 0: Tci.re = M ST andTirg = M ST, thusTcLrc = T\ RG-

Now we assume that for the same $gt, Tcire = Tirg IS true forr = 1,...,7 — 1. At iterationr = ¢
where CLRG employs RG on the immediate neighborhood of npd® Tc re(S;—1), let us assume thdt; is the
set of hidden nodes who are immediate neighbois-ofl. The CLRG algorithm thus considers all the neighbors and
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implements the RG. We know that the surrogate nodes of eaégptinode inf; belong to previously visited nodes
S;_1. According to Property D13 arid D.4, if we contract all theded node neighbors to their surrogate nodes, CLRG
thus is a RG on neighborhood ©bn MST.

As for our LRG algorithm at this steff; rg(S;) is the merging betweeh rc(S;_1)and ;. The latent nodes
whose surrogate node jsare introduced between the edge- 1,4). Now that we know\/; is the RG output from
immediate neighborhood éfon MST. Therefore, we proved th@g ra(S;) = Tira(S:)-

E Cross Group Alignment Correction

In order to achieve cross group alignments, tensor decaitigpason two cross group triplets have to be computed.
The first triplet is formed by three nodes: reference noderoug 1, x;, non-reference node in group ¢, and
reference node in group 23. The second triplet is formed by three nodes as well: refsxerode in group 2;3,
non-reference node in group:2, and reference node in groupal,. Let us useq; to denote the parent node in group
1, andh, the parent node in group 2.

From Trip(xl,xg,x3), we obtainP(h1|:vl) = A, P(l‘2|h1) =B andP(x3|h1) = P(,Tglhg)P(thLl) = DEFE.
From Trip(x3,x4,x1), we knOWP($3|h2) = DII, P($4|h2) = CII andP(h2|x1) = P(h2|h1)P(h1|l‘1) = HEA,

wherell is a permutation matrix. We compuieasIl = \/(HEA)(A)T(DE)T(DH) so thatD = (DIDII is aligned
with group 1. Thus, when all the parameters in the two groupsigned by permute group 2 parameters u$ing
thus the alignment is completed.

Similarly, the alignment correction can be done by cal¢ntathe permutation matrices while merging different
threads.

Overall, we merge the local structures and align the parrmé&om LRG locla sub-trees using Proceddre 2[and 3.

F Computational Complexity

We recall some notations hergis the observable node dimensidris the hidden node dimensioh & d), N is the
number of sampleg) is the number of observable nodes, and the number of non-zero elements in each sample.

Multivariate information distance estimation involvesisge matrix multiplications to compute the pairwise second
moments. Each observable node hasxa N sample matrix withz non-zeros per column. Computing the product
r123 from a single sample for nodésand?2 requiresO(z) time and there aré/ such sample pair products leading
to O(Nz) time. There areé)(p?) node pairs and hence the degree of parallelis@(ig®). Next, we perform the
k-rank SVD of each of these matrices. Each SVD takég>k) time using classical methods. Using randomized
methods[GM13a], this can be improved@gd + k3).

Next on, we construct the MST iR(log p) time per worker withp? workers. The structure learning can be done
in O(I"3) per sub-tree and the local neighborhood of each node candeegsed completely in parallel. We assume
that the group sizeE are constant (the sizes are determined by the degree of motleslatent tree and homogeneity
of parameters across different edges of the tree. The pteapsimation of each triplet of nodes consists of implicit
stochastic updates involving productsiok k£ andd x k matrices. Note that we do not need to consider all possible
triplets in groups but each node must be take care by a tapkhence there a@(p) triplets. This leads to a factor
of O(T'k3 + I'dk?) time per worker withp/T" degree of parallelism.

At last, the merging step consists of productgof £ andd x k& matrices for each edge in the latent tree leading
to O(dk?) time per worker withp/T" degree of parallelism.

G Sample Complexity

From [ACH™11], we recall the number of samples required for the regowkthe tree structure that is consistent with
the ground truth (for a precise definition of consistencierto Definition 2 of [CTAW11]).
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Lemma G.1. If
200k2 B3t TkM?t
N > 5 + (9)

(Zhae (1~ distyee))” F2(1 — distua)

then with probability at least — 7, proposed algorithm return® = 7, where

Bi= max, {\/max{[B]lPe;a] ||} max{[E]la; 2] )1}

Tq,T;E

M = ;
;?ggg{llxll\},

xiijQ—TrE -JTIE:CJ- x]
“:wﬁ%x{‘“n(‘* Bl 7] — Tr(Efoia] 5] “}n/m}.

max{|[Bfl|z; | 2ziz ] I, [E[l|2i]*;2 ]

Venin i= {mln {a( [xleT])}

x1,T

Ymax = {max {0 (E[l’lfbg])}
X1,

From [AFHT12], we recall the sample complexity for the faithful recovef parameters via tensor decomposition
methods.

We defineep to be the noise raised between empirical estimation of thersborder moments and exact second
order moments, andr to be the noise raised between empirical estimation of tiné ti"der moments and the exact
third order moments.

Lemma G.2. Consider positive constan€s, C’, c andc’, the following holds. If
Apo/?

P eg
Aot
N>C <1og + log <1og <& + —
€T €p

L > poly(k)log(1/4),

Iylw

then with probability at least — §, tensor decomposition returr($;, \;) : ¢ € [k] satisfying, after appropriate
reordering,

N 11 A1
I 0 (534 (3 +1) )
~ 1
A — N <7 < 373 €T +/\16P>
o

forall i € [k].

We note that; > o2 > ...0, > 0 are the non-zero singular values of the second order moments A\, >
. > A > 0 are the ground-truth eigenvalues of the third order momamidyv; are the corresponding eigenvectors
forall i € [k].
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H Efficient SVD Using Sparsity and Dimensionality Reduction

Without loss of generality, we assume that a matrix whose 8¥aim to compute has no row or column which is
fully zeros, since, if it does have zero entries, such rowa@dmns can be dropped.

Let A € R"*" be the matrix to do SVD. Leb € R%** wherek = ok with « is a scalar, usually, in the range
2,3]. For thei!” row of ®, if >°,|®|(4,:) # 0 and)_, |®|(:,4) # 0, then there is only one non-zero entry and that
entry is uniformly chosen fronfik]. If either 3°,|®|(i,:) = 0 or 3, |®|(:,i) = 0, we leave that row blank. Let
D € R¥*4 pe a diagonal matrix with iid Rademacher entries, i.e., emrhzero entry id or —1 with probability 5.
Now, our embedding matrix [CW13] i§ = D®, i.e., we findAS and then proceed with the Nystrom [HNH3]
method. Unlike the usual Nystrom method [GM13b] which usesralom matrix for computing the embedding, we
improve upon this by using a sparse matrix for the embeddimgeghe sparsity improves the running time and the
memory requirements of the algorithm.
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