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Scalable Latent Tree Model and its Application to Health Analytics

Furong Huang⋆, Niranjan U.N.⋆, Ioakeim Perros†, Robert Chen†, Jimeng Sun†, Anima Anandkumar∗

Abstract

We present an integrated approach to structure and parameter estimation in latent tree graphical models, where
some nodes are hidden. Our overall approach follows a “divide-and-conquer” strategy that learns models over small
groups of variables and iteratively merges into a global solution. The structure learning involves combinatorial oper-
ations such as minimum spanning tree construction and localrecursive grouping; the parameter learning is based on
the method of moments and on tensor decompositions. Our method is guaranteed to correctly recover the unknown
tree structure and the model parameters with low sample complexity for the class of linear multivariate latent tree
models which includes discrete and Gaussian distributions, and Gaussian mixtures. Our bulk asynchronous parallel
algorithm is implemented in parallel using the OpenMP framework and scales logarithmically with the number of
variables and linearly with dimensionality of each variable. Our experiments confirm a high degree of efficiency and
accuracy on large datasets of electronic health records. The proposed algorithm also generates intuitive and clinically
meaningful disease hierarchies.

1 Introduction

Latent tree graphical models are a popular class of latent variable models, where a probability distribution involving
observed and hidden variables are Markovian on a tree. Due tothe fact that structure of (observable and hidden)
variable interactions are approximated as a tree, inference on latent trees can be carried out exactly through a simple
belief propagation [Pea88]. Therefore, latent tree graphical models present a good trade-off between model accuracy
and computational complexity. They are applicable in many domains, where it is natural to expect hierarchical or
sequential relationships among the variables (through a hidden-Markov model). For instance, latent tree models have
been employed for phylogenetic reconstruction [DEKM99], object recognition [CTW12a,CTW12b] and human pose
estimation [WL13]. In this paper, we use latent tree model for discovering a hierarchy among diseases based on
comorbidities exhibited in patients’ health records, i.e.co-occurrences of diseases in patients. In particular, twolarge
healthcare datasets of 30K and 1.6M patients are used to build the latent disease trees, where clinically meaningful
disease clusters are identified as shown in fig 3 and 4 .

The task of learning a latent tree models consists of two parts: learning the tree structure, and learning the parame-
ters of the tree. There exist many challenges which prohibitefficient or guaranteed learning of the latent tree graphical
model, which will be addressed in this paper:

1. The location and the number of latent variables are hiddenand the marginalized graph over the observable
variables no longer conforms to a tree structure.

2. Structure learning algorithms are typically of computational complexity polynomial withp (number of variables)
as discussed in [ACH+11,CTAW11]. These methods are serial in nature and therefore are not scalable for large
p.

3. Parameter estimation in latent tree models is typically carried out through Expectation Maximization (EM)
or other local search heuristics [CTAW11]. These methods have no consistency guarantees, suffer from the
problem of local optima and are not easily parallelizable .

4. Typically structure learning and parameter estimation are treated sequentially, not together.

∗The authors are with Electrical Engineering and Computer Science Dept., University of California, Irvine. Emails: furongh, un.niranjan,
a.anandkumar@uci.edu.† The authors are with School of Computational Science and Engineering at College of Computing at Georgia Institute of
Technology. Emails:perros@gatech.edu, rchen87@gatech.edu, jsun@cc.gatech.edu.

1

http://arxiv.org/abs/1406.4566v3


Contributions: In this work, we present an integrated approach to structureand parameter estimation in latent tree
models. Our method overcomes all the above shortcomings simultaneously. First, it automatically learns the latent
variables and their locations. Second, our method achievesconsistent structure estimation withlog(p) computational
complexity with enough computational resources via “divide-and-conquer” manner. We also present a rigorous proof
on the global consistency of the structure and parameter estimation under the “divide-and-conquer” framework. Our
consistency guarantees are applicable to a broad class of linear multivariate latent tree models including discrete dis-
tributions, continuous multivariate distributions (e.g.Gaussian), and mixed distributions such as Gaussian mixtures.
This model class is much more general than discrete models, prevalent in most of the previous works on latent tree
models [MR05, Mos07, ESSW99, AV+13]. Third, our algorithm considers the inverse method of moments, and es-
timates the model parameters via tensor decomposition withlow perturbation guarantees. Moreover, we carefully
integrate structure learning with parameter estimation, based on tensor spectral decompositions [AGH+12]. Finally,
our approach has a high degree of parallelism, and isbulk asynchronousparallel [GV94].

In addition to the aforementioned technical contributions, we showcase the impact of our work by applying it to
two real datasets originating from the healthcare domain. The algorithm was used to discover hidden patterns, or
concepts reflecting co-occurrences of particular diagnoses in patients in outpatient and intensive care settings. While
such a task is currently done through manual analysis of the data, our method provides an automated method for the
discovery of novel clinical concepts from high dimensional, multi-modal data.

Related works: There has been widespread interest in developing distributed learning techniques, e.g. the recent
works of [SN10] and [WDK+13]. These works consider parameter estimation via likelihood-based optimizations such
as Gibbs sampling, while our method involves more challenging tasks where both the structure and the parameters are
estimated. Simple methods such as local neighborhood selection throughℓ1-regularization [MB06] or local condi-
tional independence testing [ATHW12] can be parallelized,but these methods do not incorporate hidden variables.
Finally, note that the latent tree models provide a statistical description, in addition to revealing the hierarchy. Incon-
trast, hierarchical clustering techniques are not based ona statistical model [KBXS12] and cannot provide valuable
information such as the level of correlation between observed and hidden variables.

2 Latent Tree Graphical Model Preliminaries

We denote[n] := {1, . . . , n}. Let T := (V , E) denote an undirected tree with vertex setV and edge setE . The
neighborhoodof a nodevi, nbd(vi), is the set of nodes to whichvi is directly connected on the tree. Leaves which
have a common neighboring node are known assiblings, and the common node is referred to as theirparent. LetN
denote the number of samples. An example of latent tree is depicted in Figure 1(a).

There are two types of variables on the nodes, namely, the observable variables, denoted byX := {x1, . . . , xp}
(p := |X |), and hidden variables, denoted byH := {h1, . . . , hm} (m := |H|). LetY := X ∪ H denote the complete
set of variables and letyi denote the random variable at nodevi ∈ V , and similarly letyA denote the set of random
variables in setA.

A graphical model is defined as follows: given the neighborhood nbd(vi) of any nodevi ∈ V , the variableyi is
conditionally independent of the rest of the variables inV , i.e.,yi ⊥⊥ yj|ynbd(vi), ∀vj ∈ V\ {vi ∪ nbd(vi)}.

Linear Models: We consider the class of linear latent tree models. The observed variablesxi are random vectors
of lengthdi, i.e.,xi ∈ R

di , ∀i ∈ [p] while the latent nodes arek-state categorical variables, i.e.,hi ∈ {e1, . . . , ek},
whereej ∈ Rk is thej th standard basis vector. Althoughdi can vary across variables, we used for notation simplicity.
In other words, for notation simplicity,xi ∈ Rd, ∀i ∈ [p] is equivalent toxi ∈ Rdi , ∀i ∈ [p]. For any variableyi with
neighboring hidden variablehj , we assume a linear relationship:

E[yi|hj ] = Ayi|hj
hj , (1)

where transition matrixAyi|hj
∈ Rd×k is assumed to have full column rank,∀yi, hj ∈ V . This implies thatk ≤ d,

which is natural if we want to enforce a parsimonious model for fitting the observed data.
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For a pair of (observed or hidden) variablesya andyb, consider thepairwise correlation matrixE
[
yay

⊤
b

]
where

the expectation is over samples. Since our model assumes that two observable variables interact through at least a
hidden variable, we have

E[yay
⊤
b ] :=

∑

ei

E[hj = ei]Aya|hj=ei
A⊤

yb|hj=ei
(2)

We see thatE[yay⊤b ] is of rankk sinceAya|hj=ei
orAyb|hj=ei

is of rankk.

3 Overview of Approach

Figure 1: (a) Ground truth latent tree to be estimated, numbers on edges are multivariate information distances. (b) MST
constructed using themultivariate information distances. v3 andv5 are internal nodes (leaders). Note thatmultivariate information
distancesare additive on latent tree, not on MST.(c1) LCR on nbd[v3,MST] to get local structureN 3. Pink shadow denotes the
active set. Local parameter estimation is carried out over triplets with joint node, such as (v2, v3, v5) with joint nodeh1. (c2) LCR
on nbd[v5,MST] to get local structureN 5. Cyan shadow denotes the active set.(d1)(d2)Merging local sub-trees. Path(v3,v5; N 3)
and path(v3,v5; N 5) conflict. (e) Final recovery.

The overall approach is depicted in Figure 1, where (a) and (b) show the data preprocessing step, (c) - (e) illustrate
the divide-and-conquer step for structure and parameter learning.

More specifically, we start with the parallel computation ofpairwisemultivariate information distances. Infor-
mation distance roughly measures the extent of correlationbetween different pairs of observed variables and requires
SVD computations in step (a). Then in step (b) a Minimum Spanning Tree (MST) is constructed over observable
variables in parallel [BC06] using themultivariate information distance. The local groups are also obtained through
MST so that they are available for the structure and parameter learning step that follows.

The structure and parameter learning is done jointly through a divide-and-conquer strategy. Step-(c) illustrates
the divide step (or local learning), where local structure and parameter estimation is performed. It also performs the
local merge to obtain group level structure and parameter estimates. After the local structure and parameter learning
is finished within the groups, we perform merge operations among groups, again guided by the Minimum Spanning
Tree structure. For the structure estimation it consists ofa union operation of sub-trees; for the parameter estimation, it
consists of linear algebraic operations. Since our method is unsupervised, an alignment procedure of the hidden states
is carried out which finalizes the global estimates of the tree structure and the parameters.

4 Structure Learning

Structure learning in graphical models involves finding theunderlying Markov graph, given the observed samples. For
latent tree models, structure can be estimated via distancebased methods. This involves computing certaininformation
distances between any pair of observed variables, and then finding a tree which fits the computed distances.

Multivariate information distances: We propose an additive distance for multivariate linear latent tree mod-
els. For a pair of (observed or hidden) variablesya andyb, consider the pairwise correlation matrixE

[
yay

⊤
b

]
(the

expectation is over samples). Note that its rank isk, dimension of the hidden variables.
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Definition 4.1. The multivariate information distance between nodesi andj is defined as

dist(va, vb) := − log

k∏
i=1

σi

(
E(yay

⊤
b )
)

√
det(E(yay⊤a )) det(E(yby

⊤
b ))

(3)

where{σ1(·), . . . , σk(·)} are the topk singular values.

Note that definition 4.1 suggests that this multivariate information distance allows heterogeneous settings where
the dimensions ofya andyb are different (and≥ k).

For latent tree models, we can find information distances which are provablyadditiveon the underlying tree in
expectation, i.e. the expected distance between any two nodes in the tree is the sum of distances along the path between
them.

Lemma 4.2. The multivariate information distance is additive on the tree T , i.e., dist(va, vc) = dist(va, vb) +
dist(vb, vc), wherevb is a node in the path fromva to vc andva,vb,vc ∈ V .

Refer to Appendix A for proof. The empirical distances can becomputed via rank-k SVD of the empirical pairwise
moment matrix̂E[yay⊤b ] Note that the distances for all the pairs can be computed in parallel.

Formation of local groups via MST: Once the empirical distances are computed, we construct a Minimum
Spanning Tree (MST), based on those distances. Note that theMST can be computed efficiently in parallel [VHPN09,
Mic12]. We now form groups of observed variables over which we carry out learning independently, without any
coordination. These groups are obtained by the (closed) neigborhoods in the MST, i.e. an internal node and its
one-hop neighbors form a group. The corresponding internalnode is referred to as thegroup leader. See Figure 1(b).

Local recursive grouping (LRG): Once the groups are constructed via neighborhoods of MST, weconstruct a
sub-tree with hidden variables in each group (in parallel) using the recursive grouping introduced in [CTAW11]. The
recursive grouping uses the multivariate information distances and decides the locations and numbers of hidden nodes.
It proceeds by deciding which nodes are siblings, which proceeds as follows: consider two observed nodesvi, vj which
are siblings on the tree with a common parentvl, and consider any other observed nodeva. From additivity of the
(expected) information distances, we have dist(vi, va) = dist(vi, vl)+dist(vl, va) and similarly for dist(vj , va). Thus,
we haveΦ(vi, vj ; va) := dist(vi, va)−dist(vj , va) = dist(vi, vl)−dist(vj , vl), which is independent of nodeva. Thus,
comparing the quantityΦ(vi, vj ; va) for different nodesva allows us to conclude thatvi andvj are siblings. Once the
siblings are inferred, the hidden nodes are introduced, andthe same procedure repeats to construct the higher layers.
Note that whenever we introduce a new hidden nodehnew as a parent, we need to estimate multivariate information
distance betweenhnew and nodes in active setΩ. This is discussed in [CTAW11] with details.

We will describe the LRG in details with integrated parameters estimation in Procudure 1 in Section 6. In the
end, we obtain a sub-tree over the local group of variables. After this local recursive grouping test, we store the
neighborhood relationship for the leadervi using an adjacency listN i. We call the resultant local structure aslatent
sub-tree.

5 Parameter Estimation

Along with the structure learning, we adopt a moment-based spectral learning technique for parameter estimation.
This is a guaranteed and fast approach to recover parametersvia moment matching for third order moments of the
observed data. In contrast, traditional approaches such asExpectation Maximization (EM) suffer from spurious local
optima and cannot provably recover the parameters.

A latent tree with three leaves:We first consider an example of three observable leavesx1, x2, x3 (i.e., a triplet)
with a common hidden parenth. We then clarify how this can be generalized to learn the parameters of the latent tree
model. Let⊗ denote for the tensor product. For example, ifx1, x2, x3 ∈ Rd, we havex1 ⊗ x2 ⊗ x3 ∈ Rd×d×d.
Property 5.1 (Tensor decomposition for triplets). For a linear latent tree model with three observed nodesv1, v2, v3
with joint hidden nodeh, we have

E(x1 ⊗ x2 ⊗ x3) =

k∑

r=1

P[h = er]A
r
x1|h
⊗Ar

x2|h
⊗Ar

x3|h
, (4)
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whereAr
xi|h

= E(xi|h = er), i.e., rth column of the transition matrices fromh to xi. The tensor decomposition

method of [AGH+12] provably recovers the parametersAxi|h, ∀i ∈ [3], andP[h].

Tensor decomposition for learning latent tree models:We employ the above approach for learning latent tree
model parameters as follows: for every triplet of variablesya, yb, andyc (hidden or observed), we consider the hidden
variablehi which is the joining point ofya, yb andyc on the tree. They form atriplet model, for which we employ the
tensor decomposition procedure. However, it is wasteful todo it over all the triplets in the latent tree.

In the next section, we demonstrate how we efficiently estimate the parameters as we learn the structure, and
minimize the tensor decompositions required for estimation. Issues such as alignment of hidden labels across different
decompositions will also be addressed.

6 Integrated Struct. and Param. Estimation

So far, we described high-level procedures of structure estimation through local recursive grouping (LRG) and param-
eter estimation through tensor decomposition over triplets of variables, respectively. We now describe an integrated
and efficient approach which brings all these ingredients together. In addition, we provide merging steps to obtain a
global model, using the sub-trees and parameters learnt over local groups.

6.1 Local recursive grouping with tensor decomp.

Next we present an integrated procedure where the parameterestimation goes hand-in-hand with structure estimation.
Intuitively, we find efficient groups of triplets to carry outtensor decomposition simultaneously, as we estimate the
structure through recursive grouping. In recursive grouping, pairs of nodes are recursively grouped as siblings or as
parent-child. As this process continues, we carry out tensor decompositions whenever there are siblings present as
triplets. If there are only a pair of siblings, we find an observed node with closest distance to the pair. Once the tensor
decompositions are carried out on the observed nodes, we proceed to structure and parameter estimation of the added
hidden variables. The samples of the hidden variables can beobtained via the posterior distribution, which is learnt
earlier through tensor decomposition. This allows us to predict information distances and third order moments among
the hidden variables as process continues. The full algorithm is given in Procedure 1.

Procedure 1LRG with Parameter Estimation

Input: for eachvi ∈ Xint, active setΩ := nbd[vi;MST].
Output: for eachvi ∈ Xint, local sub-tree adjacency matrixN i, andE[ya|yb] for all (va, vb) ∈ N i.

1: Active setΩ← nbd[vi;MST]
2: while |Ω| > 2 do
3: for all va, vb ∈ Ω do
4: if Φ(va, vb; vc) = dist(va, vb), ∀ vc ∈ Ω\{va, vb} then
5: va is a leaf node andvb is its parent,
6: Eliminateva fromΩ.
7: if −dist(va, vb) < Φ(va, vb; vc) = Φ(va, vb; v

′
c) < dist(va, vb), ∀vc, v′c ∈ Ω\{va, vb} then

8: va andvb are siblings,eliminateva andvb fromΩ, addhnew toΩ.
9: Introduce new hidden nodehnew as parent ofva andvb.

10: if more than 3 siblings underhnew then
11: find vc in siblings,
12: else
13: find vc = argminvc∈Ω dist(va, vc).
14: Estimate empirical third order momentsÊ(ya ⊗ yb ⊗ yc)

15: DecomposêE(ya ⊗ yb ⊗ yc) to getPr[hnew] andE(yr |hnew), ∀r = {a, b, c}.

The divide-and-conquer local spectral parameter estimation is superior compared to popular EM-based method [CTAW11],
which is slow and prone to local optima. More importantly, EMcan only be applied on a stable structure since it is a
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global update procedure. Our proposed spectral learning method, in contrast, is applied locally over small groups of
variables, and is a guaranteed learning with sufficient number of samples [AGH+12]. Moreover, since we integrate
structure and parameter learning, we avoid recomputing thesame quantities, e.g. SVD computations are required both
for structure estimation (for computing distances) and parameter estimation (for whitening the tensor). Combining
these operations results in huge computational savings (see Section 7 for the exact computational complexity of our
method).

Procedure 2Merging and Alignment Correction (MAC)

Input: Latent sub-treesN i for all internal nodesi.
Output: Global latent treeT structure and parameters.

1: for N i andN j in all the sub-treesdo
2: if there are common nodes betweenN i andN j then
3: Find the shortest path path(vi, vj ;N i) betweenvi andvj onN i and path(vi, vj ;N j) in N j ;
4: Union the only conflicting path(vi, vj ;N i) and path(vi, vj ;N j) according to equation (7) ;
5: Attach other nodes inN i andN j to the union path;
6: Perform alignment correction as described in Procedure 3.

6.2 Merging and Alignment Correction

We have so far learnt sub-trees and parameters over local groups of variables, where the groups are determined by
the neighborhoods of the MST. The challenge now is to combinethem to obtain a globally consistent estimate. There
are non-trivial obstacles to achieving this: first, the constructed local sub-trees span overlapping groups of observed
nodes, and possess conflicting paths. Second, local parameters need to be re-aligned as we merge the subtrees to obtain
globally consistent estimates due to the nature of unsupervised learning. To be precise, different tensor decompositions
lead to permutation of the hidden labels (i.e. columns of thetransition matrices) across triplets. Thus, we need to find
the permutation matrix correcting the alignment of hidden states of the transition matrices, so as to guarantee global
consistency.

Structure Union: We now describe the procedure to merge the local structures.We merge them in pairs to obtain
the final global latent tree. Recall thatN i denotes a sub-tree constructed locally over a group, whose leader is node
vi. Consider a pair of subtreesN i andN j , whose group leadersvi andvj are neighbors on the MST. Sincevi andvj
are neighbors, both the sub-trees contain them, and have different paths between them (with hidden variables added).
Moreover, note that this is the only conflicting path in the two subtrees. We now describe how we can resolve this:
in N i, let hi

1 be the neighboring hidden node forvi andhi
2 be the neighbor ofvj . There could be more hidden nodes

betweenhi
1 andhi

2. Similarly, inN i, let hj
1 andhj

2 be the corresponding nodes inN j . The shortest path betweenvi
andvj in the two sub-trees are given as follows:

path(vi, vj ;N i) := [vi − hi
1 − . . .− hi

2 − vj ] (5)

path(vi, vj ;N j) := [vi − hj
1 − . . .− hj

2 − vj ] (6)

Then the union path is formed as follows:

merge(path(vi, vj ;N i), path(vi, vj ;N j))

:= [vi − hi
1 − . . .− hi

2 − hj
1 . . . h

j
2 − vj ] (7)

In other words, we retain the immediate hidden neighbor of each group leader, and break the paths on the other end.
For example in Figure 1(d1,d2), we have the pathv3−h1− v5 inN 3 and pathv3−h3−h2− v5 inN 5. The resulting
path isv3 − h1 − h3 − h2 − v5, as see in Figure 1(e). After the union of the conflicting paths, the other nodes are
attached to the resultant latent tree. We present the pseudocode in Procedure 2 in Appendix E.
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Procedure 3Parameter Alignment Correction
(Gr denotes reference group,Go denotes the list of other groups, each group has a reference node denoted asRl, and
the reference node inGr isRg. The details on alignment at line 8 is in Appendix E.)

Input: Triplets and unaligned parameters estimated for these triplets, denoted as Trip(yi, yj, yk).
Output: Aligned parameters for the entire latent treeT .

1: SelectGr which hassufficient children;
2: Select refer nodeRg in Gr;
3: for all a, b inGr do
4: Align Trip in(ya, yb,Rg);
5: for all ig in Go do
6: Select refer nodeRl in Go[ig];
7: Align Tripout(Rg, ya,Rl) and Tripout(Rl, yi,Rg);
8: for all i, j in Go[ig] do
9: Align Trip(yi, yj,Rl);

Parameter Alignment Correction: As mentioned before, our parameter estimation is unsupervised, and there-
fore, columns of the estimated transition matrices may be permuted for different triplets over which tensor decompo-
sition is carried out. Note that the parameter estimation within the triplet is automatically acquired through the tensor
decomposition technique, so that the alignment issue only arises across triplets. We refer to this as the alignment issue
and it is required at various levels.

There are two types of triplets, namely,in-groupandout-grouptriplets. A triplet of nodes Trip(yi, yj, yl) is said to
be in-group(denoted by Tripin(yi, yj , yl) ) if its containing nodes share a joint nodehk and there are no other hidden
nodes in path(yi, hk), path(yj, hk) or path(yl, hk). Otherwise, this triplet isout-groupdenoted by Tripout(yi, yj , yl).
We define a group assufficient childrengroup if it contains at least threein-groupnodes.

Designing anin-groupalignment correction withsufficient childrenis relatively simple: we achieve this by includ-
ing a local reference node for all thein-group triplets. Thus, all the triplets are aligned with the reference node. The
alignment correction is more challenging if lackingsufficient children. We proposeout-groupalignment to solve this
problem. We first assign one group as areference group, and thelocal reference nodein thatreference groupbecomes
theglobal reference node. In this way, we align all recovered transition matrices in the same order of hidden states as
in the reference node. Overall, we merge the local structures and align the parameters from LRG local sub-trees using
Procedure 2 and 3.

7 Theoretical Gaurantees

Correctness of Proposed Parallel Algorithm:We now provide the main result of this paper on global consistency
for our method, despite the high degree of parallelism.

Theorem 7.1. Given samples from an identifiable latent tree model, the proposed method consistently recovers the
structure withO(log p) sample complexity and parameters withO(poly p) sample complexity.

The proof sketch is in Appendix C.
Computational Complexity: We recall some notations here:d is the observable node dimension,k is the hidden

node dimension (k ≪ d), N is the number of samples,p is the number of observable nodes, andz is the number of
non-zero elements in each sample.

Let Γ denote the maximum size of the groups, over which we operate the local recursive grouping procedure.
Thus,Γ affects the degree of parallelism for our method. Recall that it is given by the neighborhoods on MST, i.e.,
Γ := maxi|nbd[i;MST]|. Below, we provide a bound onΓ.

Lemma 7.2. The maximum size of neighborhoods on MST, denoted asΓ, satisfies

Γ ≤ ∆
1+

ud
ld

δ
, (8)
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whereδ := maxi{minj{path(vi, vj ; T )}} is the effective depth,∆ is the maximum degree ofT , and theud andld are
the upper and lower bound of information distances between neighbors onT .

Thus, we see that for many natural cases, where the degree andthe depth in the latent tree are bounded (e.g. the
hidden Markov model), and the parameters are mostly homogeneous (i.e.,ud/ld is small), the group sizes are bounded,
leading to a high degree of parallelism.

We summarize the computational complexity in Table 1. Details can be found in Appendix F.

Algorithm Steps Time per worker Degree of parallelism

Distance Est. O(Nz + d+ k3) O(p2)
MST O(log p) O(p2)
LRG O(Γ3) O(p/Γ)
Tensor Decomp. O(Γk3 + Γdk2) O(p/Γ)
Merging step O(dk2) O(p/Γ)

Table 1: Worst-case computational complexity of our algorithm. Thetotal complexity is the product of the time per
work and degree of parallelism.

8 Experiments

SetupExperiments are conducted on a server running the Red Hat Enterprise 6.6 with 64 AMD Opteron processors
and 265 GBRAM. The program is written in C++, coupled with themulti-threading capabilities of the OpenMP
environment [DM98] (version 1.8.1). We use the Eigen toolkit1 where BLAS operations are incorporated. For SVDs
of large matrices, we use randomized projection methods [GM13a] as described in Appendix H.

Healthcare data analysisThe goal of our analysis is to discover a disease hierarchy based on their co-occurring
relationships in the patient records. In general, longitudinal patient records store the diagnosed diseases on patients
over time, where the diseases are encoded with International Classification of Diseases (ICD) code.

Data description We used two large patient datasets of different sizes with respect to the number of samples,
variables and dimensionality.

(1) MIMIC2: The MIMIC2 dataset record disease history of 29,862 patients where a overall of 314,647 diagnostic
events over time representing 5675 diseases are logged. We consider patients as samples and groups of diseases as
variables. We analyze and compare the results by varying thegroup size (therefore varyingd andp).

(2) CMS:The CMS dataset includes 1.6 million patients, for whom 15.8million medical encounter events are
logged. Across all events, 11,434 distinct diseases (represented by ICD codes) are logged. We consider patients as
samples and groups of diseases as variables. We consider specific diseases within each group as dimensions. We
analyze and compare the results by varying the group size (therefore varyingd andp). While the MIMIC2 dataset
and CMS dataset both contain logged diagnostic events, the larger volume of data in CMS provides an opportunity
for testing the algorithm’s scalability. We qualitativelyevaluate biological implications on MIMIC2 and quantitatively
evaluate algorithm performance and scalability on CMS.

To learn the disease hierarchy from data, we also leverage some existing domain knowledge about diseases. In
particular, we use an existing mapping between ICD codes andhigher-level Phenome-wide Association Study (Phe-
WAS) codes [DRB+10]. We use (about 200) PheWAS codes as observed nodes and theobserved node dimension is
set to be binary (d = 2) or the maximum number of ICD codes within a pheWAS code (d = 31). The goal is to learn
the latent nodes and the disease hierarchy and associated parameters from data.

8.1 Experimental results - Validation

We conduct both quantitative and qualitative validation ofthe resulting disease hierarchy.

1http://eigen.tuxfamily.org/index.php?title=Main_Page
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Figure 2: (a) CMS dataset sub-sampling w.r.t. varying number of samples.(b) MIMIC2 dataset sub-sampling
w.r.t. varying number of observed nodes. Each one of the observed nodes is binary (d = 2). (c) MIMIC2 dataset:
Scaling w.r.t. varying computational power, establishingthe scalability of our method even in the largep regime. The
number of observed nodes is1083 and each one of them is binary (p = 1083, d = 2).

Quantitative Analysis We first compare our resulting hierarchy with a ground truth tree based on medical knowl-
edge2. The standard Robinson Foulds (RF) metric [RF81](between our estimated latent tree and the ground truth tree)
is computed to evaluate the structure recovery in Table 2. The smaller the metric is, the better the recovered tree is.
We also compare our results with a baseline: the agglomerative clustering. The proposed method are slightly better
than the baseline and the advantage is increased with more nodes. However, the proposed method provides an efficient
probabilistic graphical model that can support general inference which is beyond the baseline.

Data p RF(agglo.) RF(proposed)

MIMIC2 163 0.0061 0.0061
CMS 168 0.0060 0.0059

MIMIC2 952 0.0060 0.0011

Table 2: Robinson Foulds (RF) metric compared with the “ground-truth” tree for both MIMIC2 and CMS dataset.
Our proposed results are better as we increase the number of nodes.

Qualitative analysis The qualitative analysis is done by a senior MD-PhD student in our team.
(a) Case d=2: Here we report the results from the 2-dimensional case (i.e., observed variable is binary). In

figure 3, we show a portion of the learned tree using the MIMIC2healthcare data. The yellow nodes are latent nodes
from the learned subtrees while the blue nodes represent observed nodes(diagnosis codes) in the original dataset.
Diagnoses that are similar were generally grouped together. For example, many neoplastic diseases were grouped
under the same latent node (node 1135). While some dissimilar diseases were grouped together, there usually exists a
known or plausible association of the diseases in the clinical setting. For example, in figure 3, clotting-related diseases
and altered mental status were grouped under the same latentnode as several neoplasms. This may reflect the fact
that altered mental status and clotting conditions such as thrombophlebitis can occur as complications of neoplastic
diseases [FMVB03]. The association of malignant neoplasmsof prostate and colon polyps, two common cancers in
males, is captured under latent node 1136 [G+14].

(b) Case d =31: We also learn a tree from the MIMIC2 dataset, inwhich we grouped diseases into 163 pheWAS
codes and up to 31 dimensions per variable. Figure 4 shows a portion of the learned tree of four subtrees which all
reflect similar diseases relating to trauma. A majority of the learned subtrees reflected clinically meaningful concepts,
in that related and commonly co-occurring diseases tended to group together in the same subtrees or in nearby subtrees.
We also learn the disease tree from the larger CMS dataset, inwhich we group diseases into 168 variables and up to
31 dimensions per variable. Similar to the case from the MIMIC2 dataset, a majority of learned subtrees reflected
clinically meaningful concepts.

2The ground truth tree is the PheWAS hierarchy provided in theclinical study [DRB+10]
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Figure 3: An example of two subtrees which represent groups of similardiseases which may commonly co-occur.
Nodes colored yellow are latent nodes from learned subtrees.

Figure 4: An example of four subtrees which represent groups of similar diseases which may commonly co-occur.
Most variables in this subtree are related to trauma.
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For both the MIMIC2 and CMS datasets, we performed a qualitative comparison of the resulting trees while
varying the hidden dimensionk for the algorithm. The resulting trees for different valuesof k did not exhibit significant
differences. This implies that our algorithm is robust withdifferent choices of hidden dimensions. The estimated model
parameters are also robust for different values ofk based on the results.

Scalability Our algorithm is scalable w.r.t. varying characteristics of the input data. First, it can handle a large
number of patients efficiently, as shown in Figure 2(a). It has also a linear scaling behavior as we vary the number
observed nodes, as shown in Figure 2(b). Furthermore, even in cases where the number of observed variables is
large, our method maintains an almost linear scale-up as we vary the computational power available, as shown in
Figure 2(c). As such, by providing the respective resources, our algorithm is practical under any variation of the input
data characteristics.

9 Conclusion

We present an integrated approach to structure and parameter estimation in latent tree models. Our method overcomes
challenges such as uncertainty of location and number of hidden variables, problem of local optima with no consistency
guarantees, difficulty in scalability with respect to number of variables. The proposed algorithm is ideal for parallel
computing and highly scalable. We successfully applied thealgorithm to a real application for disease hierarchy
discovery using large patient data for 1.6m patients.
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Appendix

A Additivity of the Multivariate Information Distance

Recall that the additive information distance between nodes two categorical variablesxi and xj was defined in
[CTAW11]. We extend the notation of information distance tohigh dimensional variables via Definition 4.1 and
present the proof of its additivity in Lemma 4.2 here.

Proof.
E[xax

⊤
c ] = E[E[xax

⊤
c |xb]] = AE[xbx

⊤
b ]B

⊤

Consider three nodesa, b, c such that there are edges betweena and b, andb and c. Let theA = E(xa|xb) and
B = E(xc|xb). From Definition 4.1, we have, assuming thatE(xax

⊤
a ), E(xbx

⊤
b ) andE(xcx

⊤
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We conclude that the multivariate information distance is additive. Note thatE
[
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We note that when the second moments are not full rank, the above distance can be extended as follows:

dist(va, vc) = − log
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c ))

√
k∏

i=1

σi(E(xax⊤
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c ))
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B Local Recursive Grouping

The Local Recursive Grouping (LRG) algorithm is a local divide and conquer procedure for learning the structure
and parameter of the latent tree (Algorithm 1). We perform recursive grouping simultaneously on the sub-trees of
the MST. Each of the sub-tree consists of an internal node andits neighborhood nodes. We keep track of the internal
nodes of the MST, and their neighbors. The resultant latent sub-trees after LRG can be merged easily to recover the
final latent tree. Consider a pair of neighboring sub-trees in the MST. They have two common nodes (the internal
nodes) which are neighbors on MST. Firstly we identify the path from one internal node to the other in the trees to
be merged, then compute the multivariate information distances between the internal nodes and the introduced hidden
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nodes. We recover the path between the two internal nodes in the merged tree by inserting the hidden nodes closely
to their surrogate node. Secondly, we merge all the leaves which are not in this path by attaching them to their parent.
Hence, the recursive grouping can be done in parallel and we can recover the latent tree structure via this merging
method.

Lemma B.1. If an observable nodevj is the surrogate node of a hidden nodehi, then the hidden nodehi can be
discovered usingvj and the neighbors ofvj in the MST.

This is due to the additive property of the multivariate information distance on the tree and the definition of a
surrogate node. This observation is crucial for a completely local and parallel structure and parameter estimation. Itis
also easy to see that all internal nodes in the MST are surrogate nodes.

After the parallel construction of the MST, we look at all theinternal nodesXint. For vi ∈ Xint, we denote the
neighborhood ofvi on MST as nbdsub(vi;MST) which is a small sub-tree. Note that the number of such sub-trees is
equal to the number of internal nodes in MST.

For any pair of sub-trees, nbdsub(vi;MST) and nbdsub(vj ;MST), there are two topological relationships, namely
overlapping (i.e., when the sub-trees share at least one node in common) and non-overlapping (i.e., when the sub-trees
do not share any nodes).

Since we define a neighborhood centered atvi as only its immediate neighbors and itself on MST, the overlapping
neighborhood pair nbdsub(vi;MST) and nbdsub(vj ;MST) can only have conflicting paths, namely path(vi, vj ;N i) and
path(vi, vj ;N j), if vi andvj are neighbors in MST.

With this in mind, we locally estimate all the latent sub-trees, denoted asN i, by applying Recursive Group-
ing [CTAW11] in a parallel manner on nbdsub(vi;MST), ∀vi ∈ Xint. Note that the latent nodes automatically in-
troduced by RG(vi) havevi as their surrogate. We update the tree structure by joining each level in a bottom-up
manner. The testing of the relationship among nodes [CTAW11] uses the additive multivariate information distance
metric (Appendix A)Φ(vi, vj ; k) = dist(vi, vk)− dist(vi, vk) to decide whether the nodesvi andvj are parent-child
or siblings. If they are siblings, they should be joined by a hidden parent. If they are parent and child, the child node
is placed as a lower level node and we add the other node as the single parent node, which is then joined in the next
level.

Finally, for each internal edge of MST connecting two internal nodesvi andvj , we consider merging the latent
sub-trees. In the example of two local estimated latent sub-trees in Figure 1, we illustrate the complete local merging
algorithm that we propose.

C Proof Sketch for Theorem 7.1

We argue for the correctness of the method under exact moments. The sample complexity follows from the previous
works. In order to clarify the proof ideas, we define the notion of surrogate node[CTAW11] as follows.

Definition C.1. Surrogate node for hidden nodehi on the latent treeT = (V , E) is defined as Sg(hi; T ) :=
arg min

vj∈X
dist(vi, vj).

In other words, the surrogate for a hidden node is an observable node which has the minimum multivariate in-
formation distance from the hidden node. See Figure 1(a), the surrogate node ofh1, Sg(h1; T ), is v3, Sg(h2; T ) =
Sg(h3; T ) = v5. Note that the notion of the surrogate node is only required for analysis, and our algorithm does not
need to know this information.

The notion of surrogacy allows us to relate the constructed MST (over observed nodes) with the underlying latent
tree. It can be easily shown that contracting the hidden nodes to their surrogates on latent tree leads to MST. Local
recursive grouping procedure can be viewed as reversing these contractions, and hence, we obtain consistent local
sub-trees.

We now argue the correctness of the structure union procedure, which merges the local sub-trees. In each recon-
structed sub-treeN i, wherevi is the group leader, the discovered hidden nodes{hi} form a surrogate relationship
with vi, i.e. Sg(hi; T ) = vi. Our merging approach maintains these surrogate relationships. For example in Fig-
ure 1(d1,d2), we have the pathv3 − h1 − v5 in N 3 and pathv3 − h3 − h2 − v5 in N 5. The resulting path is
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v3−h1−h3−h2−v5, as seen in Figure 1(e). We now argue why this is correct. As discussed before, Sg(h1; T ) = v3
and Sg(h2; T ) = Sg(h3; T ) = v5. When we merge the two subtrees, we want to preserve the pathsfrom the group
leaders to the added hidden nodes, and this ensures that the surrogate relationships are preserved in the resulting
merged tree. Thus, we obtain a global consistent tree structure by merging the local structures. The correctness of
parameter learning comes from the consistency of the tensordecomposition techniques and careful alignments of the
hidden labels across different decompositions. Refer to Appendix D, G for proof details and the sample complexity.

D Proof of Correctness for LRG

Definition D.1. A latent treeT≥3 is defined to be a minimal (or identifiable) latent tree if it satisfies that each latent
variable has at least 3 neighbors.

Definition D.2. Surrogate node for hidden nodehi in latent treeT = (V , E) is defined as

Sg(hi; T ) := arg min
vj∈X

dist(vi, vj).

There are some useful observations about the MST in [CTAW11]which we recall here.

Property D.3 (MST− surrogate neighborhood preservation). The surrogate nodes of any two neighboring nodes in
E are also neighbors in the MST. I.e.,

(hi, hj) ∈ E ⇒ (Sg(hi),Sg(hj)) ∈ MST.

Property D.4 (MST− surrogate consistency along path). If vj ∈ X andvh ∈ Sg−1(vj), then every node along the
path connectingvj andvh belongs to the inverse surrogate set Sg−1(vj), i.e.,

vi ∈ Sg−1(vj), ∀vi ∈ Path(vj , vh)

if
vh ∈ Sg−1(vj).

The MST properties observed connect the MST over observablenodes with the original latent treeT . We obtain
MST by contracting all the latent nodes to its surrogate node.

Given that the correctness of CLRG algorithm is proved in [CTAW11], we prove the equivalence between the
CLRG and PLRG.

Lemma D.5. For any sub-tree pairs nbd[vi;MST] and nbd[vi;MST], there is at most one overlapping edge. The
overlapping edge exists if and only ifvi ∈ nbd(vj ;MST).

This is easy to see.

Lemma D.6. Denote the latent tree recovered from nbd[vi;MST] asN i and similarly for nbd[vj ;MST]. The incon-
sistency, if any, betweenN i andN j occurs in the overlapping path(vi, vj ;N i) in and path(vi, vj ;N j) after LRG
implementation on each subtrees.

We now prove the correctness of LRG. Let us denote the latent tree resulting from merging a subset of small latent
trees asTLRG(S), whereS is the set of center of subtrees that are merged pair-wisely.CLRG algorithm in [CTAW11]
implements the RG in a serial manner. Let us denote the latenttree learned at iterationi from CLRG isTCLRG(S),
whereS is the set of internal nodes visited by CLRG at current iteration . We prove the correctness of LRG by
induction on the iterations.

At the initial stepS = ∅: TCLRG = MST andTLRG = MST , thusTCLRG = TLRG.
Now we assume that for the same setSi−1, TCLRG = TLRG is true forr = 1, . . . , i − 1. At iteration r = i

where CLRG employs RG on the immediate neighborhood of nodevi on TCLRG(Si−1), let us assume thatHi is the
set of hidden nodes who are immediate neighbors ofi− 1. The CLRG algorithm thus considers all the neighbors and
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implements the RG. We know that the surrogate nodes of every latent node inHi belong to previously visited nodes
Si−1. According to Property D.3 and D.4, if we contract all the hidden node neighbors to their surrogate nodes, CLRG
thus is a RG on neighborhood ofi on MST.

As for our LRG algorithm at this step,TLRG(Si) is the merging betweenTLRG(Si−1)andN i. The latent nodes
whose surrogate node isj are introduced between the edge(i − 1, i). Now that we knowN i is the RG output from
immediate neighborhood ofi on MST. Therefore, we proved thatTCLRG(Si) = TLRG(Si).

E Cross Group Alignment Correction

In order to achieve cross group alignments, tensor decompositions on two cross group triplets have to be computed.
The first triplet is formed by three nodes: reference node in group 1,x1, non-reference node in group 1,x2, and
reference node in group 2,x3. The second triplet is formed by three nodes as well: reference node in group 2,x3,
non-reference node in group 2,x4 and reference node in group 1,x1. Let us useh1 to denote the parent node in group
1, andh2 the parent node in group 2.

From Trip(x1, x2, x3), we obtainP (h1|x1) = Ã, P (x2|h1) = B andP (x3|h1) = P (x3|h2)P (h2|h1) = DE.
From Trip(x3, x4, x1), we knowP (x3|h2) = DΠ, P (x4|h2) = CΠ andP (h2|x1) = P (h2|h1)P (h1|x1) = ΠEÃ,

whereΠ is a permutation matrix. We computeΠ asΠ =
√
(ΠEÃ)(Ã)†(DE)†(DΠ) so thatD = (DΠ)Π† is aligned

with group 1. Thus, when all the parameters in the two groups are aligned by permute group 2 parameters usingΠ,
thus the alignment is completed.

Similarly, the alignment correction can be done by calculating the permutation matrices while merging different
threads.

Overall, we merge the local structures and align the parameters from LRG locla sub-trees using Procedure 2 and 3.

F Computational Complexity

We recall some notations here:d is the observable node dimension,k is the hidden node dimension (k ≪ d), N is the
number of samples,p is the number of observable nodes, andz is the number of non-zero elements in each sample.

Multivariate information distance estimation involves sparse matrix multiplications to compute the pairwise second
moments. Each observable node has ad × N sample matrix withz non-zeros per column. Computing the product
x1x

T
2 from a single sample for nodes1 and2 requiresO(z) time and there areN such sample pair products leading

to O(Nz) time. There areO(p2) node pairs and hence the degree of parallelism isO(p2). Next, we perform the
k-rank SVD of each of these matrices. Each SVD takesO(d2k) time using classical methods. Using randomized
methods [GM13a], this can be improved toO(d + k3).

Next on, we construct the MST inO(log p) time per worker withp2 workers. The structure learning can be done
in O(Γ3) per sub-tree and the local neighborhood of each node can be processed completely in parallel. We assume
that the group sizesΓ are constant (the sizes are determined by the degree of nodesin the latent tree and homogeneity
of parameters across different edges of the tree. The parameter estimation of each triplet of nodes consists of implicit
stochastic updates involving products ofk × k andd × k matrices. Note that we do not need to consider all possible
triplets in groups but each node must be take care by a tripletand hence there areO(p) triplets. This leads to a factor
of O(Γk3 + Γdk2) time per worker withp/Γ degree of parallelism.

At last, the merging step consists of products ofk × k andd × k matrices for each edge in the latent tree leading
toO(dk2) time per worker withp/Γ degree of parallelism.

G Sample Complexity

From [ACH+11], we recall the number of samples required for the recovery of the tree structure that is consistent with
the ground truth (for a precise definition of consistency, refer to Definition 2 of [CTAW11]).
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Lemma G.1. If

N >
200k2B2t

(
γ2

min

γmax

(1− distmax)
)2 +

7kM2t
γ2

min

γmax

(1− distmax)
, (9)

then with probability at least1− η, proposed algorithm returnŝT = T , where

B := max
xi,xj∈X

{√
max{‖E[‖xi‖2xjx⊤

j ]‖},max{‖E[‖xj‖2xix⊤
i ]‖}

}
,

M := max
xi∈X

{‖xi‖} ,

t := max
xi,xj∈X

{
4 ln(4

E[‖xi‖2‖xj‖2]− Tr(E[xix
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j ]E[xjx

⊤
i ])
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n/η)

}
.

γmin := min
{x1,x2}

{σ
(
E[x1x

⊤
2 ]
)
}

γmax := max
{x1,x2}

{σ
(
E[x1x

⊤
2 ]
)
}

From [AFH+12], we recall the sample complexity for the faithful recovery of parameters via tensor decomposition
methods.

We defineǫP to be the noise raised between empirical estimation of the second order moments and exact second
order moments, andǫT to be the noise raised between empirical estimation of the third order moments and the exact
third order moments.

Lemma G.2. Consider positive constantsC, C′, c andc′, the following holds. If

ǫP ≤ c

λk

λ1

k
, ǫT ≤ c′

λkσ
3/2
k

k

N ≥ C

(
log(k) + log

(
log

(
λ1σ

3/2
k

ǫT
+

1

ǫP

)))

L ≥ poly(k) log(1/δ),

then with probability at least1 − δ, tensor decomposition returns(v̂i, λi) : i ∈ [k] satisfying, after appropriate
reordering,

‖v̂i − vi‖2 ≤ C′

(
1

λi

1

σ2
k

ǫT +

(
λ1

λi

1√
σk

+ 1

)
ǫP

)

|λ̂i − λi| ≤ C′

(
1

σ
3/2
k

ǫT + λ1ǫP

)

for all i ∈ [k].

We note thatσ1 ≥ σ2 ≥ . . . σk > 0 are the non-zero singular values of the second order moments, λ1 ≥ λ2 ≥
. . . ≥ λk > 0 are the ground-truth eigenvalues of the third order moments, andvi are the corresponding eigenvectors
for all i ∈ [k].
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H Efficient SVD Using Sparsity and Dimensionality Reduction

Without loss of generality, we assume that a matrix whose SVDwe aim to compute has no row or column which is
fully zeros, since, if it does have zero entries, such row andcolumns can be dropped.

Let A ∈ Rn×n be the matrix to do SVD. LetΦ ∈ Rd×k̃, wherek̃ = αk with α is a scalar, usually, in the range
[2, 3]. For theith row of Φ, if

∑
i |Φ|(i, :) 6= 0 and

∑
i |Φ|(:, i) 6= 0, then there is only one non-zero entry and that

entry is uniformly chosen from[k̃]. If either
∑

i |Φ|(i, :) = 0 or
∑

i |Φ|(:, i) = 0, we leave that row blank. Let
D ∈ Rd×d be a diagonal matrix with iid Rademacher entries, i.e., eachnon-zero entry is1 or−1 with probability 1

2 .
Now, our embedding matrix [CW13] isS = DΦ, i.e., we findAS and then proceed with the Nystrom [HNH+13]
method. Unlike the usual Nystrom method [GM13b] which uses arandom matrix for computing the embedding, we
improve upon this by using a sparse matrix for the embedding since the sparsity improves the running time and the
memory requirements of the algorithm.
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