Mapping the Spectral Soil Quality Index (SSQI) Using Airborne Imaging Spectroscopy
"> Figure 1
<p>Aerial photograph of the study areas with their land-use categories: (<b>A</b>) Migda site, Israel; and (<b>B</b>) Schäfertal site, Germany.</p> "> Figure 2
<p>Study flowchart for developing the soil quality index (SQI) and the spectral soil quality index (SSQI) by applying laboratory, point, and image spectroscopy data along with complementary soil measurements and analyses.</p> "> Figure 3
<p>The average spectral signatures of the two study sites: Migda, Israel (<b>A</b>, <b>B</b>, <b>C</b>) and Schäfertal, Germany (<b>D</b>, <b>E</b>, <b>F</b>). The spectral dataset included: (A and D) laboratory spectral signatures; (B and E) field spectral signatures; and (C and F) airborne imaging spectral signatures. The land-use classes are characterized by the different colors.</p> "> Figure 4
<p>(<b>A</b>) Scores of soil quality indices (SQIs) for the three land uses in the Migda site, Israel: abandoned field with no grazing (red color), agro-pastoral grazing (green color), and abandoned field with grazing (blue color); and (<b>B</b>) the SQI that was calculated by physical, biological, and chemical analyses. Capital letters above the error bars represent significant differences between land uses. Small letters within the columns represent significant differences between soil components.</p> "> Figure 5
<p>(<b>A</b>) Scores of soil quality indices (SQIs) for the three land uses in the Schäfertal site, Germany: Fertilize agriculture field (red color), unfertilized agriculture field (green color), and forest (blue color); and (<b>B</b>) the SQI that was calculated by physical, biological, and chemical analyses. Capital letters above the error bars represent significant differences between land uses. Small letters within the columns represent significant differences between soil components.</p> "> Figure 6
<p>Scatterplots of cross-validation (CV) predicted values <span class="html-italic">versus</span> measured values for several soil properties for the calibration dataset for all land uses in the Migda site, Israel. Calibration models were developed with a partial least squares-regression (PLS-R). RMSEC: root mean square error of calibration; RMSECV: root mean square error of cross-validation; P: phosphorus p; NH<sub>4</sub>: ammonium; NH<sub>3</sub>: nitrate, SH: surface hardness. The colors of the spots represent land-use types: abandoned field with grazing (blue), abandoned field with no grazing (red), agro-pastoral grazing (green).</p> "> Figure 7
<p>Scatterplots of cross-validation (CV) predicted values <span class="html-italic">versus</span> measured values for several soil properties for the calibration dataset for all land uses in the Schäfertal site, Germany. Calibration models were developed with a partial least squares-regression (PLS-R). RMSEC: root mean square error of calibration; RMSECV: root mean square error of cross-validation; EC: electric conductivity; K: potassium; NO<sub>3</sub>: nitrate; SOM: soil organic matter; SH: surface hardness. The colors of the spots represent land-use types: forest (blue), fertilized agricultural field (red), unfertilized agricultural field (green).</p> "> Figure 8
<p>Scatterplot correlation of soil quality indices (SQI) and reflectance spectroscopy values from the laboratory dataset for the changed land uses: (<b>A</b>) the Migda site, Israel; and (<b>B</b>) the Schäfertal site, Germany. Calibration models were developed with a partial least squares-regression (PLS-R). RMSEC: root mean square error of calibration; RMSECV: root mean square error of cross-validation.</p> "> Figure 9
<p>Partial least squares-discriminant analysis (PLS-DA) classification of the different land uses in the Migda site, Israel, using data of: (<b>A</b>) field spectroscopy; (<b>B</b>) laboratory spectroscopy; (<b>C</b>) airborne imaging spectroscopy; and (<b>D</b>) merged image and laboratory spectroscopy. Dashed circles indicate the 95% confidence level.</p> "> Figure 10
<p>Partial least squares-discriminant analysis (PLS-DA) classification of the different land uses in the Schäfertal site, Germany, using data of: (<b>A</b>) field spectroscopy; (<b>B</b>) laboratory spectroscopy; (<b>C</b>) airborne imaging spectroscopy; and (<b>D</b>) merged image and laboratory spectroscopy. Dashed circles indicate the 95% confidence level.</p> "> Figure 11
<p>Hyperspectral imaging spectroscopy of the spectral soil quality index (SSQI) at Migda site, Israel.</p> "> Figure 12
<p>Hyperspectral imaging spectroscopy of the spectral soil quality index (SSQI) at Schäfertal site, Germany.</p> ">
Abstract
:1. Introduction
2. Methods
2.1. Study Sites
2.1.1. Agricultural Research Site, Northwestern Negev Desert, Israel
2.1.2. Harz/Central German Lowland Agricultural Site
2.2. Data Collection and Analysis
2.2.1. Field and Laboratory Spectral Measurements
2.2.2. Airborne Imaging Spectroscopy
2.2.3. Soil Sampling and Laboratory Analysis
2.2.4. Soil Quality Index (SQI)
2.2.5. Correlation between Soil and Spectroscopy Analyses
2.2.6. Spectral Soil Quality Index (SSQI)
2.2.7. Statistical Analysis
3. Results
3.1. Soil Properties and Soil Quality
Soil Properties | Abandoned Field No Grazing | Agro-Pastoral Grazing | Abandoned Field with Grazing |
---|---|---|---|
Sand (%) (0.063–2.0) | 49.12 ± 1.34a | 44.32 ± 1.14b | 39.52 ± 4.15c |
Silt (%) (0.002–0.063) | 37.08 ± 1.09a | 38.68 ± 1.95a | 38.08 ± 3.11a |
Clay (%) (<0.002) | 13.8 ± 0.44c | 17.0 ± 1.01b | 22.4 ± 2.88a |
AWC (%) | 0.126 ± 0.03a | 0.120 ± 0.01a | 0.102 ± 0.02b |
HC (mm/h) | 0.39 ± 0.08b | 0.59 ± 0.106a | 0.288 ± 0.05c |
SH (psi) | 316.16 ± 5.18a | 159.05 ± 12.08c | 299.65 ± 8.43b |
SOM (%) | 4.85 ± 0.509a | 3.477 ± 0.306b | 2.814 ± 0.49c |
PAC | 860.49 ± 159.9a | 889.74 ± 116.65a | 724.24 ± 185.07b |
pH | 7.39 ± 0.05a | 7.32 ± 0.054a | 7.59 ± 0.058b |
EC (µS/cm) | 0.527 ± 0.09a | 0.535 ± 0.042a | 0.363 ± 0.06b |
N-NH4+ (mg/100gr) | 3.30 ± 1.01b | 15.895 ± 2.63a | 4.76 ± 1.17b |
N-NO3 (mg/100gr) | 12.21 ± 2.45a | 11.68 ± 1.28a | 10.29 ± 1.63b |
K (ml/100gr) | 12.78 ± 3.45b | 31.15 ± 8.08a | 10.74 ± 1.32b |
P(mg/100gr) | 22.76 ± 9.25a | 25.155 ± 11.34a | 18.89 ± 7.02a |
AWC (%) | HC (mm/h) | SH (psi) | SOM (Orgs %) | PAC (ppm) | pH | EC (µS/cm) | N(NH4) (mg/kg) | N(NO3) (mi/kg) | K (mg/kg) | P (mg/kg) | |
---|---|---|---|---|---|---|---|---|---|---|---|
AWC (%) | 1.00 | ||||||||||
HC (mm/h) | 0.23 | 1.00 | |||||||||
SH (psi) | −0.28 | −0.83* | 1.00 | ||||||||
SOM (Orgs %) | 0.54 | 0.20 | −0.08 | 1.00 | |||||||
PAC (ppm) | 0.28 | 0.41 | −0.34 | 0.37 | 1.00 | ||||||
pH | −0.36 | −0.49 | 0.55 | −0.44 | −0.40 | 1.00 | |||||
EC (µS/cm) | 0.31 | 0.67 | −0.50 | 0.55 | 0.45 | −0.62 | 1.00 | ||||
N(NH4) (mg/kg) | 0.20 | 0.79 | −0.92* | −0.08 | 0.36 | −0.46 | 0.48 | 1.00 | |||
N(NO3) (mi/kg) | 0.14 | 0.35 | −0.22 | 0.42 | 0.40 | −0.48 | 0.58 | 0.24 | 1.00 | ||
K (mg/kg) | 0.20 | 0.74 | −0.88* | 0.08 | 0.32 | −0.51 | 0.54 | 0.88* | 0.31 | 1.00 | |
P (mg/kg) | 0.18 | 0.45 | −0.26 | 0.26 | 0.25 | −0.23 | 0.68 | 0.41 | 0.42 | 0.35 | 1.00 |
Soil Properties | Fertilized Agricultural Field | Unfertilized Agricultural Field | Forest |
---|---|---|---|
Sand (%) (0.063–2.0) | 19.35 ± 3.87b | 24.07 ± 3.32a | 24.76 ± 3.33a |
Silt (%) (0.002–0.063) | 61.32 ± 3.56a | 57.31 ± 2.23b | 50.5 ± 2.01c |
Clay (%) (<0.002) | 19.318 ± 2.74b | 18.62 ± 1.98b | 24.76 ± 1.77a |
AWC (m/m) | 0.146 ± 0.012a | 0.122 ± 0.019b | 0.104 ± 0.027b |
SH (psi) | 169.32 ± 18.67c | 260.65 ± 11.02b | 302.11 ± 14.90a |
SOM (%) | 3.44 ± 0.59b | 3.64 ± 0.51b | 15.96 ± 4.49a |
PAC (ppm) | 961.75 ± 325.9b | 1048.8 ± 103.11b | 1651.2 ± 142.39a |
pH | 5.76 ± 0.34a | 5.26 ± 0.26b | 3.72 ± 0.13c |
EC (µS/cm) | 159.09 ± 26.07a | 168.1 ± 22.88a | 117 ± 28.266b |
N-NH4+ (mg/100gr) | <0.03c | 0.1 ± 0.036b | 1.54 ± 1.173a |
N-NO3 (mg/100gr) | 5.05 ± 0.91a | 5.4 ± 1.14a | 1.54 ± 1.17b |
K (ml/100gr) | 17.83 ± 7.26a | 15.26 ± 5.54a | 6.28 ± 3.09b |
P (mg/100gr) | 2.28 ± 0.96a | 2.61 ± 0.97a | 4.12 ± 1.901a |
AWC | SH (psi) | SOM (%) | PAC n g/kg | NH4-N (mg/100g) | NO3—N (mg/100g) | pH | EC (µS/cm) | K (mg/100g) | P (mg/100g) | |
---|---|---|---|---|---|---|---|---|---|---|
AWC | 1.0 | |||||||||
SH (psi) | −0.72 | 1.0 | ||||||||
SOM (%) | −0.49 | 0.64 | 1.0 | |||||||
PAC n (mg/kg) | −0.57 | 0.62 | 0.77 | 1.0 | ||||||
NH4+-N (mg/kg) | −0.28 | 0.45 | 0.76 | 0.51 | 1.0 | |||||
NO3−-N (mg/kg) | 0.34 | −0.48 | −0.79 | −0.59 | −0.66 | 1.0 | ||||
pH | 0.62 | −0.76 | −0.92* | −0.65 | −0.65 | 0.68 | 1.0 | |||
EC (µS/cm) | 0.31 | −0.34 | −0.55 | −0.49 | −0.54 | 0.85* | 0.44 | 1.0 | ||
K (mg/100g) | 0.19 | −0.44 | −0.56 | −0.34 | −0.33 | 0.68 | 0.61 | 0.53 | 1.0 | |
P (mg/100g) | −0.21 | 0.39 | 0.49 | 0.618 | 0.05 | −0.11 | −0.45 | 0.07 | −0.12 | 1.0 |
Scores PC1 | Scores PC2 | Scores PC3 | |
---|---|---|---|
Eigenvalue | 1.92 | 1.4 | 1.0 |
Variance | 38.35 | 28.13 | 10.23 |
Cumulative Variance | 38.35 | 66.48 | 76.71 |
AWC (%) | −1.13 | −2.12 | −1.06 |
HC(mm/h) | 6.66 | 1.72 | 0.67 |
SH(psi) | −5.12 | 3.37 | −1.33 |
SOM (Orgs % hcl) | −0.61 | −5.59 | −0.10 |
PAC (ppm) | −1.88 | −1.14 | 3.75 |
pH | 4.88 | 3.03 | 1.20 |
EC | 5.60 | 4.30 | −0.99 |
N(NH4) (mg/kg) | −4.93 | 3.58 | −1.25 |
N(NO3) (mi/kg) | −1.45 | −2.92 | 3.83 |
Scores PC 1 | Score PC 2 | Scores PC 3 | Scores PC 4 | |
---|---|---|---|---|
Eigenvalue | 10.01 | 5.3 | 3.3 | 1.2 |
Variance | 38.9 | 20.38 | 13.01 | 9.66 |
Cumulative Variance | 38.9 | 59.28 | 72.28 | 81.95 |
AWC (%) | 4.30 | −2.34 | −0.66 | 2.12 |
SH (psi) | 4.60 | −3.24 | −0.38 | 0.11 |
SOM (%) | −3.90 | −2.02 | −1.06 | −1.01 |
PAC (ppm) | −3.23 | −1.26 | 1.12 | 0.58 |
pH | −0.34 | 0.17 | −0.83 | −1.30 |
EC (dS/m) | 1.55 | 3.65 | −3.58 | −1.06 |
N(NH4) (mg/kg) | −2.73 | −1.48 | −1.12 | −0.93 |
N(NO3) (mg/kg) | 2.75 | 2.94 | 2.22 | −0.11 |
K (mg/kg) | 2.19 | 1.08 | 2.24 | −1.62 |
3.2. Spectral Correlation of Soil Quality Properties
Soil properties | Migda Site, Israel | Schäfertal Site, Germany | ||||||
---|---|---|---|---|---|---|---|---|
LVs | R2 | RPD | VIP | LVs | R2 | RPD | VIP | |
Sand (%) | 3 | 0.78 | 2.19 | 1900; 2220; 2205 | 5 | 0.671 | 1.88 | 1910; 2200; 2300 |
Silt (%) | 5 | 0.815 | 2.43 | 2 | 0.728 | 1.81 | ||
Clay (%) | 3 | 0.827 | 1.81 | 4 | 0.877 | 2.83 | ||
AWC (m/m) | 4 | 0.471 | 2.18 | 4 | 0.739 | 1.72 | ||
SH (psi) | 5 | 0.802 | 2.24 | 1850; 1900; 2140; 2200–2350 | 2 | 0.77 | 2.03 | 1900; 2020 |
PAC | 4 | 0.677 | 1.84 | 6 | 0.715 | 1.96 | ||
SOM (%) | 3 | 0.611 | 1.75 | 2 | 0.951 | 4.16 | 1110; 1170; 1400; 1520; 1900; 2100; 2200 | |
pH | 2 | 0.85 | 3.07 | 517,747,1000; 1400; 1930; 2220 | 3 | 0.93 | 2.65 | 657, 740, 1000; 1400; 1800; 1900; 2200 |
EC (μS/cm) | 2 | 0.696 | 2.00 | 3 | 0.809 | 2.38 | 570, 845, 990,1100; 1410; 1850; 1920; | |
N-NH4+ (mg/100gr) | 4 | 0.795 | 2.34 | 590, 870,1850; 2052; 2040 | 2 | 0.267 | 1.69 | |
N-NO3 (mg/100gr) | 2 | 0.821 | 1.94 | 560, 1770; 1850; 2050 | 3 | 0.741 | 1.76 | |
K (ml/100gr) | 5 | 0.614 | 2.00 | 2 | 0.718 | 2.25 | 535, 1500; 1850; 1910; 2020; 2070; 2250 | |
P (mg/100gr) | 2 | 0.74 | 1.92 | 4 | 0.21 | 0.53 | ||
SQI (overall) | 3 | 0.843 | 2.43 | 570,1200,1780; 1850; 1900; 2100; 2050–2350 | 2 | 0.782 | 2.10 | 560,1100; 1400;1600-1750; 1850; 1900; 2070–2300 |
3.3. Spectral Soil Quality Index (SSQI)
Study Site | Spectral Sampling | PLS-DA (Total Accuracy) | PLS-DA (Kappa Coefficient) |
---|---|---|---|
Migda, Israel | Laboratory (2000 bands) | 1 | 1 |
Resampled laboratory (448 bands) | 1 | 1 | |
Field (448 bands) | 0.96 | 0.93 | |
Image (358 bands) | 0.96 | 0.94 | |
Image and laboratory (358 bands) | 0.97 | 0.95 | |
Image prediction (358 bands) | 0.92 | 0.91 | |
Schäfertal, Germany | Laboratory (2000 bands) | 1 | 1 |
Resampled laboratory (366 bands) | 1 | 1 | |
Field (366 bands) | 0.88 | 0.80 | |
Image (300 bands) | 0.88 | 0.82 | |
Image and laboratory (300 bands) | 0.90 | 0.85 | |
Image prediction (300 bands) | 0.82 | 0.80 |
4. Discussion
4.1. Soil Properties and the Soil Quality Index
4.2. Predictability of Indicators and Indices
4.3. Spectral Indices for Soil Quality Assessment
4.4. Monitoring Soil Quality with IS
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Karlen, D.L.; Ditzler, C.A.; Andrews, S.S. Soil quality: Why and how? Geoderma 2003, 114, 145–156. [Google Scholar] [CrossRef]
- Lal, R. Restoring soil quality to mitigate soil degradation. Sustainability 2015, 7, 5875. [Google Scholar] [CrossRef]
- Ben-Dor, E.; Chabrillat, S.; Dematte, J.A.M.; Taylor, G.R.; Hill, J.; Whiting, M.L.; Sommer, S. Using imaging spectroscopy to study soil properties. Remote Sens. Environ. 2009, 113 (Suppl. 1), S38–S55. [Google Scholar] [CrossRef]
- Andrews, S.S.; Karlen, D.L.; Mitchell, J.P. A comparison of soil quality indexing methods for vegetable production systems in northern california. Agric. Ecosyst. Environ. 2002, 90, 25–45. [Google Scholar] [CrossRef]
- Gugino, B.K.; Abawi, G.S.; Idowe, O.J.; Schindelbeck, R.R.; Smith, L.L.; Thies, J.E.; Wolfe, D.W.; Van Es, H.M. Cornell Soil Health Assessment Training Manual; New York State Agricultural Experiment Station, Cornell University: New York, NY, USA, 2009. [Google Scholar]
- Doran, J.W.; Parkin, T.B. Quantitative indicators of soil quality: A minimum data set. In Methods for Assessing Soil Quality; Doran, J.W., Jones, A.J., Eds.; Soil Science Society of America: Madison, WI, USA, 1996; pp. 25–37. [Google Scholar]
- Rezaei, S.A.; Gilkes, R.J.; Andrews, S.S. A minimum data set for assessing soil quality in rangelands. Geoderma 2006, 136, 229–234. [Google Scholar] [CrossRef]
- Doran, J.W.; Parkin, T.B. Defining and assessing soil quality. In Defining Soil Quality for a Sustainable Environment; Doran, J.W., Coleman, D.C., Bezdicek, D.F., Stewart, B.A., Eds.; Soil Science Society of America, Inc.: Madison, WI, USA, 1994; pp. 3–21. [Google Scholar]
- Mulder, V.L.; de Bruin, S.; Schaepman, M.E.; Mayr, T.R. The use of remote sensing in soil and terrain mapping—A review. Geoderma 2011, 162, 1–19. [Google Scholar] [CrossRef]
- Askari, M.S.; Cui, J.; O’Rourke, S.M.; Holden, N.M. Evaluation of soil structural quality using VIS–NIR spectra. Soil Tillage Res. 2015, 146, 108–117. [Google Scholar] [CrossRef]
- Ben-Dor, E.; Banin, A. Visible and near-infrared (0.4 nm–1.1 nm) analysis of arid and semiarid soils. Remote Sens. Environ. 1994, 48, 261–274. [Google Scholar] [CrossRef]
- Conforti, M.; Castrignanò, A.; Robustelli, G.; Scarciglia, F.; Stelluti, M.; Buttafuoco, G. Laboratory-based Vis–NIR spectroscopy and partial least square regression with spatially correlated errors for predicting spatial variation of soil organic matter content. Catena 2015, 124, 60–67. [Google Scholar] [CrossRef]
- Eisele, A.; Chabrillat, S.; Hecker, C.; Hewson, R.; Lau, I.C.; Rogass, C.; Segl, K.; Cudahy, T.J.; Udelhoven, T.; Hostert, P.; et al. Advantages using the thermal infrared (TIR) to detect and quantify semi-arid soil properties. Remote Sens. Environ. 2015, 163, 296–311. [Google Scholar] [CrossRef]
- Viscarra Rossel, R.A.; Walvoort, D.J.J.; McBratney, A.B.; Janik, L.J.; Skjemstad, J.O. Visible, near infrared, mid infrared or combined diffuse reflectance spectroscopy for simultaneous assessment of various soil properties. Geoderma 2006, 131, 59–75. [Google Scholar] [CrossRef]
- Gholizadeh, A.; Boruvka, L.; Saberioon, M.; Vasát, R. Visible, near-infrared, and mid-infrared spectroscopy applications for soil assessment with emphasis on soil organic matter content and quality: State-of-the-art and key issues. Appl. Spectrosc. 2013, 67, 1349–1362. [Google Scholar] [CrossRef] [PubMed]
- Mouazen, A.; Karoui, R.; De Baerdemaeker, J.; Ramon, H. Classification of soil texture classes by using soil visual near infrared spectroscopy and factorial discriminant analysis techniques. J. Near Infrared Spectrosc. 2005, 13, 231–240. [Google Scholar] [CrossRef]
- Mouazen, A.M.; Kuang, B.; de Baerdemaeker, J.; Ramon, H. Comparison among principal component, partial least squares and back propagation neural network analyses for accuracy of measurement of selected soil properties with visible and near infrared spectroscopy. Geoderma 2010, 158, 23–31. [Google Scholar] [CrossRef]
- Rozenstein, O.; Paz-Kagan, T.; Salbach, C.; Karnieli, A. Comparing the effect of preprocessing transformations on methods of land-use classification derived from spectral soil measurements. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 6, 2393–2404. [Google Scholar] [CrossRef]
- Shepherd, K.D.; Walsh, M.G. Development of reflectance spectral libraries for characterization of soil properties. Soil Sci. Soc. Am. J. 2002, 66, 988–998. [Google Scholar] [CrossRef]
- Savitzky, A.; Golay, M.J.E. Smoothing and differentiation of data by simplified least squares procedures. Anal. Chem. 1964, 36, 1627–1639. [Google Scholar] [CrossRef]
- Fystro, G. The prediction of c and n content and their potential mineralisation in heterogeneous soil samples using vis–nir spectroscopy and comparative methods. Plant Soil 2002, 246, 139–149. [Google Scholar] [CrossRef]
- Martens, H.; Høy, M.; Wise, B.M.; Bro, R.; Brockhoff, P.B. Pre-whitening of data by covariance-weighted pre-processing. J. Chemom. 2003, 17, 153–165. [Google Scholar] [CrossRef]
- Kinoshita, R.; Moebius-Clune, B.N.; van Es, H.M.; Hively, W.D.; Bilgilis, A.V. Strategies for soil quality assessment using visible and near-infrared reflectance spectroscopy in a western kenya chronosequence. Soil Sci. Soc. Am. J. 2012, 76, 1779–1788. [Google Scholar] [CrossRef]
- Awiti, A.O.; Walsh, M.G.; Shepherd, K.D.; Kinyamario, J. Soil condition classification using infrared spectroscopy: A proposition for assessment of soil condition along a tropical forest-cropland chronosequence. Geoderma 2008, 143, 73–84. [Google Scholar] [CrossRef]
- Cécillon, L.; Barthès, B.G.; Gomez, C.; Ertlen, D.; Genot, V.; Hedde, M.; Stevens, A.; Brun, J.J. Assessment and monitoring of soil quality using near-infrared reflectance spectroscopy (NIRs). Eur. J. Soil Sci. 2009, 60, 770–784. [Google Scholar] [CrossRef]
- Odlare, M.; Svensson, K.; Pell, M. Near infrared reflectance spectroscopy for assessment of spatial soil variation in an agricultural field. Geoderma 2005, 126, 193–202. [Google Scholar] [CrossRef]
- Velasquez, E.; Lavelle, P.; Barrios, E.; Joffre, R.; Reversat, F. Evaluating soil quality in tropical agroecosystems of colombia using nirs. Soil Biol. Biochem. 2005, 37, 889–898. [Google Scholar] [CrossRef]
- McCarty, G.W.; Reeves, J.B.; Reeves, V.B.; Follett, R.F.; Kimble, J.M. Mid-infrared and near-infrared diffuse reflectance spectroscopy for soil carbon measurement. Soil Sci. Soc. Am. J. 2002, 66, 640–646. [Google Scholar] [CrossRef]
- Cohen, M.J.; Prenger, J.P.; DeBusk, W.F. Visible-near infrared reflectance spectroscopy for rapid, nondestructive assessment of wetland soil quality. J. Environ. Qual. 2005, 34, 1422–1434. [Google Scholar] [CrossRef] [PubMed]
- Idowu, O.J.; Van Es, H.M.; Abawi, G.S.; Wolfe, D.W.; Ball, J.I.; Gugino, B.K.; Moebius, B.N.; Schindelbeck, R.V.; Bilgili, R.A. Farmer-oriented assessment of soil quality using field, laboratory, and VNIR spectroscopy methods. Plant Soil 2008, 307, 243–253. [Google Scholar] [CrossRef]
- Paz-Kagan, T.; Shachak, M.; Zaady, E.; Karnieli, A. A spectral soil quality index (SSQI) for characterizing soil function in areas of changed land use. Geoderma 2014, 230–231, 171–184. [Google Scholar] [CrossRef]
- Ben-Dor, E.; Levin, N.; Saaroni, H. A spectral based recognition of the urban environment using the visible and near-infrared spectral region (0.4–1.1 µm). A case study over Tel-Aviv, Israel. Int. J. Remote Sens. 2001, 22, 2193–2218. [Google Scholar] [CrossRef]
- Goetz, A.F.H.; Vane, G.; Solomon, J.E.; Rock, B.N. Imaging spectroscopy for earth remote sensing. Science 1985, 228, 1147–1153. [Google Scholar] [CrossRef] [PubMed]
- Green, R.O.; Eastwood, M.L.; Sarture, C.M.; Chrien, T.G.; Aronsson, M.; Chippendale, B.J.; Faust, J.A.; Pavri, B.E.; Chovit, C.J.; Solis, M.; et al. Imaging spectroscopy and the airborne visible/infrared imaging spectrometer (AVIRIS). Remote Sens. Environ. 1998, 65, 227–248. [Google Scholar] [CrossRef]
- Nocita, M.; Stevens, A.; van Wesemael, B.; Aitkenhead, M.; Bachmann, M.; Barthès, B.; Ben-Dor, E.; Brown, D.J.; Clairotte, M.; Csorba, A. Chapter four—Soil spectroscopy: An alternative to wet chemistry for soil monitoring. In Advances in Agronomy; Donald, L.S., Ed.; Academic Press: San Diego, CA, USA, 2015; Volume 132, pp. 139–159. [Google Scholar]
- Ben-Dor, E.; Taylor, R.G.; Hill, J.; Demattê, J.A.M.; Whiting, M.L.; Chabrillat, S.; Sommer, S. Imaging spectrometry for soil applications. In Advances in Agronomy; Donald, L.S., Ed.; Academic Press: San Diego, CA, USA, 2008; Volume 97, pp. 321–392. [Google Scholar]
- Weber, B.; Olehowski, C.; Knerr, T.; Hill, J.; Deutschewitz, K.; Wessels, D.C.J.; Eitel, B.; Büdel, B. A new approach for mapping of biological soil crusts in semidesert areas with hyperspectral imagery. Remote Sens. Environ. 2008, 112, 2187–2201. [Google Scholar] [CrossRef]
- Sobrino, J.A.; Franch, B.; Mattar, C.; Jiménez-Muñoz, J.C.; Corbari, C. A method to estimate soil moisture from airborne hyperspectral scanner (AHS) and ASTER data: Application to SEN2FLEX and SEN3EXP campaigns. Remote Sens. Environ. 2012, 117, 415–428. [Google Scholar] [CrossRef]
- Pascucci, S.; Casa, R.; Belviso, C.; Palombo, A.; Pignatti, S.; Castaldi, F. Estimation of soil organic carbon from airborne hyperspectral thermal infrared data: A case study. Eur. J. Soil Sci. 2014, 65, 865–875. [Google Scholar] [CrossRef]
- Zacharias, S.; Bogena, H.; Samaniego, L.; Mauder, M.; Fuß, R.; Pütz, T.; Frenzel, M.; Schwank, M.; Baessler, C.; Butterbach-Bahl, K.; et al. A network of terrestrial environmental observatories in germany. Vadose Zone J. 2011, 10, 955–973. [Google Scholar] [CrossRef]
- Paz-Kagan, T.; Shachak, M.; Zaady, E.; Karnieli, A. Evaluation of ecosystem responses to land-use change using soil quality and primary productivity in a semi-arid area, Israel. Agric. Ecosyst. Environ. 2014, 193, 9–24. [Google Scholar] [CrossRef]
- Pimstein, A.; Eitel, J.U.H.; Long, D.S.; Mufradi, I.; Karnieli, A.; Bonfil, D.J. A spectral index to monitor the head-emergence of wheat in semi-arid conditions. Field Crop. Res. 2009, 111, 218–225. [Google Scholar] [CrossRef]
- Sanchez, P.A.; Couto, W.; Buol, S.W. The fertility capability soil classification system: Interpretation, applicability and modification. Geoderma 1982, 27, 283–309. [Google Scholar] [CrossRef]
- Ollesch, G.; Kistner, I.; Meissner, R.; Lindenschmidt, K.-E. Modelling of snowmelt erosion and sediment yield in a small low-mountain catchment in germany. Catena 2006, 68, 161–176. [Google Scholar] [CrossRef]
- Ollesch, G.; Sukhanovski, Y.; Kistner, I.; Rode, M.; Meissner, R. Characterization and modelling of the spatial heterogeneity of snowmelt erosion. Earth Surf. Process. Landf. 2005, 30, 197–211. [Google Scholar] [CrossRef]
- Luo, J.; Ying, K.; Bai, J. Savitzky–golay smoothing and differentiation filter for even number data. Signal Process. 2005, 85, 1429–1434. [Google Scholar] [CrossRef]
- Chang, C.-W.; Laird, D.A.; Mausbach, M.J.; Hurburgh, C.R. Near-infrared reflectance spectroscopy—Principal components regression analyses of soil properties. Soil Sci. Soc. Am. J. 2001, 65, 480–490. [Google Scholar] [CrossRef]
- Vågen, T.-G.; Shepherd, K.D.; Walsh, M.G. Sensing landscape level change in soil fertility following deforestation and conversion in the highlands of madagascar using vis-nir spectroscopy. Geoderma 2006, 133, 281–294. [Google Scholar] [CrossRef]
- Wise, B.M.; Gallagher, N.B.; Martin, E.B. Application of PARAFAC2 to fault detection and diagnosis in semiconductor etch. J. Chemom. 2001, 15, 285–298. [Google Scholar] [CrossRef]
- Wise, B.; Gallagher, N.; Bro, R.; Shaver, J.; W., W.; Koch, R. Chemometrics Tutorial for PLS_Toolbox and Solo; Eigenvector Research, Inc: Wenatchee, WA, USA, 2006. [Google Scholar]
- Brook, A.; Ben-Dor, E. Supervised vicarious calibration (SVC) of multi-source hyperspectral remote-sensing data. Remote Sens. 2015, 7, 6196–6223. [Google Scholar] [CrossRef]
- Rogaß, C.; Spengler, D.; Bochow, M.; Segl, K.; Lausch, A.; Doktor, D.; Roessner, S.; Behling, R.; Wetzel, H.-U.; Kaufmann, H. Reduction of radiometric miscalibration—Applications to pushbroom sensors. Sensors 2011, 11, 6370–6395. [Google Scholar] [CrossRef] [PubMed]
- Schläpfer, D.; Richter, R.; Feingersh, T. Operational brdf effects correction for wide-field-of-view optical scanners (brefcor). IEEE Trans. Geosci. Remote Sens. 2015, 53, 1855–1864. [Google Scholar] [CrossRef]
- Tucker, C.J. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ. 1979, 8, 127–150. [Google Scholar] [CrossRef]
- Karnieli, A.; Tsoar, H. Spectral reflectance of biogenic crust developed on desert dune sand along the Israel-Egypt border. Int. J. Remote Sens. 1995, 16, 369–374. [Google Scholar] [CrossRef]
- Schindelbeck, R.R.; van Es, H.M.; Abawi, G.S.; Wolfe, D.W.; Whitlow, T.L.; Gugino, B.K.; Idowu, O.J.; Moebius-Clune, B.N. Comprehensive assessment of soil quality for landscape and urban management. Landsc. Urban Plan. 2008, 88, 73–80. [Google Scholar] [CrossRef]
- Black, C.A. Methods of Soil Analysis: Part I Physical and Mineralogical Properties; American Society of Agronomy: Madison, WI, USA, 1965. [Google Scholar]
- Stevenson, F.J. Nitrogen-Organic Forms. In Methods of Soil Analysis, Part 3; Chemical Methods, 4th ed; Soil Science Society of America: Madison, WI, USA, 2005. [Google Scholar]
- Ankeny, M.D.; Ahmed, M.; Kaspar, T.C.; Horton, R. Simple field method for determining unsaturated hydraulic conductivity. Soil Sci. Soc. Am. J. 1991, 55, 467–470. [Google Scholar] [CrossRef]
- Andrews, S.S.; Karlen, D.L.; Cambardella, C.A. The soil management assessment framework. Soil Sci. Soc. Am. J. 2004, 68, 1945–1962. [Google Scholar] [CrossRef]
- Karlen, D.L.; Andrews, S.S.; Doran, J.W. Soil quality: Current concepts and applications. In Advances in Agronomy; Academic Press: San Diego, CA, USA, 2001; Volume 74, pp. 1–40. [Google Scholar]
- Govaerts, B.; Sayre, K.D.; Deckers, J. A minimum data set for soil quality assessment of wheat and maize cropping in the highlands of mexico. Soil Till. Res. 2006, 87, 163–174. [Google Scholar] [CrossRef]
- Masto, R.E.; Chhonkar, P.K.; Purakayastha, T.J.; Patra, A.K.; Singh, D. Soil quality indices for evaluation of long-term land use and soil management practices in semi-arid sub-tropical India. Land Degrad. Dev. 2008, 19, 516–529. [Google Scholar] [CrossRef]
- Masto, R.E.; Chhonkar, P.K.; Singh, D.; Patra, A.K. Soil quality response to long-term nutrient and crop management on a semi-arid inceptisol. Agric. Ecosyst. Environ. 2007, 118, 130–142. [Google Scholar] [CrossRef]
- Efron, B.; Gong, G. A leisurely look at the bootstrap, the jackknife, and cross-validation. Am. Stat. 1983, 37, 36–48. [Google Scholar]
- Cécillon, L.; Cassagne, N.; Czarnes, S.; Gros, R.; Brun, J.-J. Variable selection in near infrared spectra for the biological characterization of soil and earthworm casts. Soil Biol. Biochem. 2008, 40, 1975–1979. [Google Scholar] [CrossRef]
- Wold, S.; Sjöström, M.; Eriksson, L. Pls-regression: A basic tool of chemometrics. Chemom. Intell. Lab. Syst. 2001, 58, 109–130. [Google Scholar] [CrossRef]
- Singh, K.P.; Malik, A.; Mohan, D.; Sinha, S.; Singh, V.K. Chemometric data analysis of pollutants in wastewater—A case study. Anal. Chim. Acta 2005, 532, 15–25. [Google Scholar] [CrossRef]
- Fox, R.H.; Hoffman, L.D. The effect of N fertilizer source on grain yield, N uptake, soil pH, and lime requirement in no-till corn. Agron. J. 1981, 73, 891–895. [Google Scholar] [CrossRef]
- Westad, F.; Martens, H. Variable selection in near infrared spectroscopy based on significance testing in partial least squares regression. J. Near Infrared Spectrosc. 2000, 117, 117–124. [Google Scholar] [CrossRef]
- Carter, M.R. Soil quality for sustainable land management: Organic matter and aggregation interactions that maintain soil functions. Agronomy 2002, 94, 38–47. [Google Scholar] [CrossRef]
- De Lannoy, G.J.M.; Koster, R.D.; Reichle, R.H.; Mahanama, S.P.P.; Liu, Q. An updated treatment of soil texture and associated hydraulic properties in a global land modeling system. J. Adv. Model. Earth Syst. 2014, 6, 957–979. [Google Scholar] [CrossRef]
- Martikainen, P.J. Nitrification in forest soil of different pH as affected by urea, ammonium sulphate and potassium sulphate. Soil Biol. Biochem. 1985, 17, 363–367. [Google Scholar] [CrossRef]
- Bastida, F.; Zsolnay, A.; Hernández, T.; Garcia, C. Past, present and future of soil quality indices: A biological perspective. Geoderma 2008, 147, 159–171. [Google Scholar] [CrossRef]
- Zhao, Q.; Liu, S.; Deng, L.; Dong, S.; Wang, C. Soil degradation associated with water-level fluctuations in the manwan reservoir, lancang river basin. Catena 2014, 113, 226–235. [Google Scholar] [CrossRef]
- Šarapatka, B.; Bednář, M. Assessment of potential soil degradation on agricultural land in the czech republic. J. Environ. Qual. 2015, 44, 154–161. [Google Scholar] [CrossRef] [PubMed]
- Bushong, J.T.; Norman, R.J.; Slaton, N.A. Near-infrared reflectance spectroscopy as a method for determining organic carbon concentrations in soil. Commun. Sci. Plant Anal. 2015, 46, 1791–1801. [Google Scholar] [CrossRef]
- Fidêncio, P.H.; Poppi, R.J.; de Andrade, J.C. Determination of organic matter in soils using radial basis function networks and near infrared spectroscopy. Anal. Chim. Acta 2002, 453, 125–134. [Google Scholar] [CrossRef]
- Vasques, G.M.; Grunwald, S.; Sickman, J.O. Comparison of multivariate methods for inferential modeling of soil carbon using visible/near-infrared spectra. Geoderma 2008, 146, 14–25. [Google Scholar] [CrossRef]
- Ben-Dor, E.; Banin, A. Near infrared analysis (NIRA) as a method to simultaneously evaluate spectral featureless constituents in soils. Soil Sci. 1995, 159, 259–270. [Google Scholar] [CrossRef]
- Herrmann, I.; Pimstein, A.; Karnieli, A.; Cohen, Y.; Alchanatis, V.; Bonfil, D.J. Lai assessment of wheat and potato crops by venμs and sentinel-2 bands. Remote Sens. Environ. 2011, 115, 2141–2151. [Google Scholar] [CrossRef]
- Ustin, S.L.; Roberts, D.A.; Gamon, J.A.; Asner, G.P.; Green, R.O. Using imaging spectroscopy to study ecosystem processes and properties. BioScience 2004, 54, 523–534. [Google Scholar] [CrossRef]
- De Paul Obade, V.; Lal, R. Assessing land cover and soil quality by remote sensing and geographical information systems (GIS). Catena 2013, 104, 77–92. [Google Scholar] [CrossRef]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paz-Kagan, T.; Zaady, E.; Salbach, C.; Schmidt, A.; Lausch, A.; Zacharias, S.; Notesco, G.; Ben-Dor, E.; Karnieli, A. Mapping the Spectral Soil Quality Index (SSQI) Using Airborne Imaging Spectroscopy. Remote Sens. 2015, 7, 15748-15781. https://doi.org/10.3390/rs71115748
Paz-Kagan T, Zaady E, Salbach C, Schmidt A, Lausch A, Zacharias S, Notesco G, Ben-Dor E, Karnieli A. Mapping the Spectral Soil Quality Index (SSQI) Using Airborne Imaging Spectroscopy. Remote Sensing. 2015; 7(11):15748-15781. https://doi.org/10.3390/rs71115748
Chicago/Turabian StylePaz-Kagan, Tarin, Eli Zaady, Christoph Salbach, Andreas Schmidt, Angela Lausch, Steffen Zacharias, Gila Notesco, Eyal Ben-Dor, and Arnon Karnieli. 2015. "Mapping the Spectral Soil Quality Index (SSQI) Using Airborne Imaging Spectroscopy" Remote Sensing 7, no. 11: 15748-15781. https://doi.org/10.3390/rs71115748
APA StylePaz-Kagan, T., Zaady, E., Salbach, C., Schmidt, A., Lausch, A., Zacharias, S., Notesco, G., Ben-Dor, E., & Karnieli, A. (2015). Mapping the Spectral Soil Quality Index (SSQI) Using Airborne Imaging Spectroscopy. Remote Sensing, 7(11), 15748-15781. https://doi.org/10.3390/rs71115748