Restoring Soil Quality to Mitigate Soil Degradation
<p>Types of soil degradation.</p> "> Figure 2
<p>The downward spiral of decline in soil and environment quality exacerbated by indiscriminate plowing, residue removal and extractive farming.</p> "> Figure 3
<p>The process-factor-cause nexus as a driver of soil degradation.</p> "> Figure 4
<p>Increase in soil resilience and mitigation of soil degradation by conservation agriculture (CA). Meta-analyses and any other comparisons among unrelated soil management practices can lead to misinterpretation of SOC sink capacity by CA [<a href="#B45-sustainability-07-05875" class="html-bibr">45</a>] and erroneous inferences on agronomic productivity [<a href="#B46-sustainability-07-05875" class="html-bibr">46</a>]. The mission is to identify site-specific packages of CA practices to make it functional (INM = integrated nutrient management).</p> "> Figure 5
<p>Three strategies of restoring and managing soil quality for mitigating risks of soil degradation.</p> "> Figure 6
<p>Strategies of restoring soil quality.</p> ">
Abstract
:1. Introduction
2. Soil and Ecosystem Services
3. Soil Organic Carbon and Its Impact on Soil Quality
4. Soil Quality Index
5. Conservation Agriculture and Soil Quality
6. Soil Fertility Management to Restore Soil Quality
7. Soil Quality and Water Resources
8. Strategies for Soil Quality Restoration
Strategy | Region | Process | Reference |
---|---|---|---|
Litter turnover | Tropics | The rate of organic matter and C supply and nutrient cycling reactivation | [3] |
Forestry Plantations | Tropics | Silvo-pastoral system for nutrient cycling | [67] |
Woodlot Islets | Degraded drylands | Silvo-pastoral systems in drylands | [68] |
Soil Carbon Sequestration | Agroecosystems | Optimal management strategies | [69] |
Integrated Nutrient Management | Sub-Saharan Africa | Soil quality management | [17] |
Nutrient Management for SOC Sequestration | Sub-Tropical Red Soils (China) | Soil carbon buildup | [70] |
Manuring | Indus Plains | Application of farm manure | [71] |
Residue Retention as Mulch | Mexican Highlands | Improvement of soil structure | [72] |
Regular Organic Inputs | Western Kenya | Nutrient retention and soil structure improvement | [43,73] |
Urban Waste | Mediterranean Europe | Enhancing soil fertility | [16,74] |
Soil Biological Management | Global soils | Enhance ecosystem services provisioned by SOC pool | [15] |
Environmental Awareness | U.S. | Promoting technology adoption | [75] |
8.1. Soil Erosion Management
8.2. Improving Soil/Agro-Biodiversity
8.3. Soil Restorative Farming/Cropping Systems
9. Soil Resilience
10. Peak Soil vs. Endangered Soil
11. Conclusions
Conflicts of Interest
References
- Van Pham, L.; Smith, C. Drivers of agricultural sustainability in developing countries: A review. Environ. Syst. Decis. 2014, 34, 326–341. [Google Scholar] [CrossRef]
- IFAD. The Rural Poverty Report 2011; International Fund for Agricultural Development: Rome, Italy, 2010. [Google Scholar]
- Leon, J.; Osorio, N. Role of Litter Turnover in Soil Quality in Tropical Degraded Lands of Colombia. Sci. World J. 2014, 13. [Google Scholar] [CrossRef]
- Lamb, D.; Erskine, P.; Parrotta, J. Restoration of degraded tropical forest landscapes. Science 2005, 310, 1628–1632. [Google Scholar] [CrossRef] [PubMed]
- Bini, C. Soil: A precious natural resource. In Conservation of Natural Resources; Kudrow, N.J., Ed.; Nova Science Publishers: Hauppauge, NY, USA, 2009; pp. 1–48. [Google Scholar]
- Scherr, S.J. The future food security and economic consequences of soil degradation in the developing world. In Response to Land Degradation; Oxford Press: New Delhi, India, 2001; pp. 155–170. [Google Scholar]
- Guerra, A.; Marcal, M.; Polivanov, H.; Lima, N.; Souza, U.; Feitosa, A.; Davies, K.; Fullen, M.A.; Booth, C.A. Environment management and health risks of soil erosion gullies in São Luíz (Brazil) and their potential remediation using palm-leaf geotextiles. In Environmental Health Risk II; WIT Press: Southampton, UK, 2005; pp. 459–467. [Google Scholar]
- Lal, R. Soil degradation as a reason for inadequate human nutrition. Food Sec. 2009, 1, 45–57. [Google Scholar] [CrossRef]
- Bini, C.; Zilioli, D. Is Soil a Cultural Heritage? Proc. III Conv. Int. Architettura del Passaggio, 20 suppl. DVD. Available online: http://arca.unive.it/handle/10278/22330 (accessed on 12 May 2015).
- Abrahams, P. Soils: Their implications to human health. Sci. Total Environ. 2002, 291, 1–32. [Google Scholar] [CrossRef] [PubMed]
- Robinson, D.; Emmett, B.; Reynolds, B.; Rowe, E.; Spurgeon, D.; Keith, A.; Lebron, I.; Hockley, N.; Hester, R.; Harrison, R. Soil Natural Capital and Ecosystem Service Delivery in a World of Global Soil Change. Soils Food Secur. 2012, 35, 41–68. [Google Scholar]
- Graber, D.R.; Jones, W.A.; Johnson, J.A. Human and ecosystem health. J. Agromedicine 1995, 2, 47–64. [Google Scholar] [CrossRef] [PubMed]
- Singer, M.J.; Warkentin, B.P. Soil in an environmental context: An American perspective. Catena 1996, 27, 179–189. [Google Scholar] [CrossRef]
- Krupenikov, I.; Boincean, B.; Dent, D.; Krupenikov, I.; Boincean, B.; Dent, D. Humus-Guardian of Fertility and Global Carbon Sink. In The Black Earth: Ecological Principles for Sustainable Agriculture on Chernozem Soils; International Year of Planet Earth 2011; Springer: Dordrecht, The Netherlands, 2011; pp. 39–50. [Google Scholar]
- Manlay, R.; Feller, C.; Swift, M. Historical evolution of soil organic matter concepts and their relationships with the fertility and sustainability of cropping systems. Agric. Ecosyst. Environ. 2007, 119, 217–233. [Google Scholar] [CrossRef]
- Rajan, K.; Natarajan, A.; Kumar, K.; Badrinath, M.; Gowda, R. Soil organic carbon—the most reliable indicator for monitoring land degradation by soil erosion. Curr. Sci. 2010, 99, 823–827. [Google Scholar]
- Diacono, M.; Montemurro, F. Long-term effects of organic amendments on soil fertility: A review. Agron. Sustain. Dev. 2010, 30, 401–422. [Google Scholar] [CrossRef]
- Vanlauwe, B.; Hester, R.; Harrison, R. Organic Matter Availability and Management in the Context of Integrated Soil Fertility Management in sub-Saharan Africa. Soils Food Secur. 2012, 35, 135–157. [Google Scholar]
- Clay, D.; Chang, J.; Clay, S.; Stone, J.; Gelderman, R.; Carlson, G.; Reitsma, K.; Jones, M.; Janssen, L.; Schumacher, T. Corn Yields and No-Tillage Affects Carbon Sequestration and Carbon Footprints. Agron. J. 2012, 104, 763–770. [Google Scholar] [CrossRef]
- Dlamini, P.; Chivenge, P.; Manson, A.; Chaplot, V. Land degradation impact on soil organic carbon and nitrogen stocks of sub-tropical humid grasslands in South Africa. Geoderma 2014, 235, 372–381. [Google Scholar] [CrossRef]
- Mills, A.; Fey, M. Transformation of thicket to savanna reduces soil quality in the Eastern Cape, South Africa. Plant Soil 2004, 265, 153–163. [Google Scholar] [CrossRef]
- Tiessen, H.; Cuevas, E.; Chacon, P. The role of soil organic-matter in sustaining soil fertility. Nature 1994, 371, 783–785. [Google Scholar] [CrossRef]
- Lal, R. Soil carbon sequestration impacts on global climate change and food security. Science 2004, 304, 1623–1627. [Google Scholar] [CrossRef] [PubMed]
- Lal, R. Soil carbon sequestration in natural and managed tropical forest ecosystems. J. Sust. For. 2005, 21, 1–30. [Google Scholar] [CrossRef]
- Batjes, N. Options for increasing carbon sequestration in West African soils: An exploratory study with special focus on Senegal. Land Degrad. Dev. 2001, 12, 131–142. [Google Scholar] [CrossRef]
- Eaton, W.; Roed, M.; Chassot, O.; Barry, D. Differences in soil moisture, nutrients and the microbial community between forests on the upper Pacific and Caribbean slopes at Monteverde, Cordillera de Tilaran: Implications for responses to climate change. Trop. Ecol. 2012, 53, 235–240. [Google Scholar]
- Melillo, J.M.; Steudler, P.A.; Tian, H.; Butler, S. Fertilizing change: Carbon-nitrogen interactions and carbon storage in land ecosystems. In Handbook of Climate Change and Agroecosystems: Impact, Adaptation and Mitigation; Hillel, D., Rosenzweig, C., Eds.; Imperial College Press: London, UK, 2010; pp. 21–36. [Google Scholar]
- Melillo, J.; Steudler, P.; Aber, J.; Newkirk, K.; Lux, H.; Bowles, F.; Catricala, C.; Magill, A.; Ahrens, T.; Morrisseau, S. Soil warming and carbon-cycle feedbacks to the climate system. Science 2002, 298, 2173–2176. [Google Scholar] [CrossRef] [PubMed]
- Berbeco, M.; Melillo, J.; Orians, C. Soil warming accelerates decomposition of fine woody debris. Plant Soil 2012, 356, 405–417. [Google Scholar] [CrossRef]
- Ray, S.; Bhattacharyya, T.; Reddy, K.; Pal, D.; Chandran, P.; Tiwary, P.; Mandal, D.; Mandal, C.; Prasad, J.; Sarkar, D.; et al. Soil and land quality indicators of the Indo-Gangetic Plains of India. Curr. Sci. 2014, 107, 1470–1486. [Google Scholar]
- Sharma, K.; Grace, J.; Mandal, U.; Gajbhiye, P.; Srinivas, K.; Korwar, G.; Bindu, V.; Ramesh, V.; Ramachandran, K.; Yadav, S. Evaluation of long-term soil management practices using key indicators and soil quality indices in a semi-arid tropical Alfisol. Aust. J. Soil Res. 2008, 46, 368–377. [Google Scholar] [CrossRef]
- Karlen, D.; Mausbach, M.; Doran, J.; Cline, R.; Harris, R.; Schuman, G. Soil quality: A concept, definition, and framework for evaluation. Soil Sci. Soc. Am. J. 1997, 61, 4–10. [Google Scholar] [CrossRef]
- Karlen, D.; Stott, D.; Doran, J.; Coleman, D.; Bezdicek, D.; Stewart, B. A framework for evaluating physical and chemical indicators of soil quality. Defin. Soil Q. Sustain. Environ. 1994, 35, 53–72. [Google Scholar]
- Andrews, S.S.; Carroll, C.R. Designing a soil quality assessment tool for sustainable agroecosystems management. Ecol. Appl. 2001, 11, 1573–1585. [Google Scholar] [CrossRef]
- Paz-Kagan, T.; Shachak, M.; Zaady, E.; Karnieli, A. A spectral soil quality index (SSQI) for characterizing soil function in areas of changed land use. Geoderma 2014, 230, 171–184. [Google Scholar] [CrossRef]
- Lal, R. Methods and Guidelines for Assessing Sustainable Use of Soil and Water Resources in the Tropics; USDA/SMSS Bull: 21; US Department of Agriculture: Washington, DC, USA, 1994. [Google Scholar]
- Andrews, S.; Karlen, D.; Cambardella, C. The soil management assessment framework: A quantitative soil quality evaluation method. Soil Sci. Soc. Am. J. 2004, 68, 1945–1962. [Google Scholar] [CrossRef]
- Andrews, S.; Karlen, D.; Mitchell, J. A comparison of soil quality indexing methods for vegetable production systems in Northern California. Agric. Ecosyst. Environ. 2002, 90, 25–45. [Google Scholar] [CrossRef]
- Gugino, B.K. Cornell Soil Health Assessment Training Manual; New York State Agricultural Experiment Station Cornell University: New York, NY, USA, 2009. [Google Scholar]
- Lal, R. On Sequestering Carbon and Increasing Productivity by Conservation Agriculture. J. Soil Water Conserv. 2015, in press. [Google Scholar]
- Rodríguez, Y.E.O.; Hernández, D.C. Energetic balance of two farming tools in a Fluvisol for the cultivation of sweet potato (Ipomoea batatas Lam). Rev. Cienceis Tecinas Agropecu. 2013, 22, 21–25. [Google Scholar]
- Labreuche, J.; Lellahi, A.; Malaval, C.; Germon, J. Impact of no-tillage agricultural methods on the energy balance and the greenhouse gas balance of cropping systems. Cah. Agric. 2011, 20, 204–215. [Google Scholar]
- Kimetu, J.; Lehmann, J.; Ngoze, S.; Mugendi, D.; Kinyangi, J.; Riha, S.; Verchot, L.; Recha, J.; Pell, A. Reversibility of soil productivity decline with organic matter of differing quality along a degradation gradient. Ecosystems 2008, 11, 726–739. [Google Scholar] [CrossRef]
- So, H.; Kirchhof, G.; Bakker, R.; Smith, G. Low input tillage/cropping systems for limited resource areas. Soil Tillage Res. 2001, 61, 109–123. [Google Scholar] [CrossRef]
- Powlson, D.; Stirling, C.; Jat, M.; Gerard, B.; Palm, C.; Sanchez, P.; Cassman, K. Limited potential of no-till agriculture for climate change mitigation. Nat. Clim. Chang. 2014, 4, 678–683. [Google Scholar] [CrossRef]
- Pittelkow, C.; Liang, X.; Linquist, B.; van Groenigen, K.; Lee, J.; Lundy, M.; van Gestel, N.; Six, J.; Venterea, R.; van Kessel, C. Productivity limits and potentials of the principles of conservation agriculture. Nature 2015, 517, U365–U482. [Google Scholar] [CrossRef]
- Tisdall, J.; Oades, J. Organic-matter and water-stable aggregates in soils. J. Soil Sci. 1982, 33, 141–163. [Google Scholar] [CrossRef]
- Sanchez, P.A. En route to plentiful food production in Africa. Nat. Plants 2015, 1, 1–2. [Google Scholar]
- Hüttl, R.; Frielinghaus, M. Soil fertility problems—An agriculture and forestry perspective. Sci. Total Environ. 1994, 143, 63–74. [Google Scholar] [CrossRef]
- Abbott, L.K.; Murphy, D.V. What is soil biological fertility? In Soil Biological Fertility—A Key to Sustainable Land Use in Agriculture; Springer: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
- Abiven, S.; Menasseri, S.; Chenu, C. The effects of organic inputs over time on soil aggregate stability. Soil Biol. Biochem. 2008, 41, 1–12. [Google Scholar] [CrossRef]
- Li, S.; Wang, Z.; Hu, T.; Gao, Y.; Stewart, B.; Sparks, D. Nitrogen in dryland soils of China and its management. Adv. Agron. 2009, 101, 123–181. [Google Scholar]
- Sherman, K. Sustainability, biomass yields, and health of coastal ecosystems: An ecological perspective. Marine Ecol. Progr. Series 1994, 112, 277–301. [Google Scholar] [CrossRef]
- Khaledian, Y.; Kiani, F.; Sohaila, E. The effect of land use change on soil and water quality in northern Iran. J. Mt. Sci. 2012, 9, 798–816. [Google Scholar] [CrossRef]
- Tsatsaros, J.; Brodie, J.; Bohnet, I.; Valentine, P. Water Quality Degradation of Coastal Waterways in the Wet Tropics, Australia. Water Air Soil Pollut. 2013, 224. [Google Scholar] [CrossRef]
- Schaffner, M.; Bader, H.; Scheidegger, R. Modeling the contribution of point sources and non-point sources to Thachin River water pollution. Sci. Total Environ. 2009, 407, 4902–4915. [Google Scholar] [CrossRef] [PubMed]
- Atapattu, S.; Kodituwakku, D. Agriculture in South Asia and its implications on downstream health and sustainability: A review. Agric. Water Manag. 2009, 96, 361–373. [Google Scholar] [CrossRef]
- Trivedi, R. Water quality of the Ganga River—An overview. Aquat. Ecosyst. Health Manag. 2010, 13, 347–351. [Google Scholar] [CrossRef]
- Chen, M.; Chen, J. Phosphorus release from agriculture to surface waters: Past, present and future in China. Water Sci. Technol. 2008, 57, 1355–1361. [Google Scholar] [CrossRef] [PubMed]
- Cheevaporn, V.; Menasveta, P. Water pollution and habitat degradation in the Gulf of Thailand. Marine Pollut. Bull. 2003, 47, 43–51. [Google Scholar] [CrossRef]
- Qadir, M.; Oster, J. Crop and irrigation management strategies for saline-sodic soils and waters aimed at environmentally sustainable agriculture. Sci. Total Environ. 2004, 323, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Lemly, A.; Finger, S.; Nelson, M. Sources and impacts of irrigation drainwater contaminants in arid wetlands. Environ. Toxicol. Chem. 1993, 12, 2265–2279. [Google Scholar] [CrossRef]
- Dakoure, M.; Mermoud, A.; Yacouba, H.; Boivin, P. Impacts of irrigation with industrial treated wastewater on soil properties. Geoderma 2013, 200, 31–39. [Google Scholar]
- Bouwer, H. Integrated water management for the 21st century: Problems and solutions. J. Irrig. Drain. Eng.-Asce 2002, 128, 193–202. [Google Scholar] [CrossRef]
- Apitz, S.E.; Brils, J.; Marcomini, A.; Critto, A.; Agostini, P.; Micheletti, C.; Pippa, R.; Scanferla, P.; Zuin, S.; Lanczos, T.; et al. Approaches and frameworks for managing contaminated sediments—A European perspective. In Assessment and Remediation of Contaminated Sediments; Springer: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- Lal, R. Societal value of soil carbon. J. Soil Water Conserv. 2014, 69, 186A–192A. [Google Scholar] [CrossRef]
- Kohli, R.V.; Singh, H.P.; Batish, D.R.; Jose, S. Ecological interactions in agroforestry: An overview. In Ecological Basis of Agroforestry; Kohli, R.V.S., Batish, D.R., Jose, S., Eds.; CRC Press: Boca Raton, FL, USA, 2008; pp. 3–14. [Google Scholar]
- Helman, D.; Lensky, I.; Mussery, A.; Leu, S. Rehabilitating degraded drylands by creating woodland islets: Assessing long-term effects on aboveground productivity and soil fertility. Agric. For. Meteorol. 2014, 195, 52–60. [Google Scholar] [CrossRef]
- Berazneva, J.; Conrad, J.; Guerena, D.; Lehmann, J. Agricultural productivity and soil carbon dynamics: A bio-economic model. In Proceedings of the Agricultural and Applied Economics Association 2014 Annual Meeting, Minneapolis, MN, USA, 27–29 July 2014.
- Gong, X.; Liu, Y.; Li, Q.; Wei, X.; Guo, X.; Niu, D.; Zhang, W.; Zhang, J.; Zhang, L. Sub-tropic degraded red soil restoration: Is soil organic carbon build-up limited by nutrients supply. For. Ecol. Manag. 2013, 300, 77–87. [Google Scholar] [CrossRef]
- Iqbal, M.; van Es, H.; Anwar-ul-Hassan, R.R.; Schindelbeck, R.; Moebius-Clune, B. Soil Health Indicators as Affected by Long-term Application of Farm Manure and Cropping Patterns under Semi-arid Climates. Int. J. Agric. Biol. 2014, 16, 242–250. [Google Scholar]
- Govaerts, B.; Sayre, K.; Deckers, J. A minimum data set for soil quality assessment of wheat and maize cropping in the highlands of Mexico. Soil Tillage Res. 2006, 87, 163–174. [Google Scholar] [CrossRef]
- Moebius-Clune, B.; van Es, H.; Idowu, O.; Schindelbeck, R.; Kimetu, J.; Ngoze, S.; Lehmann, J.; Kinyangi, J. Long-term soil quality degradation along a cultivation chronosequence in western Kenya. Agric. Ecosyst. Environ. 2011, 141, 86–99. [Google Scholar] [CrossRef]
- Sortino, O.; Montoneri, E.; Patane, C.; Rosato, R.; Tabasso, S.; Ginepro, M. Benefits for agriculture and the environment from urban waste. Sci. Total Environ. 2014, 487, 443–451. [Google Scholar] [CrossRef] [PubMed]
- Baumgart-Getz, A.; Prokopy, L.; Floress, K. Why farmers adopt best management practice in the United States: A meta-analysis of the adoption literature. J. Environ. Manag. 2012, 96, 17–25. [Google Scholar] [CrossRef]
- Pimentel, D.; Harvey, C.; Resosudormo, P.; Sinclair, K.; Kurz, D.; McNair, M.; Crist, S.; Shpritz, L.; Fitton, L.; Saffouri, R.; et al. Environmental and economic costs of soil erosion and conservation benefits. Science 1995, 267, 1117–1123. [Google Scholar] [CrossRef] [PubMed]
- Mchunu, C.; Chaplot, V. Land degradation impact on soil carbon losses through water erosion and CO2 emissions. Geoderma 2012, 177, 72–79. [Google Scholar] [CrossRef]
- Badia, D.; Marti, C. Fire and rainfall energy effects on soil erosion and runoff generation in semi-arid forested lands. Arid Land Res. Manag. 2008, 22, 93–108. [Google Scholar] [CrossRef]
- Du Preez, C.C.; van Huyssteen, C.W.; Mnkeni, P.N.S. Land use and soil organic matter in South Africa 2: A review on the influence of arable crop production. South African J. Sci. 2011, 107, 35–42. [Google Scholar]
- Longeuville, D.; Henry, S.; Ozer, P. Saharan dust pollution: Implications for the Sahel. Epidemiologly 2009, 20. [Google Scholar] [CrossRef]
- Moreno, J.; Bastida, F.; Hernandez, T.; Garcia, C. Relationship between the agricultural management of a semi-arid soil and microbiological quality. Commun. Soil Sci. Plant Anal. 2008, 39, 421–439. [Google Scholar] [CrossRef]
- Bastida, F.; Moreno, J.; Hernandez, T.; Garcia, C. Microbiological degradation index of soils in a semiarid climate. Soil Biol. Biochem. 2006, 38, 3463–3473. [Google Scholar] [CrossRef]
- Fterich, A.; Mahdhi, M.; Mars, M. Seasonal Changes of Microbiological Properties in Steppe Soils from Degraded Arid Area in Tunisia. Arid Land Res. Manag. 2014, 28, 49–58. [Google Scholar] [CrossRef]
- Darwin, C.R. The Formation of Vegetable Mould, through the Action of Worms, with Observations on their Habitats; John Murray: London, UK, 1881. [Google Scholar]
- Edwards, W.M.; Shipitalo, M.J.; Norton, L.D. Contribution of macropososity to infiltration into a continuous corn no-tilled watershed: Implications for contaminant movement. J. Contam. Hydrol. 1988, 3, 193–205. [Google Scholar] [CrossRef]
- Lal, R. Tropical Ecology and Physical Edaphology; John Wiley Sons: Chichester, UK, 1987. [Google Scholar]
- Castellanos-Navarrete, A.; Rodriguez-Aragones, C.; de Goede, R.; Kooistra, M.; Sayre, K.; Brussaard, L.; Pulleman, M. Earthworm activity and soil structural changes under conservation agriculture in central Mexico. Soil Tillage Res. 2012, 123, 61–70. [Google Scholar] [CrossRef]
- Ayuke, F.; Karanja, N.; Okello, J.; Wachira, P.; Mutua, G.; Lelei, D.; Gachene, C.; Hester, R.; Harrison, R. Agrobiodiversity and Potential Use for Enhancing Soil Health in Tropical Soils of Africa. Soils Food Secur. 2012, 35, 94–134. [Google Scholar]
- Ryan, J.; Masri, S.; Ibrikci, H.; Singh, M.; Pala, M.; Harris, H. Implications of cereal-based crop rotations, nitrogen fertilization, and stubble grazing on soil organic matter in a Mediterranean-type environment. Turkish J. Agric. For. 2008, 32, 289–297. [Google Scholar]
- Teague, W.; Foy, J.; Cross, B.; Dowhower, S. Soil carbon and nitrogen changes following root-plowing of rangeland. J. Range Manag. 1999, 52, 666–670. [Google Scholar] [CrossRef]
- Emmerich, W.; Heitschmidt, R. Drought and grazing: II. Effects on runoff and water quality. J. Range Manag. 2002, 55, 229–234. [Google Scholar] [CrossRef]
- Snyman, H.; du Preez, C. Rangeland degradation in a semi-arid South Africa—II: Influence on soil quality. J. Arid Environ. 2005, 60, 483–507. [Google Scholar] [CrossRef]
- Oesterheld, M.; Loreti, J.; Semmartin, M.; Sala, O. Inter-annual variation in primary production of a semi-arid grassland related to previous-year production. J. Veg. Sci. 2001, 12, 137–142. [Google Scholar] [CrossRef]
- Wiegand, T.; Snyman, H.; Kellner, K.; Paruelo, J. Do grasslands have a memory: Modeling phytomass production of a semiarid South African grassland. Ecosystems 2004, 7, 243–258. [Google Scholar] [CrossRef]
- Thapa, G.; Yila, O. Farmers land management practices and status of agricultural land in the Jos Plateau, Nigeria. Land Degrad. Dev. 2012, 23, 263–277. [Google Scholar] [CrossRef]
- Garrity, D.; Akinnifesi, F.; Ajayi, O.; Weldesemayat, S.; Mowo, J.; Kalinganire, A.; Larwanou, M.; Bayala, J. Evergreen Agriculture: A robust approach to sustainable food security in Africa. Food Secur. 2010, 2, 197–214. [Google Scholar] [CrossRef]
- Muir, J.; Pitman, W.; Foster, J. Sustainable, low-input, warm-season, grass-legume grassland mixtures: Mission (nearly) impossible? Grass Forage Sci. 2011, 66, 301–315. [Google Scholar] [CrossRef]
- Lal, R. Degradation and resilience of soils. Phil. Trans. R. Soc. Lond. B. 1997, 352, 997–1010. [Google Scholar] [CrossRef]
- Greenland, D.J.; Szabolcs, I. (Eds.) Soil Resilience and Sustainable Land Use; CAB International: Wallingford, UK, 1994.
- Lynch, J. Resilience of the rhizosphere to anthropogenic disturbance. Biodegradation 2002, 13, 21–27. [Google Scholar] [CrossRef] [PubMed]
- Syers, J.K. Manging soils for long-term productivity. Philos. Trans. R. Lond. B 1997, 352, 1011–1021. [Google Scholar] [CrossRef]
- Horrigan, L.; Lawrence, R.; Walker, P. How sustainable agriculture can address the environmental and human health harms of industrial agriculture. Environ. Health Perspect. 2002, 110, 445–456. [Google Scholar] [CrossRef] [PubMed]
- Breulmann, M.; van Afferden, M.; Fühner, C. Biochar: Bring on the sewage. Nature 2015, 518, 483. [Google Scholar] [CrossRef]
- Goodman-Elgar, M. Evaluating soil resilience in long-term cultivation: A study of pre-Columbian terraces from the Paca Valley, Peru. J. Archaeol. Sci. 2008, 35, 3072–3086. [Google Scholar] [CrossRef]
- Ogaji, J. Sustainable agriculture in the UK. Environ. Dev. Sustain. 2005, 7, 253–270. [Google Scholar] [CrossRef]
- Ravnborg, H. Poverty and soil management—Relationships from three Honduran watersheds. Soc. Nat. Resour. 2002, 15, 523–539. [Google Scholar] [CrossRef]
- Tittonell, P.; Giller, K. When yield gaps are poverty traps: The paradigm of ecological intensification in African smallholder agriculture. Field Crops Res. 2013, 143, 76–90. [Google Scholar] [CrossRef]
- Rozelle, S.; Huang, J.; Zhang, L. Poverty, population and environmental degradation in China. Food Policy 1997, 22, 229–251. [Google Scholar] [CrossRef] [PubMed]
- Fan, M.; Shen, J.; Yuan, L.; Jiang, R.; Chen, X.; Davies, W.; Zhang, F. Improving crop productivity and resource use efficiency to ensure food security and environmental quality in China. J. Exp. Bot. 2012, 63, 13–24. [Google Scholar] [CrossRef] [PubMed]
- Tennesen, M. Rare Earth. Science 2014, 346, 692–695. [Google Scholar] [CrossRef] [PubMed]
- Reuters. Peak soil threatens global food security. Reuters, 17 July 2014. [Google Scholar]
- Flora, C. Food security in the context of energy and resource depletion: Sustainable agriculture in developing countries. Renew. Agric. Food Syst. 2010, 25, 118–128. [Google Scholar] [CrossRef]
- Wall, D.; Six, J. Give soils their due. Science 2015, 347, 695. [Google Scholar] [CrossRef] [PubMed]
- Gregory, P.; Hester, R.; Harrison, R. Soils and Food Security: Challenges and Opportunities. Soils Food Secur. 2012, 35, 1–30. [Google Scholar]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lal, R. Restoring Soil Quality to Mitigate Soil Degradation. Sustainability 2015, 7, 5875-5895. https://doi.org/10.3390/su7055875
Lal R. Restoring Soil Quality to Mitigate Soil Degradation. Sustainability. 2015; 7(5):5875-5895. https://doi.org/10.3390/su7055875
Chicago/Turabian StyleLal, Rattan. 2015. "Restoring Soil Quality to Mitigate Soil Degradation" Sustainability 7, no. 5: 5875-5895. https://doi.org/10.3390/su7055875
APA StyleLal, R. (2015). Restoring Soil Quality to Mitigate Soil Degradation. Sustainability, 7(5), 5875-5895. https://doi.org/10.3390/su7055875