An Algorithm for Burned Area Detection in the Brazilian Cerrado Using 4 µm MODIS Imagery
"> Figure 1
<p>Validation site of Jalapão in the state of Tocantins. The Cerrado biome is delimited in gray.</p> "> Figure 2
<p>Contours of W (thick lines) and V (thin lines) in the η/ξ space. Light gray dots denote MODIS pixels from Cerrado. Selected pixels corresponding to burned surfaces, soil/dry vegetation, vegetation, clouds and water are, respectively, highlighted in black, brown, green, dark gray and blue.</p> "> Figure 3
<p>Maps of W for September 2010 composite (<b>left</b>) and of ΔW between September and August composites (<b>right</b>) over the study region shown in <a href="#remotesensing-07-15782-f001" class="html-fig">Figure 1</a>.</p> "> Figure 4
<p>Medium resolution reference scars (Jalapão region, year 2005 (JA)), represented by black lines and respective percentages of burned areas for MODIS pixels of 1 km, where red pixels denote percentages below 25%, blue pixels between 25% and 50%, green pixels between 50% and 75%, and yellow above 75%. Small panel: zoom of the area, superimposed by the vectors of the scars as derived from Landsat reference maps (black lines).</p> "> Figure 5
<p>Verification measures from contingency tables (OA(<b>a</b>); OE(<b>b</b>); CE(<b>c</b>); B(<b>d</b>); DC(<b>e</b>)) for AQM and MCD64A1 and MCD45A1 <span class="html-italic">versus</span> the TM reference map over Jalapão for 2005 (JA), 2006 (JJAS), 2007 (JJA), 2008 (J), 2009 (JA), and 2010 (JJAS).</p> "> Figure 6
<p>Maps showing pixels where truly burned areas were detected (green), together with omission (blue) and commission (red) errors. TM reference scars (black lines) are superimposed. Results are from AQM and MCD64A1 over Jalapão and for 2005 (JA), 2006 (JJAS), 2007 (JJA), 2008 (J), 2009 (JA) and 2010 (JJAS).</p> "> Figure 7
<p>Histogram representing the results of BA for the Jalapão region comparing AQM, MCD45, MCD64, and the TM reference maps for the years (months) studied.</p> "> Figure 8
<p>Monthly burned area (km<sup>2</sup>) for the 10-year period over Cerrado (black curve) and Jalapão (gray curve).</p> "> Figure 9
<p>Boxplots of monthly values of BA (<b>upper panel</b>) and precipitation (<b>lower panel</b>) for 2005–2013. On each box, the central mark is the median, the edges of the box are the 25th and 75th percentiles and the whiskers delimit the extreme values.</p> "> Figure 10
<p>Inter-annual variability of burned area (black curve) and precipitation (gray curve) during the nine-year period (2005 to 2013) over Cerrado.</p> ">
Abstract
:1. Introduction
2. Data and Methods
2.1. Data
Year | May | Jun | July | August | September | October |
---|---|---|---|---|---|---|
2005 | 7th, 23rd | 8th, 24th | 9th | |||
2006 | 23rd | 8th, 24th | 26th | 11th, 27th | 28th | |
2007 | 26th | 27th | 13th, 29th | 14th, 30th | 15th | 1st |
2008 | 13th | 15th, 31st | 16th | 17th | ||
2009 | 2nd | 3rd, 19th | ||||
2010 | 3rd, 19th | 5th | 6th, 22nd | 7th, 23rd |
2.2. Description of the Algorithm
2.2.1. First Step: Pre-Processing
2.2.2. Second Step: Temporal Composites
2.2.3. Third Step: Selection of Burned Pixels (Stage I)
- the pixel belongs to a 3 × 3 pixel buffer matrix;
- W2 ≤ 0.16; and
- ΔW = W2 − W1 ≤ 0.
2.2.4. Fourth Step: Selection of Burned Pixels (Stage II)
- Let all pixels classified as burnt pixels in stage I be considered as seed points;
- For each seed point, let N be the total number of seed points inside a grid of 5 × 5 pixels centered at the considered seed point; in case N ≥ 3, let Ŵ and δW be the mean and the mean absolute deviation of seed points within the grid. Let W* be the value of W for a pixel inside the grid that is not a seed point; this pixel is then classified as a burned area pixel and considered as a new seed point if the two following conditions are fulfilled:
- ΔW* = W* 2 − W* 1 ≤ 0;
- W* ≤ Ŵ + (δW).
- Step II is recursively performed until no new seed points are generated.
- The burned area is obtained by summing up all identified burned area pixels.
2.3. Validation Procedure
Reference Map | ||||
---|---|---|---|---|
Burned | Unburned | |||
BA Product | Burned | a | b | a + b |
Unburned | c | d | c + d | |
a + c | b + d | a + b + c + d |
3. Results and Discussion
3.1. Accuracy Assessment
3.2. Spatial Errors
Hits | Omissions | Commissions | |
---|---|---|---|
AQM | 28,255 L = 44%; H = 56% | 23,637 L = 65%; H = 35% | 14,581 O = 58%; ∂S = 42% |
MCD64A1 | 13425 L = 22%; H = 78% | 38467 L = 65%; H = 35% | 579 O = 58%; ∂S = 42% |
MCD45A1 | 9332 L = 24%; H = 76% | 42560 L = 60%; H = 40% | 786 O = 52%; ∂S = 48% |
AQM | Hits | Omissions | Commissions | Distribution of Scars According to Size | |
---|---|---|---|---|---|
by Number | by Burned Area | ||||
2008 (J) | 2621 L = 54%; H = 46% | 2769 L = 71%; H = 29% | 2980 O = 87%; ∂S = 13% | Small = 85% Medium = 13% Large = 1% | Small = 17% Medium = 49% Large = 34% |
2005 (JA) | 2102 L = 49%; H = 51% | 3459 L = 65%; H = 35% | 1539 O = 88%; ∂S = 12% | Small = 90% Medium = 9% Large = 1% | Small = 16% Medium = 38% Large = 46% |
2009 (JA) | 2863 L = 53%; H = 47% | 4427 L = 70%; H = 30% | 2201 O = 66%; ∂S = 34% | Small = 89% Medium = 10% Large = 1% | Small = 17% Medium = 43% Large = 40% |
2006 (JJAS) | 4066 L = 48%; H = 52% | 4324 L = 65%; H = 35% | 2530 O = 71%; ∂S = 29% | Small = 89% Medium = 10% Large = 1% | Small = 19% Medium = 39% Large = 42% |
2010 (JJAS) | 8484 L = 38%; H = 62% | 3833 L = 59%; H = 41% | 2697 O = 30%; ∂S = 70% | Small = 87% Medium = 11% Large = 2% | Small = 8% Medium = 27% Large = 64% |
2007 (JJA) | 8119 L = 41%; H = 59% | 4825 L = 60%; H = 40% | 2634 O = 20%; ∂S = 80% | Small = 86% Medium = 12% Large = 2% | Small = 11% Medium = 31% Large = 58% |
3.3. Temporal Errors
3.4. Climatic Drivers
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Stocker, T.; Qin, D.; Plattner, G.; Tignor, M.; Allen, S.; Boschung, J.; Nauels, A.; Xia, Y.; Bex, V.; Midgley, P. IPCC 2013: Climate Change 2013: The Physical Science Basis, Proceedings of the Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Stockholm, Sweden, 23–26 September 2013; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014; pp. 213–214.
- MCTI—Ministério Para Ciência, Tecnologia e Inovação (2013) Estimativas Anuais de Emissões de Gases de Efeito Estufa no Brasil. MCTI, Brasília. Available online: http://www.mct.gov.br/upd_blob/0226/226591.pdf (accessed on 14 September 2015).
- Pereira, J.M.C.; Setzer, A.W. Spectral characteristics of fire scars in Landsat-5 TM images of Amazônia. Int. J. Remote Sens. 1993, 14, 2061–2078. [Google Scholar] [CrossRef]
- Setzer, A.W.; Pereira, M.C.P. Amazonia biomass burnings in 1987 and an estimate of their tropospheric emissions. Ambio 1991, 20, 19–22. [Google Scholar]
- Pivello, V. The use of fire in the Cerrado and Amazonian rainforests of Brazil: Past and present. Fire Ecol. 2011, 7, 24–39. [Google Scholar] [CrossRef]
- Nepstad, D.C.; Stickler, C.M.; Soares-Filho, B.; Merry, F. Interactions among Amazon land use, forests and climate: Prospects for a near-term forest tipping point. Philos. Trans. R. Soc. 2008, 363, 1737–1746. [Google Scholar] [CrossRef] [PubMed]
- Nepstad, D.C.; Verssimo, A.; Alencar, A.; Nobre, C.; Lima, E.; Lefebvre, P.; Schlesinger, P.; Potter, C.; Moutinho, P.; Mendoza, E.; et al. Large scale improverishment of Amazonian forests by logging and fire. Nature 1999, 398, 505–508. [Google Scholar] [CrossRef]
- Gillet, N.P.; Weaver, A.J.; Zwiers, F.W.; Flannigan, M.D. Detecting the effect of climate change on Canadian forest fires. Geophys. Res. Lett. 2004, 31, 1–4. [Google Scholar] [CrossRef]
- Westerling, A.L.; Hidalgo, H.G.; Cayan, D.R.; Swetnam, T. Warming and earlier spring increases western US forest wildfire activity. Science 2006, 313, 940–943. [Google Scholar] [CrossRef] [PubMed]
- Flannigan, M.D.; Krawchuk, M.A.; Groot, W.J.; Wotton, B.M.; Gowman, L.M. Implications of changing climate for global wildland fire. Int. J. Wildland Fire 2009, 18, 483–507. [Google Scholar] [CrossRef]
- Aldersley, A.; Murray, S.J.; Cornell, S.E. Global and regional analysis of climate and human drivers of wild-fire. Sci. Total Environ. 2011, 409, 3472–3481. [Google Scholar] [CrossRef] [PubMed]
- Pereira, M.G.; Calado, T.J.; DaCamara, C.C.; Calheiros, T. Effects of regional climate change on rural fires in Portugal. Clim. Res. 2013, 57, 187–200. [Google Scholar] [CrossRef]
- Hoffman, W.A.; Schroeder, W.; Jackson, R.B. Regional feed-backs among fire, climate, and tropical deforestation. J. Geophys. Res. 2003, 108. [Google Scholar] [CrossRef]
- Cardoso, M.F.; Hurtt, G.C.; Moore, B.; Nobre, C.A.; Prins, E. Projecting future fire activity in Amazonia. Glob. Chang. Biol. 2003, 9, 656–669. [Google Scholar] [CrossRef]
- Hutyra, L.R.; Munger, J.W.; Nobre, C.A.; Saleska, S.R.; Vieira, S.A.; Wofsy, S.C. Climatic variability and vegetation vulnerability in Amazonia. Geophys. Res. Lett. 2005, 32. [Google Scholar] [CrossRef]
- Scholze, M.; Knorr, W.; Arnell, N.W.; Prentice, C. A climate-change risk analysis for world ecosystems. Proc. Natl. Acad. Sci. USA 2006, 103, 13116–13120. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Fu, R.; Dickinson, R.E. Rainfall and its seasonality over the Amazon in the 21st century as assessed by the coupled models for the IPCC AR4. J. Geophys. Res. 2006, 111. [Google Scholar] [CrossRef]
- Liu, Y.; Stanturf, J.; Goodrick, S. Trends in global wildfire potential in a changing climate. For. Ecol. Manag. 2010, 259, 685–697. [Google Scholar] [CrossRef]
- Stocks, B.J.; Goldammer, J.G.; Frost, P.G.H.; Cahoon, D.R. Towards the development of an informed global policy on vegetation fires: What role for remote sensing? In Global and Regional Vegetation Fire Monitoring from Space: Planning a Coordinated International Effort; Ahern, F., Goldammer, J.G., Justice, C.O., Eds.; SPB Academic Publishing BV: Hague, The Netherlands, 2001; pp. 35–46. [Google Scholar]
- Plummer, S.; Arino, O.; Simon, M.; Steffen, W. Establishing an earth observation product service for the terrestrial carbon community: The GLOBCARBON initiative. Mitig. Adapt. Strateg. Glob. Chang. 2006, 11, 97–111. [Google Scholar] [CrossRef]
- Roy, D.P.; Boschetti, L.; Justice, C.O.; Ju, J. The Collection 5MODIS burned area product: Global evaluation by comparison with the MODIS active fire product. Remote Sens. Environ. 2008, 112, 3690–3707. [Google Scholar] [CrossRef]
- Tansey, K.; Gregoire, J.M.; Defourny, P.; Leigh, R.; Pekel, J.F.O.; van Bogaert, E.; Bartholome, E. A new, global, multi-annual (2000–2007) burnt area product at 1 km resolution. Geophys. Res. Lett. 2008, 35. [Google Scholar] [CrossRef]
- Giglio, L.; van der Werf, G.R.; Randerson, J.T.; Collatz, G.J.; Kasibhatla, P.S. Global estimation of burned area using MODIS active fire observations. Atmos. Chem. Phys. 2006, 6, 957–974. [Google Scholar] [CrossRef]
- Giglio, L.; Randerson, J.T.; van der Werf, G.R.; Kasibhatla, P.S.; Collatz, G.J.; Morton, D.C.; DeFries, R.S. Assessing variability and long-term trends in burned area by merging multiple satellite fire products. Biogeosciences 2010, 7, 1171–1186. [Google Scholar] [CrossRef]
- Boschetti, L.; Eva, H.D.; Brivio, P.A.; Grégoire, J.M. Lessons to be learned from the comparison of the three satellite-derived biomass burning products. Geophys. Res. Lett. 2004, 31. [Google Scholar] [CrossRef]
- Chang, D.; Song, Y. Comparison of L3JRC and MODIS global burned area products from 2000 to 2007. J. Geophys. Res. 2009, 114. [Google Scholar] [CrossRef]
- Setzer, A.; Morelli, F.; Lombardi, R. Estimativa quinzenal de áreas queimadas nas imagens MODIS do INPE. In O Sensor MODIS e suas Aplicações Ambientais no Brasil; Rudorff, B.F.T., Shimabukuro, Y.E., Ceballos, J.C., Eds.; Bookimage: S.J.Campos, Brazil, 2007; pp. 403–417. [Google Scholar]
- Melchiori, E.A.; Setzer, A.W.; Morelli, F.; Libonati, R.; Candido, P.; Jesus, S.A. Landsat-Tm/Oli algorithm for burned areas in the Brazilian Cerrado—Preliminary results. In Proceedings of VII International Conference on Forest Fire Research, Coimbra, Portugal, 17–20 November 2014.
- Haddad, Z.S.; Smith, E.A.; Kummerow, C.D.; Iguchi, T.; Farrar, M.R.; Durden, S.L.; Alves, M.; Olson, W.S. The TRMM “Day-1” radar/radiometer combined rain-profiling algorithm. J. Meteorol. Soc. 1997, 75, 799–809. [Google Scholar]
- Silva, J.F.; Farin, M.R.; Felfili, J.M.; Klink, C.A. Spatial heterogeneity, land use and conservation in the cerrado region of Brazil. J. Biogeogr. 2006, 33, 536–548. [Google Scholar] [CrossRef]
- Roy, D.P.; Jin, Y.; Lewis, P.E.; Justice, C.O. Prototyping a global algorithm for systematic fire-affected area mapping using MODIS time series data. Remote Sens. Environ. 2005, 97, 137–162. [Google Scholar] [CrossRef]
- Giglio, L.; Loboda, T.; Roy, D.P.; Quayle, B.; Justice, C.O. An active-fi re based burned area mapping algorithm for the MODIS sensor. Remote Sens. Environ. 2009, 113, 408–420. [Google Scholar] [CrossRef]
- Barbosa, P.M.; Gregoire, J.-M.; Pereira, J.M.C. An algorithm for extracting burned areas from time series of AVHRR GAC data applied at a continental scale. Remote Sens. Environ. 1999, 69, 253–263. [Google Scholar] [CrossRef]
- Pereira, J.M.C. A comparative evaluation of NOAA/AVHRR vegetation indexes for burned surface detection and mapping. IEEE Trans. Geosci. Remote Sens. 1999, 37, 217–226. [Google Scholar] [CrossRef]
- Libonati, R.; DaCamara, C.C.; Pereira, J.M.C.; Peres, L.F. Retrieving middle infrared reflectance for burned area mapping in tropical environments using MODIS. Remote Sens. Environ. 2010, 114, 831–843. [Google Scholar] [CrossRef]
- Libonati, R.; DaCamara, C.C.; Pereira, J.M.C.; Peres, L.F. On a new coordinate system for improved discrimination of vegetation and burned areas using MIR/NIR information. Remote Sens. Environ. 2011, 114, 831–843. [Google Scholar] [CrossRef]
- França, H.; Setzer, A.W. AVHRR analysis of savanna site through a fire season in Brazil. Int. J. Remote Sens. 2001, 22, 2449–2461. [Google Scholar] [CrossRef]
- Richardson, A.J.; Wiegand, C.L. Distinguishing vegetation from soil background information. Photogramm. Eng. Remote Sens. 1997, 43, 1541–1552. [Google Scholar]
- Pinty, B.; Lavergne, T.; Widlowski, J.-L.; Gobron, N.; Verstraete, M.M. On the need to observe vegetation canopies in the near-infrared to estimate visible light absorption. Remote Sens. Environ. 2008, 113, 10–23. [Google Scholar] [CrossRef]
- Kaufman, Y.J.; Remer, L. Detection of forests using mid-IR reflectance: An application for aerosol studies. IEEE Trans. Geosci. Remote Sens. 1994, 32, 672–683. [Google Scholar] [CrossRef]
- Sousa, A.M.O.; Pereira, J.M.C.; Silva, J.M.N. Evaluating the performance of multitemporal image compositing algorithms for burned area analysis. Int. J. Remote Sens. 2003, 24, 1219–1236. [Google Scholar] [CrossRef]
- Holben, B.N. Characteristics of maximum-value composite images from temporal AVHRR data. Int. J. Remote Sens. 1986, 7, 1417–1437. [Google Scholar] [CrossRef]
- Barbosa, P.M.; Pereira, J.M.C.; Gregoire, J.-M. Compositing criteria for burned area assessment using multitemporal low resolution satellite data. Remote Sens. Environ. 1998, 65, 38–49. [Google Scholar] [CrossRef]
- Stroppiana, D.; Tansey, K.; Gregoire, J-M.; Pereira, J.M.C. An algorithm for mapping burnt areas in Australia using SPOT-VEGETATION data. IEEE Trans. Geosci. Remote Sens. 2003, 41, 907–909. [Google Scholar] [CrossRef]
- Chuvieco, E.; Englefield, P.; Trischenko, A.; Lio, Y. Generation of long time series of burn area maps of the boreal forest from NOAA-AVHRR composite data. Int. J. Remote Sens. 2008, 23, 5103–5110. [Google Scholar] [CrossRef]
- Roy, D.P.; Giglio, L.; Kendall, J.D.; Justice, C.O. Multi-temporal active-fire based burn scar detection algorithm. Int. J. Remote Sens. 1999, 20, 1031–1038. [Google Scholar] [CrossRef]
- Fraser, R.H.; Li, Z.; Cihlar, J. Hotspot and NDVI differencing synergy (HANDS): A new technique for burned area mapping over boreal forest. Remote Sens. Environ. 2000, 74, 362–376. [Google Scholar] [CrossRef]
- Pu, R.; Gong, P.; Li, Z.; Scarborough, J. A dynamic algorithm for wildfire mapping with NOAA/AVHRR data. Int. J. Wildland Fire 2004, 13, 275–285. [Google Scholar] [CrossRef]
- George, C.; Rowland, C.; Gerard, F.; Balzter, H. Retrospective mapping of burnt areas in Central Siberia using a modification of the normalized difference water index. Remote Sens. Environ. 2006, 104, 346–359. [Google Scholar] [CrossRef]
- Loboda, T.; O’Neal, K.J.; Csiszar, I. Regionally adaptable dNBR-based algorithm for burned area mapping from MODIS data. Remote Sens. Environ. 2007, 109, 429–442. [Google Scholar] [CrossRef]
- Schroeder, W.; Csiszar, I.; Morisette, J. Quantifying the impact of cloud obscuration on remote sensing of active fires in the Brazilian Amazon. Remote Sens. Environ. 2008, 112, 456–470. [Google Scholar] [CrossRef]
- Schroeder, W.; Morisette, J.; Csiszar, I.; Giglio, L.; Morton, D.; Justice, C.O. Characterizing vegetation fire dynamics in Brazil through multisatellite data: Common trends and practical issues. Earth Interact. 2005, 9, 1–26. [Google Scholar] [CrossRef]
- Story, M.; Congalton, R.G. Accuracy assessment: A user’s perspective. Photogramm. Eng. Remote Sens. 1986, 52, 397–399. [Google Scholar]
- Gong, P.; Howarth, P.J. The use of structural information for improving land-cover classification accuracies at the rural-urban fringe. Photogramm. Eng. Remote Sens. 1990, 56, 67–73. [Google Scholar]
- Karaska, M.A.; Huguenin, R.L.; van Blaricom, D.; Savitsky, B. Subpixel classification of cypress and tupelo trees in TM imagery. In Proceedings of the 1995 ACSM/ASPRS Annual Convention and Exposition, Charlotte, NC, USA, 27 February–2 March 1995; pp. 856–865.
- Foody, G.M. Approaches for the production and evaluation of fuzzy land cover classications from remotely-sensed data. Int. J. Remote Sens. 1996, 17, 1317–1340. [Google Scholar] [CrossRef]
- Binaghi, E.; Brivio, P.A.; Ghezzi, P.; Rampini, A. A fuzzy set-based accuracy assessment of soft classification. Pattern Recognit. Lett. 1999, 20, 935–948. [Google Scholar] [CrossRef]
- Boschetti, L.; Flasse, S.P.; Brivio, P.A. Analysis of the conflict between omission and commission in low spatial resolution dichotomic thematic products: The pareto boundary. Remote Sens. Environ. 2004, 91, 280–292. [Google Scholar] [CrossRef]
- Padilla, M.; Stehman, S.V.; Litago, J.; Chuvieco, E. Assessing the temporal stability of the accuracy of a time series of burned area products. Remote Sens. 2014, 6, 2050–2068. [Google Scholar] [CrossRef]
- Tsela, P.; Wessels, K.; Botai, J.; Archibald, S.; Swanepoel, D.; Steenkanp, K.; Frost, P. Validation of the tow standard MODIS satellite burned area products and an Empirically-derived merged product in South Africa. Remote Sens. 2014, 6, 1275–1293. [Google Scholar] [CrossRef]
- Wilks, D. Statistical Methods in the Atmospheric Sciences, 2nd ed.; Academic Press: Waltham, MA, USA, 2006; p. 627. [Google Scholar]
- Padilla, M.; Stehman, S.V.; Ramo, R.; Corti, D.; Hantson, S.; Olive, P.; Alonso-Canas, I.; Bradley, A.V.; Tansey, K.; Mota, B.; et al. Comparing the accuracies of remote sensing global burned area products using stratified random sampling and estimation. Remote Sens. Environ. 2015, 160, 114–121. [Google Scholar] [CrossRef]
- Mouillot, F.; Schultz, M.G.; Yue, C.; Cadule, P.; Tansey, K.; Ciais, P.; Chuvieco, C. Ten years of global burned area products from spaceborne remote sensing—A review: Analysis of user needs and recommendations for future developments. Int. J. Appl. Earth Obs. Geoinf. 2014, 26, 64–79. [Google Scholar] [CrossRef]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Libonati, R.; DaCamara, C.C.; Setzer, A.W.; Morelli, F.; Melchiori, A.E. An Algorithm for Burned Area Detection in the Brazilian Cerrado Using 4 µm MODIS Imagery. Remote Sens. 2015, 7, 15782-15803. https://doi.org/10.3390/rs71115782
Libonati R, DaCamara CC, Setzer AW, Morelli F, Melchiori AE. An Algorithm for Burned Area Detection in the Brazilian Cerrado Using 4 µm MODIS Imagery. Remote Sensing. 2015; 7(11):15782-15803. https://doi.org/10.3390/rs71115782
Chicago/Turabian StyleLibonati, Renata, Carlos C. DaCamara, Alberto W. Setzer, Fabiano Morelli, and Arturo E. Melchiori. 2015. "An Algorithm for Burned Area Detection in the Brazilian Cerrado Using 4 µm MODIS Imagery" Remote Sensing 7, no. 11: 15782-15803. https://doi.org/10.3390/rs71115782
APA StyleLibonati, R., DaCamara, C. C., Setzer, A. W., Morelli, F., & Melchiori, A. E. (2015). An Algorithm for Burned Area Detection in the Brazilian Cerrado Using 4 µm MODIS Imagery. Remote Sensing, 7(11), 15782-15803. https://doi.org/10.3390/rs71115782