[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

RNA splicing factors as oncoproteins and tumour suppressors

Key Points

  • Genetic and functional data indicate that RNA splicing factors can act as oncoproteins as well as tumour suppressors.

  • A subset of RNA splicing factors are recurrent targets of specific point mutations in cancer. Many other splicing factors exhibit dysregulated expression in cancer.

  • In many cases, recurrent spliceosomal mutations alter splice site or exon recognition preferences to cause abnormal RNA splicing.

  • Spliceosomal mutations are sufficient to impair myeloid differentiation in mouse models. In the case of serine/arginine-rich splicing factor 2 (SRSF2), impaired differentiation has been linked to a specific splicing change in a downstream gene (enhancer of zeste homologue 2 (EZH2)).

  • Spliceosomal mutations may affect cellular processes, including epigenetic regulation, the DNA damage response and nonsense-mediated decay, in addition to regulation of RNA splicing.

  • Small molecules that disrupt splicing catalysis and/or targeted correction of specific splicing changes may provide novel therapeutic opportunities for cancers bearing spliceosomal mutations.

Abstract

The recent genomic characterization of cancers has revealed recurrent somatic point mutations and copy number changes affecting genes encoding RNA splicing factors. Initial studies of these 'spliceosomal mutations' suggest that the proteins bearing these mutations exhibit altered splice site and/or exon recognition preferences relative to their wild-type counterparts, resulting in cancer-specific mis-splicing. Such changes in the splicing machinery may create novel vulnerabilities in cancer cells that can be therapeutically exploited using compounds that can influence the splicing process. Further studies to dissect the biochemical, genomic and biological effects of spliceosomal mutations are crucial for the development of cancer therapies targeted at these mutations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Simplified model of constitutive and alternative splicing.
Figure 2: Commonly mutated spliceosomal proteins and their associations with specific cancer types.
Figure 3: Current understanding of the mechanistic consequences of spliceosomal gene mutations for RNA splicing.
Figure 4: Links between splicing factors and diverse biological processes and potential methods for therapeutic manipulation of splicing.

Similar content being viewed by others

References

  1. Zhang, J. & Manley, J. L. Misregulation of pre-mRNA alternative splicing in cancer. Cancer Discov. 3, 1228–1237 (2013).

    Article  CAS  PubMed  Google Scholar 

  2. David, C. J. & Manley, J. L. Alternative pre-mRNA splicing regulation in cancer: pathways and programs unhinged. Genes Dev. 24, 2343–2364 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Supek, F., Miñana, B., Valcárcel, J., Gabaldón, T. & Lehner, B. Synonymous mutations frequently act as driver mutations in human cancers. Cell 156, 1324–1335 (2014).

    Article  CAS  PubMed  Google Scholar 

  4. Jung, H. et al. Intron retention is a widespread mechanism of tumor-suppressor inactivation. Nat. Genet. 47, 1242–1248 (2015).

    Article  CAS  PubMed  Google Scholar 

  5. Dvinge, H. & Bradley, R. K. Widespread intron retention diversifies most cancer transcriptomes. Genome Med. 7, 45 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Danan-Gotthold, M. et al. Identification of recurrent regulated alternative splicing events across human solid tumors. Nucleic Acids Res. 43, 5130–5144 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Simon, J. M. et al. Variation in chromatin accessibility in human kidney cancer links H3K36 methyltransferase loss with widespread RNA processing defects. Genome Res. 24, 241–250 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Yoshida, K. et al. Frequent pathway mutations of splicing machinery in myelodysplasia. Nature 478, 64–69 (2011). A landmark study demonstrating frequent mutations in genes encoding spliceosomal proteins in myeloid malignancies.

    Article  CAS  PubMed  Google Scholar 

  9. Graubert, T. A. et al. Recurrent mutations in the U2AF1 splicing factor in myelodysplastic syndromes. Nat. Genet. 44, 53–57 (2012).

    Article  CAS  Google Scholar 

  10. Papaemmanuil, E. et al. Somatic SF3B1 mutation in myelodysplasia with ring sideroblasts. N. Engl. J. Med. 365, 1384–1395 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wang, L. et al. SF3B1 and other novel cancer genes in chronic lymphocytic leukemia. N. Engl. J. Med. 365, 2497–2506 (2011). A key study revealing frequent mutations in the gene encoding the spliceosomal protein SF3B1 in CLL.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Quesada, V. et al. Exome sequencing identifies recurrent mutations of the splicing factor SF3B1 gene in chronic lymphocytic leukemia. Nat. Genet. 44, 47–52 (2012).

    Article  CAS  Google Scholar 

  13. Pan, Q., Shai, O., Lee, L. J., Frey, B. J. & Blencowe, B. J. Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing. Nat. Genet. 40, 1413–1415 (2008).

    Article  CAS  PubMed  Google Scholar 

  14. Wang, E. T. et al. Alternative isoform regulation in human tissue transcriptomes. Nature 456, 470–476 (2008). A landmark study describing the use of RNA-seq to quantify splicing across human tissues.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Wahl, M. C., Will, C. L. & Lührmann, R. The spliceosome: design principles of a dynamic RNP machine. Cell 136, 701–718 (2009).

    Article  CAS  PubMed  Google Scholar 

  16. Turunen, J. J., Niemelä, E. H., Verma, B. & Frilander, M. J. The significant other: splicing by the minor spliceosome. Wiley Interdiscip. Rev. RNA 4, 61–76 (2013).

    Article  CAS  PubMed  Google Scholar 

  17. Matera, A. G. & Wang, Z. A day in the life of the spliceosome. Nat. Rev. Mol. Cell Biol. 15, 108–121 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Fica, S. M. et al. RNA catalyses nuclear pre-mRNA splicing. Nature 503, 229–234 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Graveley, B. R., Hertel, K. J. & Maniatis, T. A systematic analysis of the factors that determine the strength of pre-mRNA splicing enhancers. EMBO J. 17, 6747–6756 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wang, Z. & Burge, C. B. Splicing regulation: from a parts list of regulatory elements to an integrated splicing code. RNA 14, 802–813 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Fu, X. D. & Ares, M. Jr. Context-dependent control of alternative splicing by RNA-binding proteins. Nat. Rev. Genet. 15, 689–701 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Singh, R. & Valcarcel, J. Building specificity with nonspecific RNA-binding proteins. Nat. Struct. Mol. Biol. 12, 645–653 (2005).

    Article  CAS  PubMed  Google Scholar 

  23. Long, J. C. & Caceres, J. F. The SR protein family of splicing factors: master regulators of gene expression. Biochem. J. 417, 15–27 (2009).

    Article  CAS  PubMed  Google Scholar 

  24. Zhou, Z. & Fu, X. D. Regulation of splicing by SR proteins and SR protein-specific kinases. Chromosoma 122, 191–207 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Krecic, A. M. & Swanson, M. S. hnRNP complexes: composition, structure, and function. Curr. Opin. Cell Biol. 11, 363–371 (1999).

    Article  CAS  PubMed  Google Scholar 

  26. Zahler, A. M., Lane, W. S., Stolk, J. A. & Roth, M. B. SR proteins: a conserved family of pre-mRNA splicing factors. Genes Dev. 6, 837–847 (1992).

    Article  CAS  PubMed  Google Scholar 

  27. Kohtz, J. D. et al. Protein–protein interactions and 5′-splice-site recognition in mammalian mRNA precursors. Nature 368, 119–124 (1994).

    Article  CAS  PubMed  Google Scholar 

  28. Pandit, S. et al. Genome-wide analysis reveals SR protein cooperation and competition in regulated splicing. Mol. Cell 50, 223–235 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Han, J. et al. SR proteins induce alternative exon skipping through their activities on the flanking constitutive exons. Mol. Cell. Biol. 31, 793–802 (2011).

    Article  CAS  PubMed  Google Scholar 

  30. Xue, Y. et al. Genome-wide analysis of PTB–RNA interactions reveals a strategy used by the general splicing repressor to modulate exon inclusion or skipping. Mol. Cell 36, 996–1006 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Llorian, M. et al. Position-dependent alternative splicing activity revealed by global profiling of alternative splicing events regulated by PTB. Nat. Struct. Mol. Biol. 17, 1114–1123 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Huelga, S. C. et al. Integrative genome-wide analysis reveals cooperative regulation of alternative splicing by hnRNP proteins. Cell Rep. 1, 167–178 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Dasgupta, T. & Ladd, A. N. The importance of CELF control: molecular and biological roles of the CUG-BP, Elav-like family of RNA-binding proteins. Wiley Interdiscip. Rev. RNA 3, 104–121 (2012).

    Article  CAS  PubMed  Google Scholar 

  34. Konieczny, P., Stepniak-Konieczna, E. & Sobczak, K. MBNL proteins and their target RNAs, interaction and splicing regulation. Nucleic Acids Res. 42, 10873–10887 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ule, J. et al. An RNA map predicting Nova-dependent splicing regulation. Nature 444, 580–586 (2006).

    Article  CAS  PubMed  Google Scholar 

  36. Saltzman, A. L., Pan, Q. & Blencowe, B. J. Regulation of alternative splicing by the core spliceosomal machinery. Genes Dev. 25, 373–384 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Jurica, M. S. & Moore, M. J. Pre-mRNA splicing: awash in a sea of proteins. Mol. Cell 12, 5–14 (2003).

    Article  CAS  PubMed  Google Scholar 

  38. Barash, Y. et al. Deciphering the splicing code. Nature 465, 53–59 (2010).

    Article  CAS  PubMed  Google Scholar 

  39. Karni, R. et al. The gene encoding the splicing factor SF2/ASF is a proto-oncogene. Nat. Struct. Mol. Biol. 14, 185–193 (2007). This paper demonstrated that modest overexpression of the splicing factor SRSF1 is pro-tumorigenic.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Anczuków, O. et al. The splicing factor SRSF1 regulates apoptosis and proliferation to promote mammary epithelial cell transformation. Nat. Struct. Mol. Biol. 19, 220–228 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Karni, R., Hippo, Y., Lowe, S. W. & Krainer, A. R. The splicing-factor oncoprotein SF2/ASF activates mTORC1. Proc. Natl Acad. Sci. USA 105, 15323–15327 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Jia, R., Li, C., McCoy, J. P., Deng, C.-X. X. & Zheng, Z.-M. M. SRp20 is a proto-oncogene critical for cell proliferation and tumor induction and maintenance. Int. J. Biol. Sci. 6, 806–826 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Tang, Y. et al. Downregulation of splicing factor SRSF3 induces p53β, an alternatively spliced isoform of p53 that promotes cellular senescence. Oncogene 32, 2792–2798 (2013).

    Article  CAS  PubMed  Google Scholar 

  44. Jensen, M. A., Wilkinson, J. E. & Krainer, A. R. Splicing factor SRSF6 promotes hyperplasia of sensitized skin. Nat. Struct. Mol. Biol. 21, 189–197 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Cohen-Eliav, M. et al. The splicing factor SRSF6 is amplified and is an oncoprotein in lung and colon cancers. J. Pathol. 229, 630–639 (2013).

    Article  CAS  PubMed  Google Scholar 

  46. David, C. J., Chen, M., Assanah, M., Canoll, P. & Manley, J. L. HnRNP proteins controlled by c-Myc deregulate pyruvate kinase mRNA splicing in cancer. Nature 463, 364–368 (2010).

    Article  CAS  PubMed  Google Scholar 

  47. Clower, C. V. et al. The alternative splicing repressors hnRNP A1/A2 and PTB influence pyruvate kinase isoform expression and cell metabolism. Proc. Natl Acad. Sci. USA 107, 1894–1899 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Babic, I. et al. EGFR mutation-induced alternative splicing of Max contributes to growth of glycolytic tumors in brain cancer. Cell Metab. 17, 1000–1008 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Golan-Gerstl, R. et al. Splicing factor hnRNP A2/B1 regulates tumor suppressor gene splicing and is an oncogenic driver in glioblastoma. Cancer Res. 71, 4464–4472 (2011).

    Article  CAS  PubMed  Google Scholar 

  50. Sweetser, D. A. et al. Delineation of the minimal commonly deleted segment and identification of candidate tumor-suppressor genes in del(9q) acute myeloid leukemia. Genes Chromosomes Cancer 44, 279–291 (2005).

    Article  CAS  PubMed  Google Scholar 

  51. Gallardo, M. et al. hnRNP K Is a haploinsufficient tumor suppressor that regulates proliferation and differentiation programs in hematologic malignancies. Cancer Cell 28, 486–499 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Moumen, A., Masterson, P., O'Connor, M. J. & Jackson, S. P. hnRNP K: an HDM2 target and transcriptional coactivator of p53 in response to DNA damage. Cell 123, 1065–1078 (2005).

    Article  CAS  PubMed  Google Scholar 

  53. Zong, F. Y. et al. The RNA-binding protein QKI suppresses cancer-associated aberrant splicing. PLoS Genet. 10, e1004289 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Angeloni, D. Molecular analysis of deletions in human chromosome 3p21 and the role of resident cancer genes in disease. Brief. Funct. Genomic. Proteomic. 6, 19–39 (2007).

    Article  CAS  PubMed  Google Scholar 

  55. Imielinski, M. et al. Mapping the hallmarks of lung adenocarcinoma with massively parallel sequencing. Cell 150, 1107–1120 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Oh, J. J. et al. 3p21.3 tumor suppressor gene H37/Luca15/RBM5 inhibits growth of human lung cancer cells through cell cycle arrest and apoptosis. Cancer Res. 66, 3419–3427 (2006).

    Article  CAS  PubMed  Google Scholar 

  57. Rintala-Maki, N. D. & Goard, C. A. Expression of RBM5-related factors in primary breast tissue. J. Cell. Biochem. 100, 1440–1458 (2007).

    Article  CAS  PubMed  Google Scholar 

  58. Hernandez, J. et al. Tumor suppressor properties of the splicing regulatory factor RBM10. RNA Biol. 13, 466–472 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Bechara, E. G., Sebestyén, E., Bernardis, I., Eyras, E. & Valcárcel, J. RBM5, 6, and 10 differentially regulate NUMB alternative splicing to control cancer cell proliferation. Mol. Cell 52, 720–733 (2013).

    Article  CAS  PubMed  Google Scholar 

  60. Wang, Y. et al. The splicing factor RBM4 controls apoptosis, proliferation, and migration to suppress tumor progression. Cancer Cell 26, 374–389 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Warzecha, C. C., Sato, T. K., Nabet, B., Hogenesch, J. B. & Carstens, R. P. ESRP1 and ESRP2 are epithelial cell-type-specific regulators of FGFR2 splicing. Mol. Cell 33, 591–601 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Shapiro, I. M. et al. An EMT-driven alternative splicing program occurs in human breast cancer and modulates cellular phenotype. PLoS Genet. 7, e1002218 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Harbour, J. W. et al. Recurrent mutations at codon 625 of the splicing factor SF3B1 in uveal melanoma. Nat. Genet. 45, 133–135 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Martin, M. et al. Exome sequencing identifies recurrent somatic mutations in EIF1AX and SF3B1 in uveal melanoma with disomy 3. Nat. Genet. 45, 933–936 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Biankin, A. V. et al. Pancreatic cancer genomes reveal aberrations in axon guidance pathway genes. Nature 491, 399–405 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Stephens, P. J. et al. The landscape of cancer genes and mutational processes in breast cancer. Nature 486, 400–404 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Ellis, M. J. et al. Whole-genome analysis informs breast cancer response to aromatase inhibition. Nature 486, 353–360 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Maguire, S. L. et al. SF3B1 mutations constitute a novel therapeutic target in breast cancer. J. Pathol. 235, 571–580 (2015).

    Article  CAS  PubMed  Google Scholar 

  69. Cancer Genome Atlas Network. Comprehensive molecular portraits of human breast tumours. Nature 490, 61–70 (2012).

  70. Papaemmanuil, E. et al. Clinical and biological implications of driver mutations in myelodysplastic syndromes. Blood 122, 3616–3627 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Kim, E. et al. SRSF2 mutations contribute to myelodysplasia by mutant-specific effects on exon recognition. Cancer Cell 27, 617–630 (2015). This study demonstrated that SRSF2 mutations are sufficient to drive myelodysplasia, are distinct from loss-of-function of SRSF2 and change the RNA-binding affinity of the protein to alter exon recognition.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Kon, A. et al. SRSF2 P95H mutation causes impaired stem cell repopulation and hematopoietic differentiation in mice. Blood Abstr. 126, 1649 (2015).

    Google Scholar 

  73. Obeng, E. A. et al. Mutant splicing factor 3b subunit 1 (SF3B1) causes dysregulated erythropoiesis and a stem cell disadvantage. Blood Abstr. 124, 828 (2014).

    Article  Google Scholar 

  74. Mupo, A. et al. Sf3b1 K700E mutation impairs pre-mRNA splicing and definitive hematopoiesis in a conditional knock-in mouse model. Blood Abstr. 126, 140 (2015).

    Google Scholar 

  75. Shirai, C. L. et al. Mutant U2AF1 expression alters hematopoiesis and pre-mRNA splicing in vivo. Cancer Cell 27, 631–643 (2015). This study presented one of the first in vivo models of spliceosomal gene mutations in cancer, which revealed the biological effects of the U2AF1S34F mutation on haematopoiesis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Mian, S. A. et al. SF3B1 mutant MDS-initiating cells may arise from the haematopoietic stem cell compartment. Nat. Commun. 6, 10004 (2015).

    Article  CAS  PubMed  Google Scholar 

  77. Lindsley, R. C. et al. Acute myeloid leukemia ontogeny is defined by distinct somatic mutations. Blood 125, 1367–1376 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Rossi, D. et al. Mutations of the SF3B1 splicing factor in chronic lymphocytic leukemia: association with progression and fludarabine-refractoriness. Blood 118, 6904–6908 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. DeBoever, C. et al. Transcriptome sequencing reveals potential mechanism of cryptic 3′ splice site selection in SF3B1-mutated cancers. PLoS Comput. Biol. 11, e1004105 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Darman, R. B. et al. Cancer-associated SF3B1 hotspot mutations induce cryptic 3′ splice site selection through use of a different branch point. Cell Rep. 13, 1033–1045 (2015). This study revealed that SF3B1 mutations promote recognition of cryptic 3′ splice sites in cancer samples and genetically modified cell lines.

    Article  CAS  PubMed  Google Scholar 

  81. Allikmets, R. et al. Mutation of a putative mitochondrial iron transporter gene (ABC7) in X-linked sideroblastic anemia and ataxia (XLSA/A). Hum. Mol. Genet. 8, 743–749 (1999).

    Article  CAS  PubMed  Google Scholar 

  82. Pondarre, C. et al. Abcb7, the gene responsible for X-linked sideroblastic anemia with ataxia, is essential for hematopoiesis. Blood 109, 3567–3569 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Wu, S., Romfo, C. M., Nilsen, T. W. & Green, M. R. Functional recognition of the 3′ splice site AG by the splicing factor U2AF35. Nature 402, 832–835 (1999).

    Article  CAS  PubMed  Google Scholar 

  84. Reed, R. The organization of 3′ splice-site sequences in mammalian introns. Genes Dev. 3, 2113–2123 (1989).

    Article  CAS  PubMed  Google Scholar 

  85. Przychodzen, B. et al. Patterns of missplicing due to somatic U2AF1 mutations in myeloid neoplasms. Blood 122, 999–1006 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Brooks, A. N. et al. A pan-cancer analysis of transcriptome changes associated with somatic mutations in U2AF1 reveals commonly altered splicing events. PLoS ONE 9, e87361 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Ilagan, J. O. et al. U2AF1 mutations alter splice site recognition in hematological malignancies. Genome Res. 25, 14–26 (2015). This study demonstrated that U2AF1 mutations cause alteration, not loss, of function and that mutations in the first versus second zinc fingers of U2AF1 induce different changes in 3′ splice site preference.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Okeyo-Owuor, T. et al. U2AF1 mutations alter sequence specificity of pre-mRNA binding and splicing. Leukemia 29, 909–917 (2015).

    Article  CAS  PubMed  Google Scholar 

  89. Damm, F. et al. BCOR and BCORL1 mutations in myelodysplastic syndromes and related disorders. Blood 122, 3169–3177 (2013).

    Article  CAS  PubMed  Google Scholar 

  90. Cancer Genome Atlas Network. Comprehensive genomic characterization of head and neck squamous cell carcinomas. Nature 517, 576–582 (2015).

  91. Shen, H., Zheng, X., Luecke, S. & Green, M. R. The U2AF35-related protein Urp contacts the 3' splice site to promote U12-type intron splicing and the second step of U2-type intron splicing. Genes Dev. 24, 2389–2394 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Madan, V. et al. Aberrant splicing of U12-type introns is the hallmark of ZRSR2 mutant myelodysplastic syndrome. Nat. Commun. 6, 6042 (2015). This work demonstrated that U12-type introns are poorly recognized in patients carrying presumed loss-of-function ZRSR2 mutations.

    Article  CAS  PubMed  Google Scholar 

  93. Bejar, R. et al. Validation of a prognostic model and the impact of mutations in patients with lower-risk myelodysplastic syndromes. J. Clin. Oncol. 30, 3376–3382 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Graveley, B. R. & Maniatis, T. Arginine/serine-rich domains of SR proteins can function as activators of pre-mRNA splicing. Mol. Cell 1, 765–771 (1998).

    Article  CAS  PubMed  Google Scholar 

  95. Liu, H. X., Chew, S. L., Cartegni, L., Zhang, M. Q. & Krainer, A. R. Exonic splicing enhancer motif recognized by human SC35 under splicing conditions. Mol. Cell. Biol. 20, 1063–1071 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Schaal, T. D. & Maniatis, T. Multiple distinct splicing enhancers in the protein-coding sequences of a constitutively spliced pre-mRNA. Mol. Cell. Biol. 19, 261–273 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Zhang, J. et al. Disease-associated mutation in SRSF2 misregulates splicing by altering RNA-binding affinities. Proc. Natl Acad. Sci. USA 112, E4726–E4734 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Daubner, G. M., Clery, A., Jayne, S., Stevenin, J. & Allain, F. H. A syn-anti conformational difference allows SRSF2 to recognize guanines and cytosines equally well. EMBO J. 31, 162–174 (2012). This study described NMR solution structures of the RRM domain of SRSF2 in complex with RNA that explained the ability of SRSF2 to bind to both G-rich and C-rich motifs.

    Article  CAS  PubMed  Google Scholar 

  99. Ernst, T. et al. Inactivating mutations of the histone methyltransferase gene EZH2 in myeloid disorders. Nat. Genet. 42, 722–726 (2010).

    Article  CAS  PubMed  Google Scholar 

  100. Nikoloski, G. et al. Somatic mutations of the histone methyltransferase gene EZH2 in myelodysplastic syndromes. Nat. Genet. 42, 665–667 (2010).

    Article  CAS  PubMed  Google Scholar 

  101. Muto, T. et al. Concurrent loss of Ezh2 and Tet2 cooperates in the pathogenesis of myelodysplastic disorders. J. Exp. Med. 210, 2627–2639 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Haferlach, T. et al. Landscape of genetic lesions in 944 patients with myelodysplastic syndromes. Leukemia 28, 241–247 (2014).

    Article  CAS  PubMed  Google Scholar 

  103. Kurtovic-Kozaric, A. et al. PRPF8 defects cause missplicing in myeloid malignancies. Leukemia 29, 126–136 (2015).

    Article  CAS  PubMed  Google Scholar 

  104. Duhoux, F. P. et al. The t(1;9)(p34;q34) fusing ABL1 with SFPQ, a pre-mRNA processing gene, is recurrent in acute lymphoblastic leukemias. Leukemia Res. 35, e114–e117 (2011).

    Article  CAS  Google Scholar 

  105. Mathur, M. & Samuels, H. H. Role of PSF-TFE3 oncoprotein in the development of papillary renal cell carcinomas. Oncogene 26, 277–283 (2007).

    Article  CAS  PubMed  Google Scholar 

  106. Chen, W., Itoyama, T. & Chaganti, R. S. Splicing factor SRP20 is a novel partner of BCL6 in a t(3;6)(q27;p21) translocation in transformed follicular lymphoma. Genes Chromosomes Cancer 32, 281–284 (2001).

    Article  CAS  PubMed  Google Scholar 

  107. Lee, M. et al. The structure of human SFPQ reveals a coiled-coil mediated polymer essential for functional aggregation in gene regulation. Nucleic Acids Res. 43, 3826–3840 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Tomsic, J. et al. A germline mutation in SRRM2, a splicing factor gene, is implicated in papillary thyroid carcinoma predisposition. Sci. Rep. 5, 10566 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Polprasert, C. et al. Inherited and somatic defects in DDX41 in myeloid neoplasms. Cancer Cell 27, 658–670 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Li, X. & Manley, J. L. Inactivation of the SR protein splicing factor ASF/SF2 results in genomic instability. Cell 122, 365–378 (2005). This study demonstrated that loss of SRSF1 results in R loop formation and DNA damage.

    Article  CAS  PubMed  Google Scholar 

  111. Xiao, R. et al. Splicing regulator SC35 is essential for genomic stability and cell proliferation during mammalian organogenesis. Mol. Cell. Biol. 27, 5393–5402 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Savage, K. I. et al. Identification of a BRCA1-mRNA splicing complex required for efficient DNA repair and maintenance of genomic stability. Mol. Cell 54, 445–459 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Tresini, M. et al. The core spliceosome as target and effector of non-canonical ATM signalling. Nature 523, 53–58 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Tilgner, H. et al. Nucleosome positioning as a determinant of exon recognition. Nat. Struct. Mol. Biol. 16, 996–1001 (2009).

    Article  CAS  PubMed  Google Scholar 

  115. Kfir, N. et al. SF3B1 association with chromatin determines splicing outcomes. Cell Rep. 11, 618–629 (2015).

    Article  CAS  PubMed  Google Scholar 

  116. Kolasinska-Zwierz, P. et al. Differential chromatin marking of introns and expressed exons by H3K36me3. Nat. Genet. 41, 376–381 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Spies, N., Nielsen, C. B., Padgett, R. A. & Burge, C. B. Biased chromatin signatures around polyadenylation sites and exons. Mol. Cell 36, 245–254 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Luco, R. F. et al. Regulation of alternative splicing by histone modifications. Science 327, 996–1000 (2010). This paper demonstrated that histone modifications can influence alternative splicing.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. De Almeida, S. F. F. et al. Splicing enhances recruitment of methyltransferase HYPB/Setd2 and methylation of histone H3 Lys36. Nat. Struct. Mol. Biol. 18, 977–983 (2011).

    Article  CAS  PubMed  Google Scholar 

  120. Kim, S., Kim, H., Fong, N., Erickson, B. & Bentley, D. L. Pre-mRNA splicing is a determinant of histone H3K36 methylation. Proc. Natl Acad. Sci. USA 108, 13564–13569 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Luco, R. F., Allo, M., Schor, I. E., Kornblihtt, A. R. & Misteli, T. Epigenetics in alternative pre-mRNA splicing. Cell 144, 16–26 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Khan, D. H., Jahan, S. & Davie, J. R. Pre-mRNA splicing: role of epigenetics and implications in disease. Adv. Biol. Regul. 52, 377–388 (2012).

    Article  CAS  PubMed  Google Scholar 

  123. Ji, X. et al. SR proteins collaborate with 7SK and promoter-associated nascent RNA to release paused polymerase. Cell 153, 855–868 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Lemieux, B. et al. A function for the hnRNP A1/A2 proteins in transcription elongation. PLoS ONE 10, e0126654 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Mikula, M., Bomsztyk, K., Goryca, K., Chojnowski, K. & Ostrowski, J. Heterogeneous nuclear ribonucleoprotein (HnRNP) K genome-wide binding survey reveals its role in regulating 3′-end RNA processing and transcription termination at the early growth response 1 (EGR1) gene through XRN2 exonuclease. J. Biol. Chem. 288, 24788–24798 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Hsin, J. P. & Manley, J. L. The RNA polymerase II CTD coordinates transcription and RNA processing. Genes Dev. 26, 2119–2137 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Huang, Y., Gattoni, R., Stevenin, J. & Steitz, J. A. SR splicing factors serve as adapter proteins for TAP-dependent mRNA export. Mol. Cell 11, 837–843 (2003).

    CAS  PubMed  Google Scholar 

  128. Muller-McNicoll, M. et al. SR proteins are NXF1 adaptors that link alternative RNA processing to mRNA export. Genes Dev. 30, 553–566 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  129. Sanford, J. R., Gray, N. K., Beckmann, K. & Caceres, J. F. A novel role for shuttling SR proteins in mRNA translation. Genes Dev. 18, 755–768 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Michlewski, G., Sanford, J. R. & Caceres, J. F. The splicing factor SF2/ASF regulates translation initiation by enhancing phosphorylation of 4E-BP1. Mol. Cell 30, 179–189 (2008).

    Article  CAS  PubMed  Google Scholar 

  131. Nott, A., Le Hir, H. & Moore, M. J. Splicing enhances translation in mammalian cells: an additional function of the exon junction complex. Genes Dev. 18, 210–222 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Chang, Y.-F. F., Imam, J. S. & Wilkinson, M. F. The nonsense-mediated decay RNA surveillance pathway. Annu. Rev. Biochem. 76, 51–74 (2007).

    Article  CAS  PubMed  Google Scholar 

  133. Popp, M. W. & Maquat, L. E. Organizing principles of mammalian nonsense-mediated mRNA decay. Annu. Rev. Genet. 47, 139–165 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Zhang, Z. & Krainer, A. R. Involvement of SR proteins in mRNA surveillance. Mol. Cell 16, 597–607 (2004).

    Article  CAS  PubMed  Google Scholar 

  135. Brazao, T. F. et al. A new function of ROD1 in nonsense-mediated mRNA decay. FEBS Lett. 586, 1101–1110 (2012).

    Article  CAS  PubMed  Google Scholar 

  136. Ge, Z., Quek, B. L., Beemon, K. L. & Hogg, J. R. Polypyrimidine tract binding protein 1 protects mRNAs from recognition by the nonsense-mediated mRNA decay pathway. eLife 5, e11155 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  137. Lewis, B. P., Green, R. E. & Brenner, S. E. Evidence for the widespread coupling of alternative splicing and nonsense-mediated mRNA decay in humans. Proc. Natl Acad. Sci. USA 100, 189–192 (2003). This study demonstrated that approximately one-third of alternative isoforms of human genes contain premature termination codons that probably trigger NMD.

    Article  CAS  PubMed  Google Scholar 

  138. Lareau, L. F., Inada, M., Green, R. E., Wengrod, J. C. & Brenner, S. E. Unproductive splicing of SR genes associated with highly conserved and ultraconserved DNA elements. Nature 446, 926–929 (2007).

    Article  CAS  PubMed  Google Scholar 

  139. Ni, J. Z. et al. Ultraconserved elements are associated with homeostatic control of splicing regulators by alternative splicing and nonsense-mediated decay. Genes Dev. 21, 708–718 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Lareau, L. F. & Brenner, S. E. Regulation of splicing factors by alternative splicing and NMD is conserved between kingdoms yet evolutionarily flexible. Mol. Biol. Evol. 32, 1072–1079 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Liu, C. et al. The UPF1 RNA surveillance gene is commonly mutated in pancreatic adenosquamous carcinoma. Nat. Med. 20, 596–598 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Tarpey, P. S. et al. Mutations in UPF3B, a member of the nonsense-mediated mRNA decay complex, cause syndromic and nonsyndromic mental retardation. Nat. Genet. 39, 1127–1133 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Albers, C. A. et al. Compound inheritance of a low-frequency regulatory SNP and a rare null mutation in exon-junction complex subunit RBM8A causes TAR syndrome. Nat. Genet. 44, 435–439 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Feng, Q. et al. A feedback loop between nonsense-mediated decay and the retrogene DUX4 in facioscapulohumeral muscular dystrophy. eLife 4, e.04996 (2015).

    Article  Google Scholar 

  145. Harper, S. J. & Bates, D. O. VEGF-A splicing: the key to anti-angiogenic therapeutics? Nat. Rev. Cancer 8, 880–887 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Christofk, H. R. et al. The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth. Nature 452, 230–233 (2008).

    Article  CAS  PubMed  Google Scholar 

  147. Hubert, C. G. et al. Genome-wide RNAi screens in human brain tumor isolates reveal a novel viability requirement for PHF5A. Genes Dev. 27, 1032–1045 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Hsu, T. Y. et al. The spliceosome is a therapeutic vulnerability in MYC-driven cancer. Nature 525, 384–388 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Bonnal, S., Vigevani, L. & Valcárcel, J. The spliceosome as a target of novel antitumour drugs. Nat. Rev. Drug Discov. 11, 847–859 (2012).

    Article  CAS  PubMed  Google Scholar 

  150. Webb, T. R., Joyner, A. S. & Potter, P. M. The development and application of small molecule modulators of SF3b as therapeutic agents for cancer. Drug Discov. Today 18, 43–49 (2013).

    Article  CAS  PubMed  Google Scholar 

  151. Yokoi, A. et al. Biological validation that SF3b is a target of the antitumor macrolide pladienolide. FEBS J. 278, 4870–4880 (2011).

    Article  CAS  PubMed  Google Scholar 

  152. Kotake, Y., Sagane, K., Owa, T. & Mimori-Kiyosue, Y. Splicing factor SF3b as a target of the antitumor natural product pladienolide. Nat. Chem. Biol. 3, 570–575 (2007).

    Article  CAS  PubMed  Google Scholar 

  153. Eskens, F. A. et al. Phase I pharmacokinetic and pharmacodynamic study of the first-in-class spliceosome inhibitor E7107 in patients with advanced solid tumors. Clin. Cancer Res. 19, 6296–6304 (2013).

    Article  CAS  PubMed  Google Scholar 

  154. Hong, D. S. et al. A phase I, open-label, single-arm, dose-escalation study of E7107, a precursor messenger ribonucleic acid (pre-mRNA) spliceosome inhibitor administered intravenously on days 1 and 8 every 21 days to patients with solid tumors. Invest. New Drugs 32, 436–444 (2013).

    Article  CAS  PubMed  Google Scholar 

  155. Fan, L., Lagisetti, C., Edwards, C. C., Webb, T. R. & Potter, P. M. Sudemycins, novel small molecule analogues of FR901464, induce alternative gene splicing. ACS Chem. Biol. 6, 582–589 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Xargay-Torrent, S. et al. The splicing modulator sudemycin induces a specific antitumor response and cooperates with ibrutinib in chronic lymphocytic leukemia. Oncotarget 6, 22734–22749 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  157. Lee, S. C.-W. et al. Modulation of splicing catalysis for therapeutic targeting of leukemia with mutations in genes encoding spliceosomal proteins. Nat. Med. http://dx.doi.org/10.1038/nm.4097 (2016).

  158. Rossi, F. et al. Specific phosphorylation of SR proteins by mammalian DNA topoisomerase I. Nature 381, 80–82 (1996).

    Article  CAS  PubMed  Google Scholar 

  159. Gui, J. F., Lane, W. S. & Fu, X. D. A serine kinase regulates intracellular localization of splicing factors in the cell cycle. Nature 369, 678–682 (1994).

    Article  CAS  PubMed  Google Scholar 

  160. Colwill, K. et al. The Clk/Sty protein kinase phosphorylates SR splicing factors and regulates their intranuclear distribution. EMBO J. 15, 265–275 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Stamm, S. Regulation of alternative splicing by reversible protein phosphorylation. J. Biol. Chem. 283, 1223–1227 (2008).

    Article  CAS  PubMed  Google Scholar 

  162. Yeakley, J. M. et al. Phosphorylation regulates in vivo interaction and molecular targeting of serine/arginine-rich pre-mRNA splicing factors. J. Cell Biol. 145, 447–455 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Gout, S. et al. Abnormal expression of the pre-mRNA splicing regulators SRSF1, SRSF2, SRPK1 and SRPK2 in non small cell lung carcinoma. PLoS ONE 7, e46539 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Yoshida, T. et al. CLK2 is an oncogenic kinase and splicing regulator in breast cancer. Cancer Res. 75, 1516–1526 (2015).

    Article  CAS  PubMed  Google Scholar 

  165. Dawid, G. N. et al. Regulation of vascular endothelial growth factor (VEGF) splicing from pro-angiogenic to anti-angiogenic isoforms a novel therapeutic strategy for angiogenesis. J. Biol. Chem. 19, 5532–5540 (2010).

    Google Scholar 

  166. Elianna, M. A. et al. WT1 mutants reveal SRPK1 to be a downstream angiogenesis target by altering VEGF splicing. Cancer Cell 20, 768–780 (2010).

    Google Scholar 

  167. Soret, J. et al. Selective modification of alternative splicing by indole derivatives that target serine-arginine-rich protein splicing factors. Proc. Natl Acad. Sci. USA 102, 8764–8769 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Ghigna, C. et al. Pro-metastatic splicing of Ron proto-oncogene mRNA can be reversed: Therapeutic potential of bifunctional oligonucleotides and indole derivatives. RNA Biol. 7, 495–503 (2010).

    Article  CAS  PubMed  Google Scholar 

  169. Aartsma-Rus, A., Fokkema, I. & Verschuuren, J. Theoretic applicability of antisense-mediated exon skipping for Duchenne muscular dystrophy mutations. Hum. Mutat. 30, 293–299 (2009).

    Article  PubMed  Google Scholar 

  170. Hua, Y., Sahashi, K., Hung, G. & Rigo, F. Antisense correction of SMN2 splicing in the CNS rescues necrosis in a type III SMA mouse model. Genes Dev. 24, 1634–1644 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Passini, M. A. et al. Antisense oligonucleotides delivered to the mouse CNS ameliorate symptoms of severe spinal muscular atrophy. Sci. Transl Med. 3, 72ra18 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  172. Zhou, Q. et al. A chemical genetics approach for the functional assessment of novel cancer genes. Cancer Res. 75, 1949–1958 (2015).

    Article  CAS  PubMed  Google Scholar 

  173. Snyder, A. et al. Genetic basis for clinical response to CTLA-4 blockade in melanoma. N. Engl. J. Med. 371, 2189–2199 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Rizvi, N. A. et al. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science 348, 124–128 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Le, D. T. et al. PD-1 blockade in tumors with mismatch-repair deficiency. N. Engl. J. Med. 372, 2509–2520 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Gubin, M. M. et al. Checkpoint blockade cancer immunotherapy targets tumour-specific mutant antigens. Nature 515, 577–581 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Alamancos, G. P., Agirre, E. & Eyras, E. Methods to study splicing from high-throughput RNA sequencing data. Methods Mol. Biol. 1126, 357–397 (2014).

    Article  CAS  PubMed  Google Scholar 

  178. Engstrom, P. G. et al. Systematic evaluation of spliced alignment programs for RNA-seq data. Nat. Methods 10, 1185–1191 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Thierry-Mieg, D. & Thierry-Mieg, J. AceView: a comprehensive cDNA-supported gene and transcripts annotation. Genome Biol. 7, S12.1–S.12.14 (2006).

    Article  Google Scholar 

  180. Cunningham, F. et al. Ensembl 2015. Nucleic Acids Res. 43, 9 (2015).

    Article  CAS  Google Scholar 

  181. Rosenbloom, K. R. et al. The UCSC Genome Browser database: 2015 update. Nucleic Acids Res. 43, 81 (2015).

    Article  CAS  Google Scholar 

  182. Katz, Y., Wang, E. T., Airoldi, E. M. & Burge, C. B. Analysis and design of RNA sequencing experiments for identifying isoform regulation. Nat. Methods 7, 1009–1015 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Barbosa-Morais, N. L. et al. The evolutionary landscape of alternative splicing in vertebrate species. Science 338, 1587–1593 (2012).

    Article  CAS  PubMed  Google Scholar 

  184. Trapnell, C., Pachter, L. & Salzberg, S. L. TopHat: discovering splice junctions with RNA-seq. Bioinformatics 25, 1105–1111 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Steijger, T. et al. Assessment of transcript reconstruction methods for RNA-seq. Nat. Methods 10, 1177–1184 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Trapnell, C. et al. Transcript assembly and quantification by RNA-seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat. Biotechnol. 28, 511–515 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Djebali, S. et al. Landscape of transcription in human cells. Nature 489, 101–108 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Dehm, S. M. & Tindall, D. J. Alternatively spliced androgen receptor variants. Endocr. Relat. Cancer 18, 96 (2011).

    Article  CAS  Google Scholar 

  189. Antonarakis, E. S. et al. AR-V7 and resistance to enzalutamide and abiraterone in prostate cancer. N. Engl. J. Med. 371, 1028–1038 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Xing, Y. & Lee, C. J. Protein modularity of alternatively spliced exons is associated with tissue-specific regulation of alternative splicing. PLoS Genet. 1, e34 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Yeo, G. W., Van Nostrand, E., Holste, D., Poggio, T. & Burge, C. B. Identification and analysis of alternative splicing events conserved in human and mouse. Proc. Natl Acad. Sci. USA 102, 2850–2855 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Merkin, J., Russell, C., Chen, P. & Burge, C. B. Evolutionary dynamics of gene and isoform regulation in mammalian tissues. Science 338, 1593–1599 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Odom, D. T. et al. Tissue-specific transcriptional regulation has diverged significantly between human and mouse. Nat. Genet. 39, 730–732 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Schmidt, D. et al. Five-vertebrate ChIP-seq reveals the evolutionary dynamics of transcription factor binding. Science 328, 1036–1040 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Moran-Jones, K., Grindlay, J., Jones, M., Smith, R. & Norman, J. C. hnRNP A2 regulates alternative mRNA splicing of TP53INP2 to control invasive cell migration. Cancer Res. 69, 9219–9227 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. LeFave, C. V., Squatrito, M. & Vorlova, S. Splicing factor hnRNPH drives an oncogenic splicing switch in gliomas. EMBO J. 30, 4084–4097 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Xu, Y. et al. Cell type-restricted activity of hnRNPM promotes breast cancer metastasis via regulating alternative splicing. Genes Dev. 28, 1191–1203 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Adler, A. S. et al. An integrative analysis of colon cancer identifies an essential function for PRPF6 in tumor growth. Genes Dev. 28, 1068–1084 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Izaguirre, D. I. et al. PTBP1-dependent regulation of USP5 alternative RNA splicing plays a role in glioblastoma tumorigenesis. Mol. Carcinog. 51, 895–906 (2012).

    Article  CAS  PubMed  Google Scholar 

  200. Fushimi, K. et al. Up-regulation of the proapoptotic caspase 2 splicing isoform by a candidate tumor suppressor, RBM5. Proc. Natl Acad. Sci. USA 105, 15708–15713 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  201. Bonnal, S. et al. RBM5/Luca-15/H37 regulates Fas alternative splice site pairing after exon definition. Mol. Cell 32, 81–95 (2008).

    Article  CAS  PubMed  Google Scholar 

  202. Zhou, X. et al. BCLAF1 and its splicing regulator SRSF10 regulate the tumorigenic potential of colon cancer cells. Nat. Commun. 5, 4581 (2014).

    Article  CAS  PubMed  Google Scholar 

  203. Wu, S.-J. J. et al. The clinical implication of SRSF2 mutation in patients with myelodysplastic syndrome and its stability during disease evolution. Blood 120, 3106–3111 (2012).

    Article  CAS  PubMed  Google Scholar 

  204. Damm, F. et al. Mutations affecting mRNA splicing define distinct clinical phenotypes and correlate with patient outcome in myelodysplastic syndromes. Blood 119, 3211–3218 (2012).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

H.D. is supported by a grant from the US Department of Defense Breast Cancer Research Program (W81XWH-14-1-0044). E.K. is supported by the Worldwide Cancer Research Fund. R.K.B. and O.A.-W. are supported by grants from the Edward P. Evans Foundation, the Department of Defense Bone Marrow Failure Research Program (BM150092) and National Institutes of Health/National Heart, Lung and Blood Institute (NIH/NHLBI) (R01 HL128239). O.A.-W. is supported by an NIH K08 Clinical Investigator Award (1K08CA160647-01), a US Department of Defense Postdoctoral Fellow Award in Bone Marrow Failure Research (W81XWH-12-1-0041), the Starr Cancer Consortium (I8-A8-075), the Josie Robertson Investigator Program, a Damon Runyon Clinical Investigator Award with support from the Evans Foundation, the Mr William H. Goodwin and Mrs Alice Goodwin Commonwealth Foundation for Cancer Research, and the Experimental Therapeutics Center of Memorial Sloan Kettering Cancer Center. R.K.B. is supported by the Ellison Medical Foundation (AG-NS-1030-13) and NIH/National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) (R01 DK103854).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Omar Abdel-Wahab or Robert K. Bradley.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

Major spliceosome

A ribonucleoprotein complex consisting of five small nuclear RNAs (termed U1, U2, U4, U5 and U6), each in complex with a set of proteins to form small nuclear ribonucleoprotein complexes (snRNPs), that together are responsible for excision of most introns.

Minor spliceosome

A ribonucleoprotein complex that catalyses splicing of a small subset of U12-type introns. The introns recognized by the minor spliceosome are typically defined by sequence elements different from those that define U2-type introns, which are recognized by the major spliceosome.

Small nuclear ribonucleoprotein complexes

(snRNPs). These complexes assemble on pre-mRNA to catalyse splicing.

U2AF complex

A heterodimeric protein complex consisting of U2 small nuclear RNA auxiliary factor 1 (U2AF1) and U2AF2. U2AF2 and U2AF1 bind to the polypyrimidine tract and AG dinucleotide of the 3′ splice site to facilitate splice site recognition. Only a subset of AG-dependent 3′ splice sites require U2AF1 binding for efficient splice site recognition.

Constitutive splice sites

Splice sites that are always recognized and used by the spliceosome. Similarly, constitutive exons are always included in the mature mRNA.

Alternative splice sites

Splice sites that are variably recognized and used by the spliceosome. Similarly, alternative exons (also known as cassette or skipped exons) are sometimes, but not always, included in the mature mRNA. Recognition of alternative splice sites is frequently cell type specific and may rely upon the binding of additional trans-acting factors.

Expressed sequence tag

(EST). Portions of cDNA sequences.

Unannotated splicing

Splicing events that have not been previously reported by published studies or genomic databases such as Ensembl, UCSC, Vega and RefSeq.

ψ value

The percentage of all mRNAs transcribed from a gene that correspond to a particular isoform or contain a particular alternatively spliced sequence relative to all transcripts of the parent gene. For example, the ψ value for a cassette exon is the fraction of all mRNAs that contain the cassette exon. The ψ value is independent of gene expression and falls within the range 0–100%.

Serine/arginine-rich proteins

(SR proteins). A family of splicing factors that frequently promote splicing, although their action is context dependent. Many of these proteins bind to pre-mRNA in a sequence-specific manner to activate splicing. Some members of the family are implicated in other cellular processes, including mRNA export and translation.

Heterogeneous nuclear ribonucleoproteins

(hnRNPs). Many members of this protein family are splicing factors, although they also participate in other diverse RNA metabolic processes. These proteins frequently repress splicing, although their actions are context dependent.

Acute myeloid leukaemia

A type of cancer characterized by the rapid growth of abnormal white blood cells that accumulate in the bone marrow and interfere with the production of normal blood cells.

Myelodysplastic syndromes

(MDS). A heterogeneous group of clonal disorders of haematopoiesis characterized by an impaired ability to generate mature blood cells as well as aberrant cell morphologies (termed dysplasia).

Chronic lymphocytic leukaemia

(CLL). A type of cancer characterized by accumulation of aberrant mature-appearing B lymphocytes.

SF3B1

A gene encoding a key component of the U2 small nuclear ribonucleoprotein complex (snRNP) that binds upstream of the branch point to facilitate 3′ splice site recognition. SF3B1 is probably required for the splicing of most introns and is the most commonly mutated splicing factor in cancer.

SRSF2

A gene encoding a serine/arginine-rich protein (SR protein) that binds to specific exonic splicing enhancer motifs to promote recognition and inclusion of exons containing these motifs.

ZRSR2

A gene encoding a component of the minor spliceosome that contacts the 3′ splice site of specific U12-type introns to promote their excision.

Synthetic lethality

The situation in which two cellular perturbations (for example, two distinct mutations, or a mutation and a particular drug) result in cell death when combined whereas each perturbation alone does not.

Stop codons

UAA, UAG or UGA codons, signalling the end of translation. Also known as termination codons.

Exonic splicing enhancer

A typically short sequence motif in pre-mRNA that is bound by a splicing factor to promote exon recognition and subsequent inclusion of the exon in the mature mRNA. Many serine/arginine-rich (SR) proteins bind exonic splicing enhancers to activate splicing.

Secondary AML

(sAML). Acute myeloid leukaemia that develops following a previous chronic myeloid malignancy such as a myelodysplastic syndrome.

Cryptic 3′ splice sites

Potential 3′ splice sites that are not normally recognized by the spliceosome. By chance, introns and exons contain many AG dinucleotides that are not used as splice sites. Perturbations such as spliceosomal mutations can cause such 'decoy splice sites' to be incorrectly recognized as authentic splice sites.

Chronic myelomonocytic leukaemia

(CMML). A clonal disorder with features of both myelodysplastic and myeloproliferative syndromes in which there are too many monocytes in the blood.

Poison exon

A cassette exon containing an in-frame premature stop codon. A premature stop codon lies upstream of the normal stop codon, resulting in premature termination of translation of the mRNA when it is included in a transcript. Poison exons can induce nonsense-mediated decay of the mRNA or production of a truncated protein.

Nonsense-mediated decay

(NMD). An RNA surveillance process that recognizes and degrades mRNAs containing premature stop codons, as well as other abnormal RNAs and a subset of normal coding transcripts. Splicing is closely linked to NMD, as exon–exon junctions are important components of NMD activation in human cells.

RNA polymerase II pause release

The process by which RNA polymerase II that is paused (not actively transcribing) after the initiation of transcription is released, enabling transcriptional elongation.

Frameshift

The disruption of an open reading frame by the insertion or deletion of nucleotide sequence whose length is not a multiple of three.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dvinge, H., Kim, E., Abdel-Wahab, O. et al. RNA splicing factors as oncoproteins and tumour suppressors. Nat Rev Cancer 16, 413–430 (2016). https://doi.org/10.1038/nrc.2016.51

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc.2016.51

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer