[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Functionalization of Polyurethane/Urea Copolymers with Amide Groups by Polymer Treatment with Ammonia Plasma

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Samples of porous foam from polyurethane/urea copolymers based on polyethylene glycol (PURPEG) were prepared in the form of 1-mm-thick discs of diameter 10 cm and exposed to ammonia plasma created by inductively coupled radiofrequency discharge in either low density (E mode) or high density (H mode). The evolution of surface composition and structure upon plasma treatment was characterized by X-ray photoelectron spectroscopy. Treatment in the H mode caused depletion of oxygen even after 2 s of treatment, whereas treatment in the E mode caused gentle functionalization with amide groups. The concentration of functional groups depended on the discharge power, and the best results were obtained at moderately high power just before the transition from E to H modes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. John MJ, Thomas S (2008) Biofibres and biocomposites. Carbohydr Polym 71(3):343–364. doi:10.1016/j.carbpol.2007.05.040

    Article  CAS  Google Scholar 

  2. Izdebska J, Thomas S (2016) Printing on polymers: fundamentals and applications. Elsevier, Waltham

    Book  Google Scholar 

  3. Augustine R, Rajendran R, Cvelbar U, Mozetic M, George A (2013) Biopolymers for health, food, and cosmetic applications. In: Handbook of biopolymer-based materials. Wiley-VCH Verlag, pp 801–849. doi:10.1002/9783527652457.ch27

  4. Augustine R, Kalarikkal N, Thomas S (2014) Advancement of wound care from grafts to bioengineered smart skin substitutes. Prog Biomater 3(2–4):103–113. doi:10.1007/s40204-014-0030-y

    Article  Google Scholar 

  5. Nair LS, Laurencin CT (2007) Biodegradable polymers as biomaterials. Prog Polym Sci 32(8–9):762–798. doi:10.1016/j.progpolymsci.2007.05.017

    Article  CAS  Google Scholar 

  6. Ulery BD, Nair LS, Laurencin CT (2011) Biomedical applications of biodegradable polymers. J Polym Sci B Polym Phys 49(12):832–864. doi:10.1002/polb.22259

    Article  CAS  Google Scholar 

  7. Mohanty AK, Misra M, Hinrichsen G (2000) Biofibres, biodegradable polymers and biocomposites: an overview. Macromol Mater Eng 276(3–4):1–24. doi:10.1002/(Sici)1439-2054(20000301)276:1<1:Aid-Mame1>3.0.Co;2-W

    Article  Google Scholar 

  8. Augustine R, Dominic EA, Reju I, Kaimal B, Kalarikkal N, Thomas S (2015) Electrospun poly(ε-caprolactone)-based skin substitutes: in vivo evaluation of wound healing and the mechanism of cell proliferation. J Biomed Mater Res B 103(7):1445–1454. doi:10.1002/jbm.b.33325

    Article  CAS  Google Scholar 

  9. Augustine R, Kalarikkal N, Thomas S (2015) Clogging free electrospinning of polycaprolactone using acetic acid/acetone mixture. Polym Plast Technol. doi:10.1080/03602559.2015.1036451

    Google Scholar 

  10. Ferreira P, Alves P, Coimbra P, Gil MH (2015) Improving polymeric surfaces for biomedical applications: a review. J Coat Technol Res 12(3):463–475. doi:10.1007/s11998-015-9658-3

    Article  CAS  Google Scholar 

  11. Popelka A, Novak I, Lehocky M, Junkar I, Mozetic M, Kleinova A, Janigova I, Slouf M, Bilek F, Chodak I (2012) A new route for chitosan immobilization onto polyethylene surface. Carbohydr Polym 90(4):1501–1508. doi:10.1016/j.carbpol.2012.07.021

    Article  CAS  Google Scholar 

  12. Popelka A, Novak I, Lehocky M, Chodak I, Sedliacik J, Gajtanska M, Sedliacikova M, Vesel A, Junkar I, Kleinova A, Spirkova M, Bilek F (2012) Anti-bacterial treatment of polyethylene by cold plasma for medical purposes. Molecules 17(1):762–785. doi:10.3390/molecules17010762

    Article  CAS  Google Scholar 

  13. Asadinezhad A, Novak I, Lehocky M, Sedlarik V, Vesel A, Junkar I, Saha P, Chodak I (2010) A physicochemical approach to render antibacterial surfaces on plasma-treated medical-grade PVC: irgasan coating. Plasma Process Polym 7(6):504–514. doi:10.1002/ppap.200900132

    Article  CAS  Google Scholar 

  14. Lehocky M, Mracek A (2006) Improvement of dye adsorption on synthetic polyester fibers by low temperature plasma pre-treatment. Czechoslov J Phys 56:B1277–B1282. doi:10.1007/s10582-006-0362-5

    Article  Google Scholar 

  15. Augustine R, Saha A, Jayachandran VP, Thomas S, Kalarikkal N (2015) Dose-dependent effects of gamma irradiation on the materials properties and cell proliferation of electrospun polycaprolactone tissue engineering scaffolds. Int J Polym Mater Polym Biomater 64(10):526–533. doi:10.1080/00914037.2014.977900

    Article  CAS  Google Scholar 

  16. Morent R, De Geyter N, Desmet T, Dubruel P, Leys C (2011) Plasma surface modification of biodegradable polymers: a review. Plasma Process Polym 8(3):171–190. doi:10.1002/ppap.201000153

    Article  CAS  Google Scholar 

  17. Vesel A, Junkar I, Cvelbar U, Kovac J, Mozetic M (2008) Surface modification of polyester by oxygen- and nitrogen-plasma treatment. Surf Interface Anal 40(11):1444–1453. doi:10.1002/sia.2923

    Article  CAS  Google Scholar 

  18. Chu PK, Chen JY, Wang LP, Huang N (2002) Plasma-surface modification of biomaterials. Mater Sci Eng R 36(5–6):143–206. doi:10.1016/S0927-796X(02)00004-9

    Article  Google Scholar 

  19. Vesel A (2008) XPS study of surface modification of different polymer materials by oxygen plasma treatment. Inf Midem 38(4):257–265

    Google Scholar 

  20. Jacobs T, Morent R, De Geyter N, Dubruel P, Leys C (2012) Plasma surface modification of biomedical polymers: influence on cell-material interaction. Plasma Chem Plasma Process 32(5):1039–1073. doi:10.1007/s11090-012-9394-8

    Article  CAS  Google Scholar 

  21. Garcia JL, Asadinezhad A, Pachernik J, Lehocky M, Junkar I, Humpolicek P, Saha P, Valasek P (2010) Cell proliferation of HaCaT keratinocytes on collagen films modified by argon plasma treatment. Molecules 15(4):2845–2856. doi:10.3390/molecules15042845

    Article  CAS  Google Scholar 

  22. Gorjanc M, Mozetic M (2014) Modification of fibrous polymers by gaseous plasma: principles, techniques and applications. Lambert Academic Publishing, Saarbrücken

    Google Scholar 

  23. Kutasi K, Vasco G, Sa PA (2011) Active species downstream of an Ar–O2 surface-wave microwave discharge for biomedicine, surface treatment and nanostructuring. Plasma Sources Sci Technol 20(3):035006. doi:10.1088/0963-0252/20/3/035006

    Article  Google Scholar 

  24. Vesel A, Kolar M, Doliska A, Stana-Kleinschek K, Mozetic M (2012) Etching of polyethylene terephthalate thin films by neutral oxygen atoms in the late flowing afterglow of oxygen plasma. Surf Interface Anal 44(13):1565–1571. doi:10.1002/sia.5064

    Article  CAS  Google Scholar 

  25. Kregar Z, Biscan M, Milosevic S, Vesel A (2011) Monitoring oxygen plasma treatment of polypropylene with optical emission spectroscopy. IEEE Trans Plasma Sci 39(5):1239–1246. doi:10.1109/Tps.2011.2123111

    Article  CAS  Google Scholar 

  26. Belmonte T, Bernardelli EA, Mafra M, Duday D, Frache G, Poncin-Epaillard F, Noël C, Choquet P, Migeon HN, Maliska AM (2011) Comparison between hexatriacontane and stearic acid behaviours under late Ar–O2 post-discharge. Surf Coat Technol 205(2):S443–S446. doi:10.1016/j.surfcoat.2011.03.041

    Article  CAS  Google Scholar 

  27. Belmonte T, Pintassilgo CD, Czerwiec T, Henrion G, Hody V, Thiebaut JM, Loureiro J (2005) Oxygen plasma surface interaction in treatments of polyolefines. Surf Coat Technol 200(1–4):26–30. doi:10.1016/j.surfcoat.2005.02.108

    Article  CAS  Google Scholar 

  28. Bernardelli EA, Mafra M, Maliska AM, Belmonte T, Klein AN (2013) Influence of neutral and charged species on the plasma degradation of the stearic acid. Mater Res 16:385–391. doi:10.1590/S1516-14392013005000008

    Article  CAS  Google Scholar 

  29. Silva WD, Belmonte T, Duday D, Frache G, Noel C, Choquet P, Migeon HN, Maliska AM (2012) Interaction mechanisms between Ar–O2 post-discharge and biphenyl. Plasma Process Polym 9(2):207–216. doi:10.1002/ppap.201100119

    Article  Google Scholar 

  30. Mozetic M, Primc G, Vesel A, Zaplotnik R, Modic M, Junkar I, Recek N, Klanjsek-Gunde M, Guhy L, Sunkara MK, Assensio MC, Milosevic S, Lehocky M, Sedlarik V, Gorjanc M, Kutasi K, Stana-Kleinschek K (2015) Application of extremely non-equilibrium plasmas in the processing of nano and biomedical materials. Plasma Sources Sci Technol 24(1):015026. doi:10.1088/0963-0252/24/1/015026

    Article  CAS  Google Scholar 

  31. Zaplotnik R, Vesel A, Mozetic M (2011) Transition from E to H mode in inductively coupled oxygen plasma: hysteresis and the behaviour of oxygen atom density. EPL Europhys Lett 95(5):55001. doi:10.1209/0295-5075/95/55001

    Article  Google Scholar 

  32. Kortshagen U, Gibson ND, Lawler JE (1996) On the E–H mode transition in RF inductive discharges. J Phys D Appl Phys 29(5):1224–1236. doi:10.1088/0022-3727/29/5/017

    Article  CAS  Google Scholar 

  33. Lee J-K, Lee H-C, Chung C-W (2011) E–H mode transition in inductively coupled plasma using Ar, O2, N2, and mixture gas. Current Appl Phys 11(5):S149–S153. doi:10.1016/j.cap.2011.04.009

    Article  Google Scholar 

  34. Wang J, Du Y-C, Zhang X, Zheng Z, Liu Y, Xu L, Wang P, Cao J-X (2014) E → H mode transition density and power in two types of inductively coupled plasma configuration. Phys Plasmas 21(7):073502. doi:10.1063/1.4886147

    Article  Google Scholar 

  35. Miyoshi Y, Petrovic ZL, Makabe T (2002) Transition between capacitive and inductive mode in inductively coupled plasma observed by emission computerized tomography. IEEE Trans Plasma Sci 30(1):130–131. doi:10.1109/TPS.2002.1003958

    Article  CAS  Google Scholar 

  36. Cunge G, Crowley B, Vender D, Turner MM (1999) Characterization of the E to H transition in a pulsed inductively coupled plasma discharge with internal coil geometry: bi-stability and hysteresis. Plasma Sources Sci Technol 8(4):576–586. doi:10.1088/0963-0252/8/4/309

    Article  CAS  Google Scholar 

  37. Turner MM, Lieberman MA (1999) Hysteresis and the E–H transition in radiofrequency inductive discharge. Plasma Sources Sci Technol 8(2):312–324. doi:10.1088/0963-0252/8/2/312

    Article  Google Scholar 

  38. Okigawa A, Tadokoro M, Itoh A, Nakano N, Petrovic ZL, Makabe T (1997) Three-dimensional optical emission tomography of an inductively coupled plasma. Jpn J Appl Phys 36(1):4605–4616. doi:10.1143/JJAP.36.4605

    Article  CAS  Google Scholar 

  39. Okigawa A, Makabe T, Shibagaki T, Nakano N, Petrovic ZL, Kogawa T, Itoh A (1996) Robot assisted optical emission tomography in an inductively coupled plasma reactor. Jpn J Appl Phys 35(3):1890–1893. doi:10.1143/JJAP.35.1890

    Article  CAS  Google Scholar 

  40. Pan J, Li G, Chen Z, Chen X, Zhu W, Xu K (2009) Alternative block polyurethanes based on poly(3-hydroxybutyrate-co-4-hydroxybutyrate) and poly(ethylene glycol). Biomaterials 30(16):2975–2984. doi:10.1016/j.biomaterials.2009.02.005

    Article  CAS  Google Scholar 

  41. Niu Y, Chen KC, He T, Yu W, Huang S, Xu K (2014) Scaffolds from block polyurethanes based on poly(ɛ-caprolactone) (PCL) and poly(ethylene glycol) (PEG) for peripheral nerve regeneration. Biomaterials 35(14):4266–4277. doi:10.1016/j.biomaterials.2014.02.013

    Article  CAS  Google Scholar 

  42. Kolar M, Mozetic M, Stana-Kleinschek K, Fröhlich M, Turk B, Vesel A (2015) Covalent binding of heparin to functionalized PET materials for improved haemocompatibility. Materials 8(4):1526. doi:10.3390/ma8041526

    Article  Google Scholar 

  43. Schaber PM, Colson J, Higgins S, Thielen D, Anspach B, Brauer J (2004) Thermal decomposition (pyrolysis) of urea in an open reaction vessel. Thermochim Acta 424(1–2):131–142. doi:10.1016/j.tca.2004.05.018

    Article  CAS  Google Scholar 

  44. Hearn MJ, Ratner BD, Briggs D (1988) SIMS and XPS studies of polyurethane surfaces. 1. Preliminary studies. Macromolecules 21(10):2950–2959. doi:10.1021/ma00188a011

    Article  CAS  Google Scholar 

  45. Shimizu K, Phanopoulos C, Loenders R, Abel ML, Watts JF (2010) The characterization of the interfacial interaction between polymeric methylene diphenyl diisocyanate and aluminum: a ToF-SIMS and XPS study. Surf Interface Anal 42(8):1432–1444. doi:10.1002/sia.3586

    Article  CAS  Google Scholar 

  46. Shinohara H, Nakahara A, Kitagawa F, Takahashi Y, Otsuka K, Shoji S, Ohara O, Mizuno J (2011) XPS and NEXAFS studies of VUV/O3 treated aromatic polyurea and its application to microchip electrophoresis. Nanobiotechnol IET 5(4):136–142. doi:10.1049/iet-nbt.2011.0006

    Article  CAS  Google Scholar 

  47. Moles MD, Scotchford CA, Campbell Ritchie A (2014) Oxidation state of a polyurethane membrane after plasma etching. Conf Pap Sci 2014:347979. doi:10.1155/2014/347979

    Google Scholar 

  48. Greenwood OD, Hopkins J, Badyal JPS (1997) Non-isothermal O2 plasma treatment of phenyl-containing polymers. Macromolecules 30(4):1091–1098. doi:10.1021/ma9604202

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The research was funded by Slovenian Research Agency ARRS (Project Grant No. L2-6767) and the National Science Foundation of China (NSFC Project No. 21274083) and bilateral project Bi-CN-10-01 and 10-1 (2014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alenka Vesel.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Figure S1

XPS spectrum of an untreated PURPEG sample and the calculated surface composition (JPEG 1199 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vesel, A., Zaplotnik, R., Primc, G. et al. Functionalization of Polyurethane/Urea Copolymers with Amide Groups by Polymer Treatment with Ammonia Plasma. Plasma Chem Plasma Process 36, 835–848 (2016). https://doi.org/10.1007/s11090-016-9696-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-016-9696-3

Keywords

Navigation