[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Polyurethane Foams with 1,3,5-Triazine Ring and Silicon Atoms

  • Article
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

The method of obtaining polyurethane foams based on two oligoetherols, synthesized from (1) melamine and propylene carbonate, and (2) from metasilicic acid, glycidol and ethylene carbonate, is elaborated. The physical properties of PUFs are tested depending on composition of oligoetherol substrates mixture used. It has been found that 1,3,5-triazine rings in PUF increase their thermal resistance, while silicon contributes to improvement of mechanical properties of PUF. The silicon-modified PUFs can stand long term heating at 150–200 °C with concomitant increase of compression strength and decrease of flammability of PUFs. The PUFs heated at 150 °C for one month become self-extinguishing, or even inflammable upon exposure at 175 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. B. Czupryński, Questions of Chemistry and Technology of Polyurethanes, The Publishing House of the Academy of Bydgoszcz, Bydgoszcz, 2004.

    Google Scholar 

  2. Z. Wirpsza, Polyurethanes, WNT, Warsaw, 1991.

    Google Scholar 

  3. J. Lubczak, Polimery, 56, 360 (2011).

    Article  CAS  Google Scholar 

  4. J. Lubczak, Polimery, 56, 452 (2011).

    Article  CAS  Google Scholar 

  5. R. Lubczak, Open J. Organic Polym. Mater., 2, 1 (2012).

    Article  CAS  Google Scholar 

  6. R. Lubczak, e-Polymers 070, 1 (2012).

    Google Scholar 

  7. R. Lubczak, Cell. Polym., 34, 15 (2015).

    Article  CAS  Google Scholar 

  8. G. Janowska, W. Przygocki, and A. Wlochowicz, Flammability of Polymers and Polymeric Materials, WNT, Warsaw, 2007.

    Google Scholar 

  9. Y. Hu and Y. Ke-Lu, J. Appl. Polym. Sci., 109, 2169 (2008).

    Article  CAS  Google Scholar 

  10. C. H. Yang, F. J. Liu, Y. P. Liu, and W. T. Liao, Colloid. Int. Sci., 302, 123 (2006).

    Article  CAS  Google Scholar 

  11. S. Kim, S. H. Park, and B. K. Kim, Colloid. Polym. Sci., 284, 1067 (2006).

    Article  CAS  Google Scholar 

  12. C. Y. Zhao, Y. Yan, Z. H. Hu, L. P. Li, and X. Z. Fan, Journal of Wuhan University of Technology, 36, 17 (2014).

    Google Scholar 

  13. X. Y. Feng, S. K. Li, Y. Wang, Y. C. Wang, and J. X. Liu, Adv. Mater. Res., 815, 246 (2013).

    Article  CAS  Google Scholar 

  14. M. M. A. Nikje and Z. M. Tehrani, Polym. Eng. Sci., 50, 468 (2010).

    Article  CAS  Google Scholar 

  15. A. B. Francés and M. V. Navarro Bañón, IOP Conf. Series: Mater. Sci. Eng., 1, 64 (2014).

    Google Scholar 

  16. S. V. Levchik and E.D. Weil, Polym. Int., 53, 1901 (2004).

    Article  CAS  Google Scholar 

  17. S. Zhang and A. R. Horrocks, Prog. Polym. Sci., 28, 1517 (2003).

    Article  CAS  Google Scholar 

  18. L. A. Mercado, M. Galia, and J. A. Reina, Polym. Degrad. Stab., 91, 2588 (2006).

    Article  CAS  Google Scholar 

  19. C. A. Terraza, L. H. Tagle, A. Leiva, L. Poblete, and F. Concha, J. Appl. Polym. Sci., 109, 303 (2008).

    Article  CAS  Google Scholar 

  20. L. Verdolotti, M. Lavorgna, R. Lamanna, E. Di Maio, and S. Iannace, Polymer, 56, 20 (2015).

    Article  CAS  Google Scholar 

  21. E. Chmiel and J. Lubczak, Polym. Bull., 75, 1579 (2018).

    Article  CAS  Google Scholar 

  22. J. Lubczak, E. Chmiel-Szukiewicz, J. Duliban, D. Glowacz-Czerwonka, R. Lubczak, B. Łukasiewicz, I. Zarzyka, A. Łodyga, P. Tynski, D. Minda-Data, M. Koziol, and Z. Majerczyk, Przemysl Chemiczny, 10, 1690 (2014).

    Google Scholar 

  23. Cellular Plastics and Rubbers. Determination of apparent (bulk) Density, Polish (European) Standards PN-EN ISO 845–2000. Ed. Polish Committee for Standardization.

  24. Cellular Plastics, rigid. Determination of Water Absorption. Polish (European) Standards PN-EN ISO 2896–1986. Ed. Polish Committee for Standardization.

  25. Cellular Plastics, rigid. Test of dimensional Stability. Polish (European) Standards PN-EN ISO 2796–1986. Ed. Polish Committee for Standardization.

  26. Cellular Plastics, Compression Test for rigid Materials. Polish (European) Standards PN-EN ISO 844–1978. Ed. Polish Committee for Standardization.

  27. Flexible Cellular polymeric Materials - Laboratory Characteristics of small specimens Subject to a small Flame. Polish (European) Standards PN-EN ISO 3582–2002. Ed. Polish Committee for Standardization.

  28. Plastics - Simple Heat Release Test using a conical radiant Heater and a thermopile Detector. European Standards EN-ISO 13927:2015-05.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacek Lubczak.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lubczak, J., Chmiel, E. Polyurethane Foams with 1,3,5-Triazine Ring and Silicon Atoms. Macromol. Res. 27, 543–550 (2019). https://doi.org/10.1007/s13233-019-7068-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-019-7068-6

Keywords

Navigation