[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Groups definable in local fields and pseudo-finite fields

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

Using model-theoretic methods we prove:

Theorem A

If G is a Nash group over the real or p-adic field, then there is a Nash isomorphism between neighbourhoods of the identity of G and of the set of F-rational points of an algebraic group defined over F.

Theorem B

Let G be a connected affine Nash group over ℝ. Then G is Nash isogeneous with the (real) connected component of the set of real points of an algebraic group defined over ℝ.

Theorem C

Let G be a group definable in a pseudo-finite field F. Then G is definably virtually isogeneous with the set of F-rational points of an algebraic group defined over F.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • [A-M] M. Artin and B. Mazur,On periodic points, Ann. of Math.81 (1965), 82–99.

    Article  MathSciNet  Google Scholar 

  • [BaL] J. T. Baldwin and A. H. Lachlan,On strongly minimal sets, J. Symbolic Logic36 (1971), 79–96.

    Article  MATH  MathSciNet  Google Scholar 

  • [B1] E. Bouscaren,Model theoretic versions of Weil's theorem on pregroups, inModel Theory of Groups (A. Nesin and A. Pillay, eds.), Notre Dame Press, 1989, pp. 177–185.

  • [B2] E. Bouscaren,The group configuration—after E. Hrushovski, inModel Theory of Groups (A. Nesin and A. Pillay, eds.), Notre Dame Press, 1989, pp. 199–209.

  • [Bor] A. Borel,Linear Algebraic Groups, Springer-Verlag, Berlin, 1991.

    MATH  Google Scholar 

  • [BCR] J. Bochnak, M. Coste and M-F. Roy,Geometrie algebrique reelle, Springer-Verlag, Berlin, 1987.

    MATH  Google Scholar 

  • [Ch-v.d.D-Mac] Z. Chatzidakis, L. van den Dries and A. Macintyre,Definable sets over finite fields, J. Reine Angew427 (1992) 107–135.

    MATH  Google Scholar 

  • [v.d.D] L. van den Dries,Algebraic theories with definable Skolem functions, J. Symbolic Logic49 (1984), 625–629.

    Article  MATH  MathSciNet  Google Scholar 

  • [v.d.D-S] L. van den Dries and Ph. Scowcroft,On the structure of semialgebraic sets over p-adic fields, J. Symbolic Logic53 (1988), 1138–1164.

    Article  MATH  MathSciNet  Google Scholar 

  • [Fr-J] M. Fried and M. Jarden,Field Arithmetic, Springer-Verlag, Heidelberg, 1986.

    MATH  Google Scholar 

  • [Hr1] E. Hrushovski,Contributions to stable model theory, Ph.D. thesis, Berkeley, 1986.

  • [Ja] M. Jarden,Algebraic dimension over Frobenius fields, preprint, 1992.

  • [Mac] A. Macintyre,On definable sets of p-adic fields, J. Symbolic Logic41 (1976), 605–610.

    Article  MATH  MathSciNet  Google Scholar 

  • [M-S] J. Madden and C. Stanton,One dimensional Nash groups, Pacific J. Math.154 (1992), 331–344.

    MathSciNet  Google Scholar 

  • [No] M. V. Nori,On subgroups of GL n (Fp), Inventiones Mathematicae88 (1987), 257–275.

    Article  MATH  MathSciNet  Google Scholar 

  • [Pe] Perrin,Groupes henseliens, Publications d'Orsay, Universite Paris-Sud, 1975.

  • [P1] A. Pillay,Forking, normalisation and canonical bases, Ann. Pure Appl. Logic32 (1986), 61–81.

    Article  MATH  MathSciNet  Google Scholar 

  • [P2] A. Pillay,Groups and fields definable in O-minimal structures, J. Pure Appl. Algebra53 (1988), 239–255.

    Article  MATH  MathSciNet  Google Scholar 

  • [P3] A. Pillay, On fields definable in ℚ p , Arch. Math. Logic29 (1989), 1–7.

    Article  MATH  MathSciNet  Google Scholar 

  • [P4] A. Pillay,An application of model theory to real and p-adic algebraic groups, J. Algebra126 (1989), 139–146.

    Article  MATH  MathSciNet  Google Scholar 

  • [P5] A. Pillay,Model theory, stability theory and stable groups, inModel Theory of Groups (A. Nesin and A. Pillay, eds.), Notre Dame Press, 1989, pp. 1–40.

  • [P6] A. Pillay,Some remarks on definable equivalence relations in O-minimal structures, J. Symbolic Logic51 (1986), 709–714.

    Article  MATH  MathSciNet  Google Scholar 

  • [P7] A. Pillay,Some remarks on modular regular types, J. Symbolic Logic56 (1991), 1003–1011.

    Article  MATH  MathSciNet  Google Scholar 

  • [Po1] B. Poizat,Cours de Theorie des modeles, Nur al-Mantiq Wal-Marifah, Paris, 1985.

    MATH  Google Scholar 

  • [Po2] B. Poizat,Groupes stables, Nur al-Mantiq Wal-Marifah, Paris, 1987.

    MATH  Google Scholar 

  • [Po3] B. Poizat,An introduction to algebraically closed fields and varieties, inModel Theory of Groups (A. Nesin and A. Pillay, eds.), Notre Dame Press, 1989, pp. 41–67.

  • [S-W] A. Sagle and R. Warner,Introduction to Lie Groups, Academic Press, New York, 1973.

    MATH  Google Scholar 

  • [Sh] M. Shiota,Nash manifolds, Lecture Notes in Math. 1269, Springer-Verlag, Berlin, 1987.

    MATH  Google Scholar 

  • [We] A. Weil,On algebraic groups of transformations, Am. J. Math.77 (1955), 355–391.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ehud Hrushovski.

Additional information

Both authors supported by NSF grants.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hrushovski, E., Pillay, A. Groups definable in local fields and pseudo-finite fields. Israel J. Math. 85, 203–262 (1994). https://doi.org/10.1007/BF02758643

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02758643

Keywords

Navigation