[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
research-article

Analysis and Application of a Nonlocal Hessian

Published: 01 January 2015 Publication History

Abstract

In this work we introduce a formulation for a nonlocal Hessian that combines the ideas of higher-order and nonlocal regularization for image restoration, extending the idea of nonlocal gradients to higher-order derivatives. By intelligently choosing the weights, the model allows us to improve on the current state of the art higher-order method, total generalized variation, with respect to overall quality and preservation of jumps in the data. In the spirit of recent work by Brezis et al., our formulation also has analytic implications: for a suitable choice of weights it can be shown to converge to classical second-order regularizers, and in fact it allows a novel characterization of higher-order Sobolev and BV spaces.

References

[1]
L. Ambrosio, N. Fusco, and D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems, Oxford University Press, New York, 2000.
[2]
G. Aubert and P. Kornprobst, Can the nonlocal characterization of Sobolev spaces by Bourgain et al. be useful for solving variational problems?, SIAM J. Numer. Anal., 47 (2009), pp. 844--860.
[3]
J. Bourgain, H. Brezis, and P. Mironescu, Another look at Sobolev spaces, in Optimal Control and Partial Differential Equations: A Volume in Honour of A. Bensoussan's 60th Birthday, IOS Press, Amsterdam, 2001, pp. 439--455.
[4]
A. Buades, B. Coll, and J. M. Morel, A review of image denoising algorithms, with a new one, Multiscale Model. Simul., 4 (2005), pp. 490--530.
[5]
A. Bertozzi, S. Esedoḡlu, and A. Gillette, Analysis of a two-scale Cahn--Hilliard model for binary image inpainting, Multiscale Model. Simul., 6 (2007), pp. 913--936.
[6]
M. Bergounioux, Mathematical analysis of a inf-convolution model for image processing, J. Optim. Theory Appl., DOI http://link.springer.com/article/10.1007/s10957-015-0734-8\#/page-110.1007/s10957-015-0734-8\#, 2015.
[7]
A. L. Bertozzi and J. B. Greer, Low-curvature image simplifiers: Global regularity of smooth solutions and Laplacian limiting schemes, Comm. Pure Appl. Math., 57 (2004), pp. 764--790.
[8]
M. Burger, L. He, and C.-B. Schönlieb, Cahn--Hilliard inpainting and a generalization for grayvalue images, SIAM J. Imaging Sci., 2 (2009), pp. 1129--1167.
[9]
K. Bredies, K. Kunisch, and T. Pock, Total generalized variation, SIAM J. Imaging Sci., 3 (2010), pp. 492--526.
[10]
M. Bergounioux and L. Piffet, A second-order model for image denoising, Set-Valued Var. Anal., 18 (2010), pp. 277--306.
[11]
A. Braides, $\Gamma$-Convergence for Beginners, Oxford Lecture Ser. Math. Appl. 22, Oxford University Press, Oxford, UK, 2002.
[12]
H. Brezis, Analyse fonctionelle, Vol. 5, Masson, Paris, 1983.
[13]
K. Bredies and T. Valkonen, Inverse problems with second-order total generalized variation constraints, in Proceedings of SampTA 2011: 9th International Conference on Sampling Theory and Applications, Singapore, 2011.
[14]
T. F. Chan, S. Esedoglu, and F. E. Park, Image decomposition combining staircase reduction and texture extraction, J. Vis. Commun. Image R., 18 (2007), pp. 464--486.
[15]
T. F. Chan, S. H. Kang, and J. Shen, Euler's elastica and curvature-based inpainting, SIAM J. Appl. Math., 63 (2002), pp. 564--592.
[16]
A. Chambolle and P.-L. Lions, Image recovery via total variation minimization and related problems, Numer. Math., 76 (1997), pp. 167--188.
[17]
T. Chan, A. Marquina, and P. Mulet, High-order total variation-based image restoration, SIAM J. Sci. Comput., 22 (2000), pp. 503--516.
[18]
T. F. Chan and J. Shen, Nontexture inpainting by curvature-driven diffusions, J. Vis. Commun. Image R., 12 (2001), pp. 436--449.
[19]
F. Demengel, Fonctions à Hessien borné, Ann. Inst. Fourier (Grenoble), 34 (1984), pp. 155--190.
[20]
G. Dal Maso, Introduction to $\Gamma$-Convergence, Birkhäuser, Boston, 1993.
[21]
S. Didas, J. Weickert, and B. Burgeth, Properties of higher order nonlinear diffusion filtering, J. Math. Imaging Vision, 35 (2009), pp. 208--226.
[22]
G. Gilboa and S. Osher, Nonlocal operators with applications to image processing, Multiscale Model. Simul., 7 (2008), pp. 1005--1028.
[23]
W. Hinterberger and O. Scherzer, Variational methods on the space of functions of bounded Hessian for convexification and denoising, Computing, 76 (2006), pp. 109--133.
[24]
S. Kindermann, S. Osher, and P. W. Jones, Deblurring and denoising of images by nonlocal functionals, Multiscale Model. Simul., 4 (2005), pp. 1091--1115.
[25]
F. Lenzen, F. Becker, and J. Lellmann, Adaptive second-order total variation: An approach aware of slope discontinuities, in Scale Space and Variational Methods in Computer Vision, Lecture Notes in Comput. Sci. 7893, Springer, Berlin, Heidelberg, 2013, pp. 61--73.
[26]
S. Lefkimmiatis, A. Bourquard, and M. Unser, Hessian-based norm regularization for image restoration with biomedical applications, IEEE Trans. Image Process., 21 (2012), pp. 983--995.
[27]
R. Lerallut, E. Decencière, and F. Meyer, Image filtering using morphological amoebas, Image Vis. Comput., 25 (2007), pp. 395--404.
[28]
M. Lysaker, A. Lundervold, and X. C. Tai, Noise removal using fourth-order partial differential equation with applications to medical magnetic resonance images in space and time, IEEE Trans. Image Process., 12 (2003), pp. 1579--1590.
[29]
G. Leoni and D. Spector, Characterization of Sobolev and BV spaces, J. Funct. Anal., 261 (2011), pp. 2926--2958.
[30]
G. Leoni and D. Spector, Corrigendum to “Characterization of Sobolev and BV spaces," [J. Funct. Anal., 261 (2011), pp. 2926--2958], J. Funct. Anal., 266 (2014), pp. 1106--1114.
[31]
M. Lysaker and X. C. Tai, Iterative image restoration combining total variation minimization and a second-order functional, Int. J. Comput. Vis., 66 (2006), pp. 5--18.
[32]
R. Lai, X.-C. Tai, and T. F. Chan, A ridge and corner preserving model for surface restoration, SIAM J. Sci. Comput., 35 (2013), pp. A675--A695.
[33]
T. Mengesha, Nonlocal Korn-type characterization of Sobolev vector fields, Commun. Contemp. Math., 14 (2012), 1250028.
[34]
S. Masnou and J. M. Morel, Level lines based disocclusion, in Proceedings of the IEEE International Conference on Image Processing, 1998, pp. 259--263.
[35]
T. Mengesha and D. Spector, Localization of nonlocal gradients in various topologies, Calc. Var. Partial Differential Equations, 52 (2015), pp. 253--279.
[36]
L. Nirenberg, On elliptic partial differential equations, Ann. Scuola Norm. Sup. Pisa (3), 13 (1959), pp. 115--162.
[37]
S. Osher and R. Fedkiw, Level Set Methods and Dynamic Implicit Surfaces, Springer, New York, 2003.
[38]
K. Papafitsoros and K. Bredies, A study of the one dimensional total generalised variation regularisation problem, Inverse Probl. Imaging, 9 (2015), pp. 511--550.
[39]
A. C. Ponce, An estimate in the spirit of Poincaré's inequality, J. Eur. Math. Soc. (JEMS), 6 (2004), pp. 1--15.
[40]
A. C. Ponce, A new approach to Sobolev spaces and connections to $\Gamma$-convergence, Calc. Var. Partial Differential Equations, 19 (2004), pp. 229--255.
[41]
C. Pöschl and O. Scherzer, Characterization of minimizers of convex regularization functionals, in Frames and Operator Theory in Analysis and Signal Processing, Contemp. Math. 451, AMS, Providence, RI, 2008, pp. 219--248.
[42]
C. Pöschl and O. Scherzer, Exact solutions of one-dimensional total generalized variation, Commun. Math. Sci., 13 (2015), pp. 171--202.
[43]
K. Papafitsoros and C. B. Schönlieb, A combined first and second order variational approach for image reconstruction, J. Math. Imaging Vision, 48 (2014), pp. 308--338.
[44]
K. Papafitsoros, C. B. Schönlieb, and B. Sengul, Combined first and second order total variation inpainting using split Bregman, Image Processing On Line, 2013 (2013), pp. 112--136.
[45]
R. Ranftl, K. Bredies, and T. Pock, Non-local total generalized variation for optical flow estimation, in Proceedings of the International Conference on Computer Vision and Applications, Springer, Berlin, 2014, pp. 439--454.
[46]
W. Ring, Structural properties of solutions to total variation regularization problems, ESAIM Math. Model. Numer. Anal., 34 (2000), pp. 799--810.
[47]
L. I. Rudin, S. Osher, and E. Fatemi, Nonlinear total variation based noise removal algorithms, Phys. D, 60 (1992), pp. 259--268.
[48]
O. Scherzer, Denoising with higher order derivatives of bounded variation and an application to parameter estimation, Computing, 60 (1998), pp. 1--27.
[49]
J. A. Sethian, Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science, Cambridge Monogr. Appl. Comput. Math. 3, Cambridge University Press, Cambridge, UK, 1999.
[50]
S. Setzer and G. Steidl, Variational methods with higher order derivatives in image processing, in Approximation Theory XII: San Antonio 2007, Nashboro Press, Brentwood, TN, 2008, pp. 360--385.
[51]
T. Shieh and D. Spector, On a new class of fractional partial differential equations, Adv. Calc. Var., to appear; available online from \burlhttp://dx.doi.org/10.1515/acv-2014-0009.
[52]
S. Setzer, G. Steidl, and T. Teuber, Infimal convolution regularizations with discrete $\ell_1$-type functionals, Commun. Math. Sci., 9 (2011), pp. 797--872.
[53]
Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, Image quality assessment: From error visibility to structural similarity, IEEE Trans. Image Process., 13 (2004), pp. 600--612.
[54]
M. Welk, M. Breuß, and O. Vogel, Morphological amoebas are self-snakes, J. Math. Imaging Vision, 39 (2011), pp. 87--99.
[55]
M. Welk, Amoeba active contours, in Scale Space and Variational Methods in Computer Vision, Lecture Notes in Comput. Sci. 6667, Springer, Berlin, 2012, pp. 374--385.

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image SIAM Journal on Imaging Sciences
SIAM Journal on Imaging Sciences  Volume 8, Issue 4
EISSN:1936-4954
DOI:10.1137/sjisbi.8.4
Issue’s Table of Contents

Publisher

Society for Industrial and Applied Mathematics

United States

Publication History

Published: 01 January 2015

Author Tags

  1. nonlocal Hessian
  2. nonlocal total variation regularization
  3. variational methods
  4. fast marching method
  5. amoeba filters

Author Tags

  1. 65D18
  2. 68U10
  3. 94A08
  4. 35A15
  5. 49J40
  6. 49Q20
  7. 26B30
  8. 26B35
  9. 46E35

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 0
    Total Downloads
  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 27 Jan 2025

Other Metrics

Citations

View Options

View options

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media