Abstract
We deal with a second-order image decomposition model to perform denoising and texture extraction that was previously presented. We look for the decomposition of an image as the summation of three different order terms. For highly textured images, the model gives a two-scale texture decomposition: The first-order term can be viewed as a macro-texture (larger scale) which oscillations are not too large, and the zero-order term is the micro-texture (very oscillating) that contains the noise. Here, we perform mathematical analysis of the model and give qualitative properties of solutions using the dual problem and inf-convolution formulation.
Similar content being viewed by others
References
Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Phys. D 60, 259–268 (1992)
Ambrosio, L., Fusco, N., Pallara, D.: Functions of Bounded Variation and Free Discontinuity Problems. Oxford Mathematical Monographs. The Clarendon Press Oxford University Press, New York (2000)
Attouch, H., Buttazzo, G., Michaille, G.: Variational analysis in Sobolev and BV spaces, volume 6 of MPS/SIAM Series on Optimization. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA. Applications to PDEs and optimization (2006)
Evans, L.C., Gariepy, R.: Measure Theory and Fine Properties of Functions. CRC Press, Boca Raton (1992)
Aubert, G., Aujol, J.-F.: Modeling very oscillating signals. Application to image processing. Appl. Math. Optim. 51(2), 163–182 (2005)
Aujol, J.-F., Aubert, G., Blanc-Féraud, L., Chambolle, A.: Image decomposition into a bounded variation component and an oscillating component. J. Math. Imaging Vision 22(1), 71–88 (2005)
Osher, S., Sole, A., Vese, L.: Image decomposition and restoration using total variation minimization and the h\(^1\) norm. SIAM J. Multiscale Model. Simul. 1(3), 349–370 (2003)
Osher, S., Vese, L.: Modeling textures with total variation minimization and oscillating patterns in image processing. J. Sci. Comput. 19(1–3), 553–572 (2003)
Osher, S., Vese, L.: Image denoising and decomposition with total variation minimization and oscillatory functions. Special issue on mathematics and image analysis. J. Math. Imaging Vision 20(1–2), 7–18 (2004)
Yin, W., Goldfarb, D., Osher, S.: A comparison of three total variation based texture extraction models. J. Vis. Commun. Image 18, 240–252 (2007)
Bergounioux, M., Piffet, L.: A second-order model for image denoising. Set-Valued Var. Anal. 18(3–4), 277–306 (2010)
Bergounioux, M., Piffet, L.: A full second order variational model for multiscale texture analysis. Comput. Optim. Appl. 54, 215–237 (2013)
Demengel, F.: Fonctions à hessien borné. Annales de l’institut Fourier 34(2), 155–190 (1984)
Bergounioux, M.: On poincaré-wirtinger inequalities in bv - spaces. Control Cybern 4(40), 921–929 (2011)
Bredies, K., Kunisch, K., Pock, T.: Total generalized variation. SIAM J. Imaging Sci. 3(3), 492–526 (2010)
Bredies, K., Kunisch, K., Valkonen, T.: Properties of \(l^1\)-\({\rm tgv}^2\): the one-dimensional case. J. Math. Anal. Appl. 398(1), 438–454 (2013)
Bredies, K., Holler, M.: Regularization of linear inverse problems with total generalized variation. J. Inverse Ill Probl. 22(6), 871–913 (2014)
Ambrosio, L., Faina, L., March, R.: Variational approximation of a second order free discontinuity problem in computer vision. SIAM J. Math. Anal. 32(6), 1171–1197 (2001)
Carriero, M., Leaci, A., Tomarelli, F.: Uniform density estimates for the blake & zisserman functional. Discrete Contin. Dyn. Syst. 31(4), 1129–1150 (2011)
Carriero, M., Leaci, A., Tomarelli, F.: Free gradient discontinuity and image inpainting. J. Math. Sci. 181(6), 805–819 (2012)
Meyer, Y.: Oscillating Patterns in Image Processing and Nonlinear Evolution Equations, volume 22 of University Lecture Series. AMS, (2001)
Chambolle, A., Lions, P.-L.: Image recovery via total variation minimization and related problems. Numer. Math. 76, 167–188 (1997)
Aubert, G., Kornprobst, P.: Mathematical Problems in Image Processing, Partial Differential Equations and the Calculus of Variations, volume 147 of Applied Mathematical Sciences. Springer, Berlin (2006)
Ziemer, W.P.: Weakly Differentiable Functions - Sobolev Space and Functions of Bounded Variation. Springer, Berlin (1980)
Carriero, M., Leaci, A., Tomarelli, F.: Special bounded hessian and elastic-plastic plate. Rend. Ac. Naz. Sci. XV I(13), 223–258 (1992)
Moreau, J.-J.: Inf-convolution des fonctions numériques sur un espace vectoriel. C. R. Acad. Sci. Paris 256, 50475049 (1963)
Hiriart-Urruty, J.-B., Phelps, R.R.: Subdifferential calculus using \(\varepsilon \) -subdifferentials. J. Funct. Anal 118, 150–166 (1993)
Ekeland, I., Temam, R.: Convex analysis and variational problems. In: Classics in Applied Mathematics, vol. 1. Society for Industrial and Applied Mathematics (1999)
Chambolle, A.: An algorithm for total variation minimization and applications. J.Math. Imaging Vis. 20, 89–97 (2004)
Caselles, V., Chambolle, A., Novaga, M.: The discontinuity set of solutions of the tv denoising problem and some extensions. SIAM Multiscale Model. Simul. 6(3), 879–894 (2007)
Bergounioux, M.: Inf-convolution model : numerical experiment. Technical report, hal.archives-ouvertes.fr/hal-01002958v2, (2014)
Ring, W.: Structural properties of solutions of total variation regularization problems. ESAIM Math Model. Numer. Anal. 34, 799–840 (2000)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Bergounioux, M. Mathematical Analysis of a Inf-Convolution Model for Image Processing. J Optim Theory Appl 168, 1–21 (2016). https://doi.org/10.1007/s10957-015-0734-8
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10957-015-0734-8