[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
research-article

Microprocessor Aging Analysis and Reliability Modeling Due to Back-End Wearout Mechanisms

Published: 01 October 2015 Publication History

Abstract

Back-end wearout mechanisms are major reliability concerns for modern microprocessors. In this paper, a framework that contains modules for back-end time-dependent dielectric breakdown, electromigration, and stress-induced voiding is proposed to analyze circuit layout geometries and interconnects to estimate state-of-the-art microprocessor lifetime due to each mechanism. Our methodology incorporates the detailed electrical stress temperature, linewidth, and cross-sectional areas of each interconnect/via within the microprocessor system. Different workloads are considered to evaluate aging effects in single-core microprocessors running applications with realistic use conditions.

References

[1]
R. Kwasnick, A. E. Papathanasiu, M. Reilly, A. Rashid, B. Zaknoon, and J. Falk, “Determination of CPU use conditions,” in Proc. IEEE Int. Rel. Phys. Symp., Apr. 2011, pp. 2C.3.1–2C.3.6.
[2]
J. Srinivasan, S. V. Adve, P. Bose, and J. A. Rivers, “Lifetime reliability: Toward an architectural solution,” IEEE Micro, vol. 25, no. 3, pp. 70–80, May/Jun. 2005.
[3]
E. Karl, D. Blaauw, D. Sylvester, and T. Mudge, “Multi-mechanism reliability modeling and management in dynamic systems,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 16, no. 4, pp. 476–487, Apr. 2008.
[4]
Y. Xiang, T. Chantem, R. P. Dick, X. S. Hu, and L. Shang, “System-level reliability modeling for MPSoCs,” in Proc. IEEE Int. Conf. Hardw./Softw. Codesign Syst. Synth., Oct. 2010, pp. 297–306.
[5]
C.-C. Chen and L. Milor, “System-level modeling and microprocessor reliability analysis for backend wearout mechanisms,” in Proc. Design, Autom. Test Eur. Conf. Exhibit., Mar. 2013, pp. 1615–1620.
[6]
L. Milor and C. Hong, “Area scaling for backend dielectric breakdown,” IEEE Trans. Semicond. Manuf., vol. 23, no. 3, pp. 429–441, Aug. 2010.
[7]
W. R. Hunter, “The analysis of oxide reliability data,” in Proc. IEEE Int. Integr. Rel. Workshop Final Rep., Oct. 1998, pp. 114–134.
[8]
C.-C. Chen, M. Bashir, L. Milor, D. H. Kim, and S. K. Lim, “Backend dielectric chip reliability simulator for complex interconnect geometries,” in Proc. IEEE Int. Rel. Phys. Symp., Apr. 2012, pp. BD.4.1–BD.4.8.
[9]
M. M. Bashir, C.-C. Chen, L. Milor, D. H. Kim, and S. K. Lim, “Backend dielectric reliability full chip simulator,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 22, no. 8, pp. 1750–1762, Aug. 2014.
[10]
M. Bashir, D. H. Kim, K. Athikulwongse, S. K. Lim, and L. Milor, “Backend low-k TDDB chip reliability simulator,” in Proc. IEEE Int. Rel. Phys. Symp., Apr. 2011, pp. 2C.2.1–2C.2.10.
[11]
G. S. Haase and J. W. McPherson, “Modeling of interconnect dielectric lifetime under stress conditions and new extrapolation methodologies for time-dependent dielectric breakdown,” in Proc. 45th Annu. IEEE Int. Rel. Phys. Symp., Apr. 2007, pp. 390–398.
[12]
J. Kim, E. T. Ogawa, and J. W. McPherson, “Time dependent dielectric breakdown characteristics of low-k dielectric (SiOC) over a wide range of test areas and electric fields,” in Proc. 45th Annu. IEEE Int. Rel. Phys. Symp., Apr. 2007, pp. 399–404.
[13]
F. Chen et al., “A comprehensive study of low-k SiCOH TDDB phenomena and its reliability lifetime model development,” in Proc. 44th Annu. IEEE Int. Rel. Phys. Symp., Mar. 2006, pp. 46–53.
[14]
F. Chen, D. Harmon, M. Shinosky, J. Aitken, and O. Bravo, “Cu/low-k dielectric TDDB reliability issues for advanced CMOS technologies,” Microelectron. Rel., vol. 48, nos. 8–9, pp. 1375–1383, Aug. 2008.
[15]
X. Li, J. Qin, and J. B. Bernstein, “Compact modeling of MOSFET wearout mechanisms for circuit-reliability simulation,” IEEE Trans. Device Mater. Rel., vol. 8, no. 1, pp. 98–121, Mar. 2008.
[16]
K.-Y. Yiang, H. W. Yao, and A. Marathe, “TDDB kinetics and their relationship with the E- and $\surd $ E-models,” in Proc. Int. Interconnect Technol. Conf., 2008, pp. 168–170.
[17]
M. Bashir, L. Milor, D. H. Kim, and S. K. Lim, “Methodology to determine the impact of linewidth variation on chip scale copper/low-k backend dielectric breakdown,” Microelectron. Rel., vol. 50, nos. 9–11, pp. 1341–1346, Sep./Nov. 2010.
[18]
M. Bashir and L. Milor, “Towards a chip level reliability simulator for copper/low-k backend processes,” in Proc. Design, Autom. Test Eur. Conf. Exhibit., 2010, pp. 279–282.
[19]
F. Lacopi, Z. Tokei, M. Stucchi, F. Lanckmans, and K. Maex, “Diffusion barrier integrity and electrical performance of Cu/porous dielectric damascene lines,” IEEE Electron Device Lett., vol. 24, no. 3, pp. 147–149, Mar. 2003.
[20]
V. L. Lo, K. L. Pey, C. H. Tung, and D. S. Ang, “A critical gate voltage triggering irreversible gate dielectric degradation,” in Proc. 45th Annu. IEEE Int. Rel. Phys. Symp., Apr. 2007, pp. 576–577.
[21]
R. W. I. de Boer, N. N. Iosad, A. F. Stassen, T. M. Klapwijk, and A. F. Morpurgo, “Influence of the gate leakage current on the stability of organic single-crystal field-effect transistors,” Appl. Phys. Lett., vol. 86, no. 3, pp. 032103-1–032103-3, Jan. 2005.
[22]
T. K. S. Wong, “Time dependent dielectric breakdown in copper low-k interconnects: Mechanisms and reliability models,” Materials, vol. 5, no. 9, pp. 1602–1625, 2012.
[23]
Mibench Benchmark. [Online]. Available: http://www.eecs.umich.edu/mibench/, accessed Dec. 2001.
[24]
E. T. Ogawa, K.-D. Lee, V. A. Blaschke, and P. S. Ho, “Electromigration reliability issues in dual-damascene Cu interconnections,” IEEE Trans. Rel., vol. 51, no. 4, pp. 403–419, Dec. 2002.
[25]
A. S. Oates, F. Nkansah, and S. Chittipeddi, “Electromigration-induced drift failure of via contacts in multilevel metallization,” J. Appl. Phys., vol. 72, no. 6, pp. 2227–2231, Sep. 1992.
[26]
Z.-S. Choi, R. Monig, and C. V. Thompson, “Activation energy and prefactor for surface electromigration and void drift in Cu interconnects,” J. Appl. Phys., vol. 102, no. 8, pp. 083509-1–083509-4, 2007.
[27]
R. L. de Orio, H. Ceric, and S. Selberherr, “A compact model for early electromigration lifetime estimation,” in Proc. Int. Conf. Simulation Semicond. Process. Devices, 2011, pp. 23–26.
[28]
A. S. Oates and M. H. Lin, “Electromigration failure distributions of Cu/low-k dual-damascene vias: Impact of the critical current density and a new reliability extrapolation methodology,” IEEE Trans. Device Mater. Rel., vol. 9, no. 2, pp. 244–254, Jun. 2009.
[29]
R. R. Morusupalli, W. D. Nix, and J. R. Patel, “Comparison of line stress predictions with measured electromigration failure times,” in Proc. IEEE Int. Integr. Rel. Workshop Final Rep., Oct. 2007, pp. 124–127.
[31]
H. W. Yao, K.-Y. Yiang, P. Justison, M. Rayasam, O. Aubel, and J. Poppe, “Stress migration model for Cu interconnect reliability analysis,” J. Appl. Phys., vol. 110, no. 7, pp. 073504-1–073504-5, 2011.
[32]
C. M. Tan and Y. Hou, “Lifetime modeling for stress-induced voiding in integrated circuit interconnections,” Appl. Phys. Lett., vol. 91, no. 6, pp. 061904-1–061904-3, Aug. 2007.
[33]
[34]
PrimeTime Power Modeling Tool. [Online]. Available: http://www.synopsys.com/Tools/Implementation/SignOff/PrimeTime/Pages/default.aspx, accessed Jun. 2006.
[35]
HotSpot Temperature Modeling Tool. [Online]. Available: http://lava.cs.virginia.edu/HotSpot, accessed Mar. 2004.
[37]
J. Draper, J. Sondeen, S. Mediratta, and I. Kim, “Implementation of a 32-bit RISC processor for the data-intensive architecture processing-in-memory chip,” in Proc. IEEE Int. Conf. Appl.-Specific Syst., Archit. Process., Jul. 2002, pp. 163–172.
[38]
B. Kaczer, R. Degraeve, M. Rasras, K. Van de Mieroop, P. J. Roussee, and G. Groeseneken, “Impact of MOSFET gate oxide breakdown on digital circuit operation and reliability,” IEEE Trans. Electron Devices, vol. 49, no. 3, pp. 500–506, Mar. 2002.
[39]
C.-C. Chen, T. Liu, S. Cha, and L. Milor, “System-level modeling of microprocessor reliability degradation due to BTI and HCI,” in Proc. IEEE Int. Rel. Phys. Symp., Jun. 2014, pp. CA.8.1–CA.8.9.
[40]
S. Che et al., “Rodinia: A benchmark suite for heterogeneous computing,” in Proc. IEEE Int. Symp. Workload Characterization, Oct. 2009, pp. 44–54.
[41]
A. Hocquenghem, “Codes correcteurs d’erreurs,” Chiffres, vol. 2, pp. 147–156, Sep. 1959.
[42]
R. C. Bose and D. K. Ray-Chaudhuri, “On a class of error correcting binary group codes,” Inf. Control, vol. 3, no. 1, pp. 68–79, Mar. 1960.

Cited By

View all
  • (2019)Machine Learning for Detection of Competing Wearout Mechanisms2019 IEEE International Reliability Physics Symposium (IRPS)10.1109/IRPS.2019.8720533(1-9)Online publication date: 31-Mar-2019

Index Terms

  1. Microprocessor Aging Analysis and Reliability Modeling Due to Back-End Wearout Mechanisms
            Index terms have been assigned to the content through auto-classification.

            Recommendations

            Comments

            Please enable JavaScript to view thecomments powered by Disqus.

            Information & Contributors

            Information

            Published In

            cover image IEEE Transactions on Very Large Scale Integration (VLSI) Systems
            IEEE Transactions on Very Large Scale Integration (VLSI) Systems  Volume 23, Issue 10
            Oct. 2015
            384 pages

            Publisher

            IEEE Educational Activities Department

            United States

            Publication History

            Published: 01 October 2015

            Author Tags

            1. wearout
            2. Aging
            3. electromigration (EM)
            4. microprocessor reliability
            5. stress migration
            6. stress-induced voiding (SIV)
            7. time-dependent back-end dielectric breakdown (BTDDB)

            Qualifiers

            • Research-article

            Contributors

            Other Metrics

            Bibliometrics & Citations

            Bibliometrics

            Article Metrics

            • Downloads (Last 12 months)0
            • Downloads (Last 6 weeks)0
            Reflects downloads up to 20 Dec 2024

            Other Metrics

            Citations

            Cited By

            View all
            • (2019)Machine Learning for Detection of Competing Wearout Mechanisms2019 IEEE International Reliability Physics Symposium (IRPS)10.1109/IRPS.2019.8720533(1-9)Online publication date: 31-Mar-2019

            View Options

            View options

            Media

            Figures

            Other

            Tables

            Share

            Share

            Share this Publication link

            Share on social media