[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
research-article

Heterogeneous NEMS-CMOS DCM Buck Regulator for Improved Area and Enhanced Power Efficiency

Published: 01 January 2015 Publication History

Abstract

In CMOS switches, the input signal modulates the on-channel resistance for a constant gate voltage. This necessitates over design of CMOS switches. Also, further CMOS scaling in the nanometer regime has failed to improve energy efficiency due to increasing leakage energy. Looking beyond CMOS, nanoelectromechanical (NEM) relays are a promising class of emerging devices that exhibit energy-efficient switching and zero leakage operation. Ron of the NEM relay switch is constant and is insensitive to the gate slew rate. This creates a paradigm shift in design of power switches. This coupled with infinite Roff offers significant area and power advantages over CMOS. Numerous end applications of NEM relay logic circuits have been proposed recently, including digital logic and memory. NEMS-based miniature switches form an interesting alternative in power management integrated circuits, the area of which is primarily dominated by CMOS power transistors. This study explores discontinuous-conduction mode buck regulator with specifications suitable for portable applications using a NEMS-CMOS hybrid design, and the results are compared against a standard commercial 0.35-μm CMOS implementation. The electromechanical model has been developed for a suspended gate relay operating at 1 V with a nominal air gap of 5-10 nm published in the literature. The model accounts for the mechanical, electrical, and dispersion effects in the relay. This study shows that NEMS-CMOS hybrid dc-dc converter has an area savings of 60% over CMOS and achieves an overall higher efficiency over CMOS, with a peak efficiency of 94.3% at 100 mA.

References

[1]
H. Fariborzi, F. Chen, V. Stojanovic, R. Nathanael, J. Jeon, and T.-J. K. Liu, “Design and demonstration of micro-electro-mechanical relay multipliers,” in Proc. IEEE Asian Solid State Circuits Conf., Nov. 2011, pp. 117 –120.
[2]
H. Dadgour and K. Banerjee, “Hybrid NEMS-CMOS integrated circuits: A novel strategy for energy-efficient designs,” Comput. Digital Techn., IET, vol. 3, no. 6, pp. 117–608, Nov. 2009.
[3]
M. Spencer, F. Chen, C. Wang, R. Nathanael, H. Fariborzi, A. Gupta, H. Kam, V. Pott, J. Jeon, L. Tsu-Jae King, D. Markovic, E. Alon, and V. Stojanovic, “Demonstration of integrated micro-electro-mechanical relay circuits for VLSI applications,” IEEE J. Solid-State Circuits, vol. 46, no. 1, pp. 117–320, Jan. 2011.
[4]
S. Chong, K. Akarvardar, R. Parsa, J.-B. Yoon, R. Howe, S. Mitra, and H.-S. Wong, “Nanoelectromechanical (NEM) relays integrated with CMOS SRAM for improved stability and low leakage,” in Proc. IEEE/ACM Int. Conf. Comput.-Aided Design, Nov. 2009, pp. 117 –484.
[5]
F. Chen, H. Kam, D. Markovic, T.-J. K. Liu, V. Stojanovic, and E. Alon, “Integrated circuit design with NEM relays,” in Proc. IEEE/ACM Int. Conf. Comput.-Aided Design, Nov. 2008, pp. 117 –757.
[6]
J. Jang, S. Cha, Y. Choi, T. Butler, D. Kang, D. Hasko, J. Jung, J. Kim, and G. Amaratunga, “Nanoelectromechanical DRAM for ultra-large-scale integration (ULSI),” in Proc. IEEE Int. Electron. Devices Meet., Dec. 2005, pp. 261–264.
[7]
E. Dujardin, V. Derycke, M. F. Goffman, R. Lefevre, and J. P. Bourgoin, “Self-assembled switches based on electroactuated multiwalled nanotubes,” Appl. Phys. Lett., vol. 87, no. 19, pp. 193107-1–193107-3, Nov. 2005.
[8]
R. Venkatasubramanian, S. Manohar, and P. Balsara, “ Ultra low power high efficiency charge pump design using NEM relays,” in Proc. IEEE Int. Midwest Symp. Circuits Syst., Aug. 2011, pp. 117 –4.
[9]
A. Stratakos, High-Efficiency Low-Voltage DC-DC Conversion for Portable Applications. Berkeley, CA, USA: Electrical Engineering and Computer Sciences)—Univ. California, 1998.
[10]
S. Manohar, R. Venkatasubramanian, and P. Balsara, “ Hybrid NEMS-CMOS DC-DC converter for improved area and power efficiency,” in Proc. 25th Int. Conf. VLSI Design,, Jan. 2012, pp. 221 –226.
[11]
H. Fariborzi, M. Spencer, V. Karkare, J. Jeon, R. Nathanael, C. Wang, F. Chen, H. Kam, V. Pott, T.-J. K. Liu, E. Alon, V. Stojanovic, and D. Markovic, “Analysis and demonstration of MEM-relay power gating,” in Proc. IEEE Custom Integr. Circuits Conf., Sep. 2010, pp. 117 –4.
[12]
C. Chen, R. Parsa, N. Patil, S. Chong, K. Akarvardar, J. Provine, D. Lewis, J. Watt, R. T. Howe, H.-S. P. Wong, and S. Mitra, “ Efficient FPGAs using nanoelectromechanical relays,” in Proc. 18th Annu. ACM/SIGDA Int. Symp. Field Programmable Gate Arrays, New York, NY, USA, 2010, pp. 273–282.
[14]
U. Kang, H.-J. Chung, S. Heo, D.-H. Park, H. Lee, J. H. Kim, S.-H. Ahn, S.-H. Cha, J. Ahn, D. Kwon, J.-W. Lee, H.-S. Joo, W.-S. Kim, D. H. Jang, N. S. Kim, J.-H. Choi, T.-G. Chung, J.-H. Yoo, J. S. Choi, C. Kim, and Y.-H. Jun, “ 8 Gb 3-D DDR3 DRAM using through-silicon-via technology,” IEEE J. Solid-State Circuits, vol. 45, no. 1, pp. 117–119, Jan. 2010.
[15]
D. M. Jang, C. Ryu, K. Y. Lee, B. H. Cho, J. Kim, T. S. Oh, W. J. Lee, and J. Yu, “Development and evaluation of 3-D SiP with vertically interconnected through silicon vias (TSV),” in Proc. Electron. Compon. Technol. Conf. , Jun. 2007, pp. 117–852.
[16]
A. Abo and P. Gray, “ A 1.5-V, 10-bit, 14.3-MS/s CMOS pipeline analog-to-digital converter,” IEEE J. Solid-State Circuits, vol. 34, no. 5, pp. 117– 606, May. 1999.
[17]
R. Soroush, A. Koochi, A. S. Kazemi, A. Noghrehabadi, H. Haddadpour, and M. Abadyan, “Investigating the effect of Casimir and van der Waals attractions on the electrostatic pull-in instability of nano-actuators,” Phys. Scripta, vol. 82, no. 4, p. 045801, 2010.
[18]
R. Maboudian and R. T. Howe, “Critical Review: Adhesion in surface micromechanical structures,” J. Vacuum Sci. Technol. B, Microelectron. Nanometer Struct., vol. 15, no. 1, pp. 117–20, Jan. 1997.
[19]
A. Ramezani, A. Alasty, and J. Akbari, “ Influence of van der Waals force on the pull-in parameters of cantilever type nanoscale electrostatic actuators,” Microsyst. Technol., vol. 12, pp. 117–1161, 2006.
[20]
C. Basso, Switch-Mode Power Supply Spice Cookbook. New York, NY, USA: McGraw-Hill Education, 2001.
[21]
H. Lee and S.-R. Ryu, “ An efficiency-enhanced DCM buck regulator with improved switching timing of power transistors,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 57, no. 3, pp. 117–242, Mar. 2010.
[22]
J.-M. Liu, P.-Y. Wang, and T.-H. Kuo, “A current-mode DC-DC buck converter with efficiency-optimized frequency control and reconfigurable compensation,” IEEE Trans. Power Electron., vol. 27, no. 2, pp. 117–880, Feb. 2012.
[23]
Y. Cao, Predictive Technology Model for Robust Nanoelectronic Design(Integrated Circuits and Systems Series). New York, NY, USA: Springer, 2011.
[24]
S. Lee, S. Jung, C. Park, C.-T. Rim, and G.-H. Cho, “Accurate dead-time control for synchronous buck converter with fast error sensing circuits,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 60, no. 11, pp. 117–3089, Nov. 2013.
[25]
T. Man, P. Mok, and M. Chan, “An auto-selectable-frequency pulse-width modulator for buck converters with improved light-load efficiency,” in Proc. IEEE Int. Solid-State Circuits Conf., Dig. Tech. Papers, Feb. 2008, pp. 117–626.
[26]
S. Manohar and P. Balsara, “94.6% peak efficiency DCM buck converter with fast adaptive dead-time control,” in Proc. ESSCIRC Conf., Sep. 2013, pp. 117 –156.
[27]
W. Yan, C. Pi, W. Li, and R. Liu, “Dynamic dead-time controller for synchronous buck DC-DC converters,” Electron. Lett., vol. 46, no. 2, pp. 117–165, Jan. 2010.
[28]
R. Venkatasubramanian, S. Manohar, and P. Balsara, “ Improving performance of NEM relay logic circuits using integrated charge-boosting flip flop,” in Proc. IEEE/ACM Nanoscale Archit., Int. Symp., Jun. 2011, pp. 117–44.
[29]
R. Venkatasubramanian, S. Manohar, and P. Balsara, “ NEM relay-based sequential logic circuits for low-power design,” IEEE Trans. Nanotechnol., vol. 12, no. 3, pp. 117–398, May. 2013.
[30]
R. Nathanael, V. Pott, H. Kam, J. Jeon, E. Alon, and T.-J. Liu, “ Four-Terminal-Relay body-biasing schemes for complementary logic circuits,” IEEE Electron. Device Lett., vol. 31, no. 8, pp. 117 –892, Aug. 2010.

Index Terms

  1. Heterogeneous NEMS-CMOS DCM Buck Regulator for Improved Area and Enhanced Power Efficiency
            Index terms have been assigned to the content through auto-classification.

            Recommendations

            Comments

            Please enable JavaScript to view thecomments powered by Disqus.

            Information & Contributors

            Information

            Published In

            cover image IEEE Transactions on Nanotechnology
            IEEE Transactions on Nanotechnology  Volume 14, Issue 1
            Jan. 2015
            195 pages

            Publisher

            IEEE Press

            Publication History

            Published: 01 January 2015

            Author Tags

            1. NEMS
            2. DC-DC power conversion
            3. hybrid integrated circuits
            4. microelectromechanical devices
            5. MEMS

            Qualifiers

            • Research-article

            Contributors

            Other Metrics

            Bibliometrics & Citations

            Bibliometrics

            Article Metrics

            • 0
              Total Citations
            • 0
              Total Downloads
            • Downloads (Last 12 months)0
            • Downloads (Last 6 weeks)0
            Reflects downloads up to 03 Jan 2025

            Other Metrics

            Citations

            View Options

            View options

            Media

            Figures

            Other

            Tables

            Share

            Share

            Share this Publication link

            Share on social media