[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
research-article

Stable Solutions of Δu+λu=|u|p1u in Strips

Published: 01 December 2020 Publication History

Abstract

This paper is devoted to study the following equation Δu+λu=|u|p1uinΩ, with homogeneous Dirichlet or Neumann boundary conditions where p>1, λ>0, Ω=Rnk×ω, n2, k1, and ω is a smoothly bounded domain of Rk. We prove Liouville-type theorems for C2 solutions which are stable or stable outside a compact set of Ω. We first provide an integral estimate using stability argument which combined with Pohozaev-type identity allow to obtain nonexistence results for p[ps(n),ps(nk)], where ps(n) is the classical Sobolev exponent in dimension n. Also, we establish monotonicity formula to prove the nonexistence of nontrivial solution which is stable or stable outside a compact set of Ω for all p>1.

References

[1]
Bahri A. and Lions P.L.Solutions of superlinear elliptic equations and their Morse indicesCommun. Pure Appl. Math.1992451205-12151177482
[2]
Ben Ayed M., Fourti H., and Selmi A.Harmonic functions with nonlinear Neumann boundary condition and their Morse indicesNonlinear Anal., Real World Appl.20173896-1123670700
[3]
Berestycki H., Capuzzo-Dolcetta I., and Nirenberg L.Superlinear indefinite elliptic problems and nonlinear Liouville theoremsTopol. Methods Nonlinear Anal.19944159-781321809
[4]
Dancer E.N.Finite Morse index solutions of supercritical problemsJ. Reine Angew. Math.2008620213-23324279821158.35013
[5]
Dupaigne L. and Harrabi A.The Lane-Emden equation in stripsProc. R. Soc. Edinb. A201814851-6237493341391.35155
[6]
Esteban M.J.Nonlinear elliptic problems in strip-like domains: symmetry of positive vortex ringsNonlinear Anal.198374365-379696736
[7]
Farina A.On the classification of solutions of the Lane-Emden equation on unbounded domains of RNJ. Math. Pures Appl.200787537-5612322150
[8]
Gidas B. and Spruck J.A priori bounds for positive solutions of nonlinear elliptic equationsCommun. Partial Differ. Equ.19816883-901619749
[9]
Gidas B. and Spruck J.Global and local behavior of positive solutions of nonlinear elliptic equationsCommun. Pure Appl. Math.198134525-598615628
[10]
Harrabi A. and Rahal B.Liouville results for m-Laplace equations in half-space and strips with mixed boundary value conditions and finite Morse indexJ. Dyn. Differ. Equ.20171402.35057
[11]
Harrabi A., Rebhi S., and Selmi A.Solutions of superlinear equations and their Morse indices, IDuke Math. J.199894141-1571635912
[12]
Harrabi A., Rebhi S., and Selmi A.Solutions of superlinear equations and their Morse indices, IIDuke Math. J.199894159-1791635912
[13]
Harrabi A., Ahmadou M., Rebhi S., and Selmi A.A priori estimates for superlinear and subcritical elliptic equations: the Neumann boundary condition caseManuscr. Math.2012137525-5442875291
[14]
Pacard F.Partial regularity for weak solutions of a nonlinear elliptic equationManuscr. Math.1993792161-1721216772
[15]
Pohozaev S.I. Eigenfunctions of Δu+λf(u)=0 Sov. Math. Dokl. 1965 6 1408-1411
[16]
Ramos M., Terracini S., and Troestler C.Superlinear indefinite elliptic problems and Phozaev type identitiesJ. Funct. Anal.1998159596-6281658097
[17]
Selmi A., Harrabi A., and Zaidi C.Nonexistence results on the space or the half space of Δu+λu=|u|p1u via the Morse indexCommun. Pure Appl. Anal.20191437.35341
[18]
Solimini S.Morse index estimates in min-max theoremsManuscr. Math.1989634421-453991264
[19]
Wang X.On the Cauchy problem for reaction–diffusion equationsTrans. Am. Math. Soc.19933372549-5901153016
[20]
Wang X. and Zheng X. Liouville theorem for elliptic equations with mixed boundary valu conditions and finite Morse indices J. Inequal. Appl. 2015 351
[21]
Yu X.Solution of mixed boundary problems and their Morse indicesNonlinear Anal.201496146-1533143808
[22]
Yu X.Liouville theorem for elliptic equations with nonlinear boundary value conditions and finite Morse indicesJ. Math. Anal. Appl.2015421436-4433250488

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Acta Applicandae Mathematicae: an international survey journal on applying mathematics and mathematical applications
Acta Applicandae Mathematicae: an international survey journal on applying mathematics and mathematical applications  Volume 170, Issue 1
Dec 2020
1043 pages

Publisher

Springer-Verlag

Berlin, Heidelberg

Publication History

Published: 01 December 2020
Accepted: 03 June 2020
Received: 18 June 2019

Author Tags

  1. Elliptic equation
  2. Liouville type theorems
  3. Stable solutions
  4. Monotonicity

Author Tags

  1. 35J60
  2. 35J65
  3. 58E05

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 0
    Total Downloads
  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 20 Dec 2024

Other Metrics

Citations

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media