[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

A priori estimates for superlinear and subcritical elliptic equations: the Neumann boundary condition case

  • Published:
Manuscripta Mathematica Aims and scope Submit manuscript

Abstract

We consider here solutions of a nonlinear Neumann elliptic equation Δuf (x, u) = 0 in Ω, ∂u/∂ν = 0 on ∂Ω, where Ω is a bounded open smooth domain in \({\mathbb{R}^N, N\geq2}\) and f satisfies super-linear and subcritical growth conditions. We prove that L −bounds on solutions are equivalent to bounds on their Morse indices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agmon S., Douglis A., Nirenberg L.: Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary value conditions. I. Commun. Pure Appl. Math. 12, 623–727 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bahri A., Lions P.L.: Solutions of superlinear elliptic equations and their Morse indices. Commun. Pure. App. Math. 45, 1205–1215 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  3. Courant R., Hilbert D.: Methods of mathematical Physics, vol. I. Interscience, NY (1953)

    Google Scholar 

  4. Dancer E.N.: Finite Morse index solutions of supercritical problems. J. Reine Angew. Math. 620, 213–233 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. Dautray, R., Lions, J.L.: Mathematical Analysis and Numerical Methods for Science and Technology, vol. 1. Springer-Verlag

  6. de Figueiredo D.G., Yang J.: On a semilinear elliptic problem without (PS) condition. J. Diff. Equat. 187, 412–428 (2003)

    Article  MATH  Google Scholar 

  7. Gidas B., Spruck J.: A priori bounds for positive solutions of nonlinear elliptic equations. Commun. Part. Differ. Equat. 6, 883–901 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  8. Gilbarg D., Trudinger N.S.: Elliptic Partial Differntial Equations of Second Order, Grundlehren Math. Wiss, vol. 224. Springer-Verlag, New York (1977)

    Google Scholar 

  9. Harrabi A., Rebhi S., Selmi A.: Solutions of superlinear equations and their Morse indices, I. Duke Math. J. 94, 141–157 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  10. Harrabi A., Rebhi S., Selmi A.: Solutions of superlinear equations and their Morse indices, II. Duke Math. J. 94, 159–179 (1998)

    Article  MathSciNet  Google Scholar 

  11. Wang G., Ye D.: On a nonlinear elliptic equation arising in a free boundary problem. Math. Z. 244, 531–548 (2003)

    MathSciNet  MATH  Google Scholar 

  12. Weyl H.: das asymptotische Verteilungsgesetz der eigenwerte linearer partieller Differentialgleichungen. Math. Ann. 71, 441–479 (1911)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohameden Ould Ahmedou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harrabi, A., Ahmedou, M.O., Rebhi, S. et al. A priori estimates for superlinear and subcritical elliptic equations: the Neumann boundary condition case. manuscripta math. 137, 525–544 (2012). https://doi.org/10.1007/s00229-011-0488-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00229-011-0488-z

Mathematics Subject Classification (2000)

Navigation