[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
research-article
Public Access

An Isoperimetric Sloshing Problem in a Shallow Container with Surface Tension

Published: 13 February 2023 Publication History

Abstract

In 1965, B. A. Troesch solved the isoperimetric sloshing problem of determining the container shape that maximizes the fundamental sloshing frequency among two classes of shallow containers: symmetric canals with a given free surface width and cross-sectional area, and radially symmetric containers with a given rim radius and volume (Commun Pure Appl Math 18(1–2):319–338, 1965, https://doi.org/10.1002/cpa.3160180124). Here, we extend these results in two ways: (i) we consider surface tension effects on the fluid free surface, assuming a flat equilibrium free surface together with a pinned contact line, and (ii) we consider sinusoidal waves traveling along the canal with wavenumber α0 and spatial period 2π/α; two-dimensional sloshing corresponds to the case α=0. Generalizing our recent variational characterization of fluid sloshing with surface tension to the case of a pinned contact line, we derive the pinned-edge linear shallow sloshing problem, which is an eigenvalue problem for a generalized Sturm-Liouville system. In the case without surface tension, we show that the optimal shallow canal is a rectangular canal for any α>0. In the presence of surface tension, we solve for the maximizing cross-section explicitly for shallow canals with any given α0 and shallow radially symmetric containers with m azimuthal nodal lines, m=0,1. Our results reveal that the squared maximal sloshing frequency increases considerably as surface tension increases. Interestingly, both the optimal shallow canal for α=0 and the optimal shallow radially symmetric container are not convex. As a consequence of our explicit solutions, we establish convergence of the maximizing cross-sections, as surface tension vanishes, to the maximizing cross-sections without surface tension.

References

[1]
Anderson G, Vamanamurthy M, and Vuorinen M Monotonicity rules in calculus Am. Math. Mon. 2006 113 9 805-816
[2]
Bauer HF Liquid oscillations in a circular cylindrical container with “sliding” contact line Forschung im Ingenieurwesen 1992 58 10 240-251
[3]
Benjamin TB and Graham-Eagle J Long gravity-capillary waves with edge constraints IMA J. Appl. Math. 1985 35 1 91-114
[4]
Benjamin TB and Scott JC Gravity-capillary waves with edge constraints J. Fluid Mech. 1979 92 2 241-267
[5]
Bernardi C, Dauge M, and Maday Y Spectral Methods for Axisymmetric Domains 1999 Paris Gauthier-Villars
[6]
Budiansky B Sloshing of liquids in circular canals and spherical tanks J. Aerosp. Sci. 1960 27 3 161-173
[7]
Chu WH Fuel sloshing in a spherical tank filled to an arbitrary depth AIAA J. 1964 2 11 1972-1979
[8]
Evans DV and Linton CM Sloshing frequencies Q. J. Mech. Appl. Math. 1993 46 1 71-87
[9]
Faltinsen OM and Timokha AN Sloshing 2009 Cambridge Cambridge University Press
[10]
Fontelos M and López-Rıos J Gravity waves oscillations at semicircular and general 2D containers: an efficient computational approach to 2D sloshing problem Z. Angew. Math. Phys 2020 71 75
[11]
Fox DW and Kuttler JR Sloshing frequencies Z. Angew. Math. Phys. (ZAMP) 1983 34 5 668-696
[12]
Gaunt RE Inequalities for modified Bessel functions and their integrals J. Math. Anal. Appl. 2014 420 1 373-386
[13]
Gaunt RE Inequalities for integrals of the modified Struve function of the first kind Results Math. 2018 73 1-10
[14]
Graham-Eagle, J.: A new method for calculating eigenvalues with applications to gravity-capillary waves with edge constraints. In: Mathematical Proceedings of the Cambridge Philosophical Society, vol. 94, pp. 553–564. Cambridge University Press, Cambridge (1983).
[15]
Groves MD Theoretical aspects of gravity-capillary waves in non-rectangular channels J. Fluid Mech. 1995 290 377-404
[16]
Henderson D and Miles J Surface-wave damping in a circular cylinder with a fixed contact line J. Fluid Mech. 1994 275 285-299
[17]
Hocking LM The damping of capillary-gravity waves at a rigid boundary J. Fluid Mech. 1987 179 253-266
[18]
Hocking LM Waves produced by a vertically oscillating plate J. Fluid Mech. 1987 179 267-281
[19]
Ibrahim RA Liquid Sloshing Dynamics: Theory and Applications 2005 Cambridge Cambridge University Press
[20]
Kidambi R Meniscus effects on the frequency and damping of capillary-gravity waves in a brimful circular cylinder Wave Motion 2009 46 2 144-154
[21]
Kolaei A, Rakheja S, and Richard MJ Effects of tank cross-section on dynamic fluid slosh loads and roll stability of a partly-filled tank truck Eur. J. Mech. B Fluids 2014 46 46-58
[22]
Kulczycki T and Kuznetsov N ‘High spots’ theorems for sloshing problems Bull. Lond. Math. Soc. 2009 41 3 494-505
[23]
Kulczycki T and Kuznetsov N On the ‘high spots’ of fundamental sloshing modes in a trough Proc. R. Soc. A Math. Phys. Eng. Sci. 2011 467 2129 1491-1502
[24]
Kulczycki T and Kwaśnicki M On high spots of the fundamental sloshing eigenfunctions in axially symmetric domains Proc. Lond. Math. Soc. 2012 105 5 921-952
[25]
Kuzanek JF Existence and uniqueness of solutions to a fourth order nonlinear eigenvalue problem SIAM J. Appl. Math. 1974 27 2 341-354
[26]
Kuzanek JF An isoperimetric problem with a nonlinear side condition for sloshing in a symmetric shallow canal Z. Angew. Math. Phys. (ZAMP) 1974 25 6 753-763
[27]
Kuznetsov NG A variational method of determining the eigenfrequencies of a liquid in a channel J. Appl. Math. Mech. 1990 54 4 458-465
[28]
Lamb H Hydrodynamics 1932 Cambridge Cambridge University Press
[29]
Lawrence HR, Wang CJ, and Reddy RB Variational solution of fuel sloshing modes J. Jet Propul. 1958 28 11 729-736
[30]
Li, Y., Wang, Z.: An approximate analytical solution of sloshing frequencies for a liquid in various shape aqueducts. Shock Vib. (2014).
[31]
McIver P Sloshing frequencies for cylindrical and spherical containers filled to an arbitrary depth J. Fluid Mech. 1989 201 243-257
[32]
McIver P and McIver M Sloshing frequencies of longitudinal modes for a liquid contained in a trough J. Fluid Mech. 1993 252 525-541
[33]
Mercier B and Raugel G Résolution d’un problème aux limites dans un ouvert axisymétrique par éléments finis en r,z et séries de Fourier en θ ESAIM Math. Model. Numer. Anal. 1982 16 4 405-461
[34]
Moiseev NN Introduction to the theory of oscillations of liquid-containing bodies Adv. Appl. Mech. 1964 8 233-289
[35]
Moiseev N and Petrov A The calculation of free oscillations of a liquid in a motionless container Adv. Appl. Mech. 1966 9 91-154
[36]
Myshkis AD, Babskii VG, Kopachevskii ND, Slobozhanin LA, and Tyuptsov AD Low-Gravity Fluid Mechanics 1987 Berlin Springer
[37]
Nicolás JA Effects of static contact angles on inviscid gravity-capillary waves Phys. Fluids 2005 17 2
[38]
Olver, F.W.J., Olde Daalhuis, A.B., Lozier, D.W., Schneider, B.I., Boisvert, R.F., Clark, C.W., Miller, B.R., Saunders, B.V., Cohl, H.S., McClain, M.A. (eds.) NIST Handbook of Mathematical Functions. Release 1.1.0 of 2020-12-15 (2010). http://dlmf.nist.gov/
[39]
Otremba F, Romero Navarrete JA, and Lozano Guzmán AA Modelling of a partially loaded road tanker during a braking-in-a-turn maneuver Actuators 2018 7 45
[40]
Reynolds WC and Satterlee HM Liquid propellant behavior at low and zero g NASA Spec. Publ. 1966 106 387-439
[41]
Shankar P A simple method for studying low-gravity sloshing frequencies Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 2003 459 2040 3109-3130
[42]
Shankar P Frequencies of gravity-capillary waves on highly curved interfaces with edge constraints Fluid Dyn. Res. 2007 39 6 457
[43]
Shen M Nonlinear capillary waves under gravity with edge constraints in a channel Phys. Fluids 1983 26 6 1417-1421
[44]
Simpson HC and Spector SJ Some monotonicity results for ratios of modified Bessel functions Q. Appl. Math. 1984 42 1 95-98
[45]
Stoker JJ Water Waves: The Mathematical Theory with Applications 2011 New York Wiley
[46]
Tan CH, Hohenegger C, and Osting B A variational characterization of fluid sloshing with surface tension SIAM J. Appl. Math. 2017 77 3 995-1019
[47]
Troesch BA An isoperimetric sloshing problem Commun. Pure Appl. Math. 1965 18 1–2 319-338
[48]
Troesch BA Fluid motion in a shallow trapezoidal container SIAM J. Appl. Math. 1967 15 3 627-636
[49]
Troesch BA Integral inequalities for two functions Arch. Ration. Mech. Anal. 1967 24 2 128-140
[50]
Vera C, Paulin J, Suarez B, and Gutierrez M Simulation of freight trains equipped with partially filled tank containers and related resonance phenomenon Proc. Inst. Mech. Eng. Part F J. Rail Rapid Transit 2005 219 4 245-259
[51]
Willis, N., Tan, C.H., Hohenegger, C., Osting, B.: High spots for the ice-fishing problem with surface tension. SIAM J. Appl. Math. (to appear) (2022)

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Applied Mathematics and Optimization
Applied Mathematics and Optimization  Volume 87, Issue 2
Apr 2023
679 pages

Publisher

Springer-Verlag

Berlin, Heidelberg

Publication History

Published: 13 February 2023
Accepted: 02 November 2022

Author Tags

  1. Isoperimetric inequality
  2. Fluid sloshing
  3. Surface tension
  4. Shallow container
  5. Pinned contact line
  6. Calculus of variations

Author Tags

  1. 49R05
  2. 76M30
  3. 76B45

Qualifiers

  • Research-article

Funding Sources

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 0
    Total Downloads
  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 01 Jan 2025

Other Metrics

Citations

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media