Abstract
In 1965, B. A. Troesch solved the isoperimetric sloshing problem of determining the container shape that maximizes the fundamental sloshing frequency among two classes of shallow containers: symmetric canals with a given free surface width and cross-sectional area, and radially symmetric containers with a given rim radius and volume (Commun Pure Appl Math 18(1–2):319–338, 1965, https://doi.org/10.1002/cpa.3160180124). Here, we extend these results in two ways: (i) we consider surface tension effects on the fluid free surface, assuming a flat equilibrium free surface together with a pinned contact line, and (ii) we consider sinusoidal waves traveling along the canal with wavenumber \(\alpha \ge 0\) and spatial period \(2\pi /\alpha \); two-dimensional sloshing corresponds to the case \(\alpha = 0\). Generalizing our recent variational characterization of fluid sloshing with surface tension to the case of a pinned contact line, we derive the pinned-edge linear shallow sloshing problem, which is an eigenvalue problem for a generalized Sturm-Liouville system. In the case without surface tension, we show that the optimal shallow canal is a rectangular canal for any \(\alpha > 0\). In the presence of surface tension, we solve for the maximizing cross-section explicitly for shallow canals with any given \(\alpha \ge 0\) and shallow radially symmetric containers with m azimuthal nodal lines, \(m = 0, 1\). Our results reveal that the squared maximal sloshing frequency increases considerably as surface tension increases. Interestingly, both the optimal shallow canal for \(\alpha = 0\) and the optimal shallow radially symmetric container are not convex. As a consequence of our explicit solutions, we establish convergence of the maximizing cross-sections, as surface tension vanishes, to the maximizing cross-sections without surface tension.
Similar content being viewed by others
References
Anderson, G., Vamanamurthy, M., Vuorinen, M.: Monotonicity rules in calculus. Am. Math. Mon. 113(9), 805–816 (2006). https://doi.org/10.1080/00029890.2006.11920367
Bauer, H.F.: Liquid oscillations in a circular cylindrical container with “sliding’’ contact line. Forschung im Ingenieurwesen 58(10), 240–251 (1992). https://doi.org/10.1007/BF02574547
Benjamin, T.B., Graham-Eagle, J.: Long gravity-capillary waves with edge constraints. IMA J. Appl. Math. 35(1), 91–114 (1985). https://doi.org/10.1093/imamat/35.1.91
Benjamin, T.B., Scott, J.C.: Gravity-capillary waves with edge constraints. J. Fluid Mech. 92(2), 241–267 (1979). https://doi.org/10.1017/S0022112079000616
Bernardi, C., Dauge, M., Maday, Y.: Spectral Methods for Axisymmetric Domains. Gauthier-Villars, Paris (1999)
Budiansky, B.: Sloshing of liquids in circular canals and spherical tanks. J. Aerosp. Sci. 27(3), 161–173 (1960). https://doi.org/10.2514/8.8467
Chu, W.H.: Fuel sloshing in a spherical tank filled to an arbitrary depth. AIAA J. 2(11), 1972–1979 (1964). https://doi.org/10.2514/3.2713
Evans, D.V., Linton, C.M.: Sloshing frequencies. Q. J. Mech. Appl. Math. 46(1), 71–87 (1993). https://doi.org/10.1093/qjmam/46.1.71
Faltinsen, O.M., Timokha, A.N.: Sloshing, vol. 577. Cambridge University Press, Cambridge (2009)
Fontelos, M., López-Rıos, J.: Gravity waves oscillations at semicircular and general 2D containers: an efficient computational approach to 2D sloshing problem. Z. Angew. Math. Phys 71, 75 (2020). https://doi.org/10.1007/s00033-020-01299-4
Fox, D.W., Kuttler, J.R.: Sloshing frequencies. Z. Angew. Math. Phys. (ZAMP) 34(5), 668–696 (1983). https://doi.org/10.1007/BF00948809
Gaunt, R.E.: Inequalities for modified Bessel functions and their integrals. J. Math. Anal. Appl. 420(1), 373–386 (2014). https://doi.org/10.1016/j.jmaa.2014.05.083
Gaunt, R.E.: Inequalities for integrals of the modified Struve function of the first kind. Results Math. 73, 1–10 (2018). https://doi.org/10.1007/s00025-018-0827-4
Graham-Eagle, J.: A new method for calculating eigenvalues with applications to gravity-capillary waves with edge constraints. In: Mathematical Proceedings of the Cambridge Philosophical Society, vol. 94, pp. 553–564. Cambridge University Press, Cambridge (1983). https://doi.org/10.1017/S0305004100000943
Groves, M.D.: Theoretical aspects of gravity-capillary waves in non-rectangular channels. J. Fluid Mech. 290, 377–404 (1995). https://doi.org/10.1017/S0022112095002552
Henderson, D., Miles, J.: Surface-wave damping in a circular cylinder with a fixed contact line. J. Fluid Mech. 275, 285–299 (1994). https://doi.org/10.1017/S0022112094002363
Hocking, L.M.: The damping of capillary-gravity waves at a rigid boundary. J. Fluid Mech. 179, 253–266 (1987). https://doi.org/10.1017/S0022112087001514
Hocking, L.M.: Waves produced by a vertically oscillating plate. J. Fluid Mech. 179, 267–281 (1987). https://doi.org/10.1017/S0022112087001526
Ibrahim, R.A.: Liquid Sloshing Dynamics: Theory and Applications. Cambridge University Press, Cambridge (2005). https://doi.org/10.1017/CBO9780511536656
Kidambi, R.: Meniscus effects on the frequency and damping of capillary-gravity waves in a brimful circular cylinder. Wave Motion 46(2), 144–154 (2009). https://doi.org/10.1016/j.wavemoti.2008.10.001
Kolaei, A., Rakheja, S., Richard, M.J.: Effects of tank cross-section on dynamic fluid slosh loads and roll stability of a partly-filled tank truck. Eur. J. Mech. B Fluids 46, 46–58 (2014). https://doi.org/10.1016/j.euromechflu.2014.01.008
Kulczycki, T., Kuznetsov, N.: ‘High spots’ theorems for sloshing problems. Bull. Lond. Math. Soc. 41(3), 494–505 (2009). https://doi.org/10.1112/blms/bdp021
Kulczycki, T., Kuznetsov, N.: On the ‘high spots’ of fundamental sloshing modes in a trough. Proc. R. Soc. A Math. Phys. Eng. Sci. 467(2129), 1491–1502 (2011). https://doi.org/10.1098/rspa.2010.0258
Kulczycki, T., Kwaśnicki, M.: On high spots of the fundamental sloshing eigenfunctions in axially symmetric domains. Proc. Lond. Math. Soc. 105(5), 921–952 (2012). https://doi.org/10.1112/plms/pds015
Kuzanek, J.F.: Existence and uniqueness of solutions to a fourth order nonlinear eigenvalue problem. SIAM J. Appl. Math. 27(2), 341–354 (1974). https://doi.org/10.1137/0127025
Kuzanek, J.F.: An isoperimetric problem with a nonlinear side condition for sloshing in a symmetric shallow canal. Z. Angew. Math. Phys. (ZAMP) 25(6), 753–763 (1974). https://doi.org/10.1007/BF01590261
Kuznetsov, N.G.: A variational method of determining the eigenfrequencies of a liquid in a channel. J. Appl. Math. Mech. 54(4), 458–465 (1990). https://doi.org/10.1016/0021-8928(90)90056-G
Lamb, H.: Hydrodynamics. Cambridge University Press, Cambridge (1932)
Lawrence, H.R., Wang, C.J., Reddy, R.B.: Variational solution of fuel sloshing modes. J. Jet Propul. 28(11), 729–736 (1958). https://doi.org/10.2514/8.7443
Li, Y., Wang, Z.: An approximate analytical solution of sloshing frequencies for a liquid in various shape aqueducts. Shock Vib. (2014). https://doi.org/10.1155/2014/672648
McIver, P.: Sloshing frequencies for cylindrical and spherical containers filled to an arbitrary depth. J. Fluid Mech. 201, 243–257 (1989). https://doi.org/10.1017/S0022112089000923
McIver, P., McIver, M.: Sloshing frequencies of longitudinal modes for a liquid contained in a trough. J. Fluid Mech. 252, 525–541 (1993). https://doi.org/10.1017/S0022112093003866
Mercier, B., Raugel, G.: Résolution d’un problème aux limites dans un ouvert axisymétrique par éléments finis en \( r, z\) et séries de Fourier en \(\theta \). ESAIM Math. Model. Numer. Anal. 16(4), 405–461 (1982). https://doi.org/10.1051/m2an/1982160404051
Moiseev, N.N.: Introduction to the theory of oscillations of liquid-containing bodies. Adv. Appl. Mech. 8, 233–289 (1964). https://doi.org/10.1016/S0065-2156(08)70356-9
Moiseev, N., Petrov, A.: The calculation of free oscillations of a liquid in a motionless container. Adv. Appl. Mech. 9, 91–154 (1966). https://doi.org/10.1016/S0065-2156(08)70007-3
Myshkis, A.D., Babskii, V.G., Kopachevskii, N.D., Slobozhanin, L.A., Tyuptsov, A.D.: Low-Gravity Fluid Mechanics. Springer, Berlin (1987)
Nicolás, J.A.: Effects of static contact angles on inviscid gravity-capillary waves. Phys. Fluids 17(2), 022101 (2005). https://doi.org/10.1063/1.1829111
Olver, F.W.J., Olde Daalhuis, A.B., Lozier, D.W., Schneider, B.I., Boisvert, R.F., Clark, C.W., Miller, B.R., Saunders, B.V., Cohl, H.S., McClain, M.A. (eds.) NIST Handbook of Mathematical Functions. Release 1.1.0 of 2020-12-15 (2010). http://dlmf.nist.gov/
Otremba, F., Romero Navarrete, J.A., Lozano Guzmán, A.A.: Modelling of a partially loaded road tanker during a braking-in-a-turn maneuver. Actuators 7, 45 (2018). https://doi.org/10.3390/act7030045
Reynolds, W.C., Satterlee, H.M.: Liquid propellant behavior at low and zero g. NASA Spec. Publ. 106, 387–439 (1966)
Shankar, P.: A simple method for studying low-gravity sloshing frequencies. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 459(2040), 3109–3130 (2003). https://doi.org/10.1098/rspa.2003.1154
Shankar, P.: Frequencies of gravity-capillary waves on highly curved interfaces with edge constraints. Fluid Dyn. Res. 39(6), 457 (2007). https://doi.org/10.1016/j.fluiddyn.2006.12.002
Shen, M.: Nonlinear capillary waves under gravity with edge constraints in a channel. Phys. Fluids 26(6), 1417–1421 (1983). https://doi.org/10.1063/1.864311
Simpson, H.C., Spector, S.J.: Some monotonicity results for ratios of modified Bessel functions. Q. Appl. Math. 42(1), 95–98 (1984). https://doi.org/10.1090/qam/736509
Stoker, J.J.: Water Waves: The Mathematical Theory with Applications, vol. 36. Wiley, New York (2011). https://doi.org/10.1002/9781118033159
Tan, C.H., Hohenegger, C., Osting, B.: A variational characterization of fluid sloshing with surface tension. SIAM J. Appl. Math. 77(3), 995–1019 (2017). https://doi.org/10.1137/16M1104330
Troesch, B.A.: An isoperimetric sloshing problem. Commun. Pure Appl. Math. 18(1–2), 319–338 (1965). https://doi.org/10.1002/cpa.3160180124
Troesch, B.A.: Fluid motion in a shallow trapezoidal container. SIAM J. Appl. Math. 15(3), 627–636 (1967). https://doi.org/10.1137/0115054
Troesch, B.A.: Integral inequalities for two functions. Arch. Ration. Mech. Anal. 24(2), 128–140 (1967). https://doi.org/10.1007/BF00281444
Vera, C., Paulin, J., Suarez, B., Gutierrez, M.: Simulation of freight trains equipped with partially filled tank containers and related resonance phenomenon. Proc. Inst. Mech. Eng. Part F J. Rail Rapid Transit 219(4), 245–259 (2005). https://doi.org/10.1243/095440905X8916
Willis, N., Tan, C.H., Hohenegger, C., Osting, B.: High spots for the ice-fishing problem with surface tension. SIAM J. Appl. Math. (to appear) (2022)
Acknowledgements
We would like to thank Emma Coates, Emily Dryden, Calvin Khor, Robert Viator, and Nathan Willis for stimulating discussions. We are also grateful to the referees for their valuable comments and suggestions which greatly improved the manuscript.
Funding
The work of C. H. Tan and B. Osting was partially funded by NSF DMS 17-52202.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Tan, C.H., Hohenegger, C. & Osting, B. An Isoperimetric Sloshing Problem in a Shallow Container with Surface Tension. Appl Math Optim 87, 33 (2023). https://doi.org/10.1007/s00245-022-09936-2
Accepted:
Published:
DOI: https://doi.org/10.1007/s00245-022-09936-2
Keywords
- Isoperimetric inequality
- Fluid sloshing
- Surface tension
- Shallow container
- Pinned contact line
- Calculus of variations