[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
article

Pair-copula estimation of distribution algorithms

Published: 01 July 2013 Publication History

Abstract

Copula theory provides a promising solution for the estimation of population probability in estimation distribution algorithms EDAs, and more and more researchers pay attention to copula-EDAs. Most of the copula-EDAs researches are related to two variables case, in this paper, by taking advantage of the ability of pair-copula in high-dimensional correlation construction, a new algorithm is proposed, called pair-copula estimation distribution algorithms pcEDAs. The architecture of pcEDAs is provided, and sampling method of the probability model is discussed, the simulation results based on two different vines, namely C-vine and D-vine, show that the proposed algorithm is not only feasible, but also perform very well.

References

[1]
Aas, K., Czado, C., Frigessi, A. and Bakken, H. (2009) 'Pair-copula constructions of multiple dependence', Insurance: Mathematics and Economics, Vol. 44, No. 2, pp.182-198.
[2]
Bedford, T. and Cooke, R. (2001) 'Probabilistic density decomposition for conditionally dependent random variables modelled by vines', Annals of Mathematics and Artificial Intelligence, Vol. 32, pp.245-268.
[3]
Bedford, T. and Cooke, R. (2002) 'Vines-A new graphical model for dependent random variables', Annals of Statistics, Vol. 30, No. 4, pp.1031-1068.
[4]
Chen, Y., Cui, Z. and Zeng, J. (2010) 'Structural optimization of Lennard-Jones clusters by hybrid social cognitive optimization algorithm', Proceedings of 9th IEEE International Conference on Cognitive Informatics (ICCI2010), pp.204-208, Beijing, China.
[5]
Cherubini, U. and Luciano, E. (2002) 'Bivariate option pricing with copulas', Applied Mathematical Finance, Vol. 9, No. 2, pp.69-85.
[6]
Cherubini, U., Luciano, E. and Vecchiato, W. (2004) Copula Methods in Finance, John Wiley & Sons, West Sussex, England.
[7]
Cuesta-Infante, A., Santana, R., Hidalgo, J.I., Bielza, C. and Larrañaga, P. (2010) 'Bivariate empirical and n-variate archimedean copulas in estimation of distribution algorithms', Proceedings of the IEEE Congress on Evolutionary Computation (CEC 2010), July, pp.1355-1362.
[8]
Debnath, S. and Narayan Ray, R. (2012) 'Cuckoo search: a new optimization algorithm for harmonic elimination in multilevel inverter', Journal of Bioinformatics and Intelligent Control, Vol. 1, No. 1, pp.80-85.
[9]
Gao, Y. (2009) 'Multivariate estimation of distribution algorithm with Laplace transform archimedean copula', in Hu, W. and Li, X. (Eds.): Proceedings of the International Conference on Information Engineering and Computer Science (ICIECS 2009), December.
[10]
Garcia-Gonzalo, E. and Fernandez-Martinez, J.L. (2012) 'A brief historical review of particle swarm optimization (PSO)', Journal of Bioinformatics and Intelligent Control, Vol. 1, No. 1, pp.3-16.
[11]
González-Fernández, Y. and Soto, M. (2011) copulaedas: Estimation of Distribution Algorithms Based on Copulas, R package version 1.1.0 [online] http://CRAN.R-project.org/package=copulaedas (accessed 06/03/2013).
[12]
Jiang, K., Song, B., Shi, X. and Song, T. (2012) 'An overview of membrane computing', Journal of Bioinformatics and Intelligent Control, Vol. 1, No. 1, pp.17-26.
[13]
Joe, H. (1996) 'Families of m-variate distributions with given margins and m(m-1)/2 dependence parameters', Distributions with Fixed Marginals and Related Topics, IMS, Hayward, CA.
[14]
Joe, H. (1997) Multivariate Models and Dependence Concepts, Monographs on Statistics and Applied Probability, p.73, Chapman & Hall, London.
[15]
Kurowicka, D. and Cooke, R. (2006) Uncertainty Analysis with High Dimensional Dependence Modelling, Wiley, New York.
[16]
Kurowicka, D. and Cooke, R.M. (2005) 'Sampling algorithms for generating joint uniform distributions using the vine - copula method', 3rd IASC world conference on Computational Statistics & Data Analysis, Limassol, Cyprus.
[17]
Larranaga, P. and Lozano, J.A. (2002) Estimation of Distribution Algorithms: A New Tool for Evolutionary Computation, Kluwer Academic Publishers, Dordrecht.
[18]
Liu, Y. and Xu, Z. (2012) 'Time-varying social emotional optimisation algorithm', International Journal of Computer Science and Mathematics, Vol. 3, No. 4, pp.376-384.
[19]
Mühlenbein, H. and Paaß, G. (1996) 'From recombination of genes to the estimation of distributions I. binary parameters', PPSN IV: Proceedings of the 4th International Conference on Parallel Problem Solving from Nature, pp.178-187, Springer-Verlag, London, UK.
[20]
Nelsen, R.B. (2006) An Introduction to Copulas, Springer, Heidelberg.
[21]
Okhrin, O. (2010) Fitting High-Dimensional Copulae to Data, SFB 649 Discussion paper 2010-022, Humboldt University, Berlin, Germany.
[22]
Pandi, R., Panigrahi, B.K., Das, S. and Cui, Z. (2010) 'Dynamic economic load dispatch with wind energy using modified harmony search', International Journal of Bio-inspired Computation, Vol. 2, Nos. 3/4, pp.282-289.
[23]
Pelikan, M., Goldberg, D.E. and Lobo, F. (2002) 'A survey of optimization by building and using probabilistic models', Computational Optimization and Applications, Vol. 21, No. 1, pp.5-20.
[24]
Rogelio, S., Arturo, H. and Enrique, R. (2009) 'Using copulas in estimation of distribution algorithms [C]', in Hernandez Aguirre, A. et al. (Eds.): MICAI 2009, pp.658-668, LNAI 5845.
[25]
Sklar, A. (1973) 'Random variables, joint distributions, and copulas', Kybernetica, Vol. 9, No. 6, pp.449-460.
[26]
Wang, X., Gao, H. and Zeng, J. (2012) 'Estimation of distribution algorithms based on two copula selection methods', International Journal of Computer Science and Mathematics, Vol. 3, No. 4, pp.317-331.
[27]
Wei, Z., Cui, Z. and Zeng, J. (2010) 'Social cognitive optimization algorithm with reactive power optimization of power system', Proceedings of 2010 International Conference on Computational Aspects of Social Networks (CASoN2010), 26-28 September, pp.11-14, Taiyuan, China.
[28]
Xie, L., Tan, Y., Zeng, J. and Cui, Z. (2010) 'Artificial physics optimization: a brief survey', International Journal of Bio-Inspired Computation, Vol. 2, No. 5, pp.291-302.

Cited By

View all
  • (2018)Approximating the negative hypergeometric distributionInternational Journal of Wireless and Mobile Computing10.1504/IJWMC.2014.0656097:6(591-598)Online publication date: 21-Dec-2018
  • (2014)Emotional semantic analysis for images using behavioural experiments in open environmentsInternational Journal of Wireless and Mobile Computing10.1504/IJWMC.2014.0656087:6(608-615)Online publication date: 1-Oct-2014
  1. Pair-copula estimation of distribution algorithms

    Recommendations

    Comments

    Please enable JavaScript to view thecomments powered by Disqus.

    Information & Contributors

    Information

    Published In

    cover image International Journal of Computing Science and Mathematics
    International Journal of Computing Science and Mathematics  Volume 4, Issue 2
    July 2013
    112 pages
    ISSN:1752-5055
    EISSN:1752-5063
    Issue’s Table of Contents

    Publisher

    Inderscience Publishers

    Geneva 15, Switzerland

    Publication History

    Published: 01 July 2013

    Qualifiers

    • Article

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)0
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 19 Dec 2024

    Other Metrics

    Citations

    Cited By

    View all
    • (2018)Approximating the negative hypergeometric distributionInternational Journal of Wireless and Mobile Computing10.1504/IJWMC.2014.0656097:6(591-598)Online publication date: 21-Dec-2018
    • (2014)Emotional semantic analysis for images using behavioural experiments in open environmentsInternational Journal of Wireless and Mobile Computing10.1504/IJWMC.2014.0656087:6(608-615)Online publication date: 1-Oct-2014

    View Options

    View options

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media