Abstract
A new way of modeling probabilistic dependencies in Estimation of Distribution Algorithm (EDAs) is presented. By means of copulas it is possible to separate the structure of dependence from marginal distributions in a joint distribution. The use of copulas as a mechanism for modeling joint distributions and its application to EDAs is illustrated on several benchmark examples.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Arderí-García, R.J.: Algoritmo con Estimación de Distribuciones con Cópula Gaussiana. Bachelor’s thesis, Universidad de La Habana. La Habana, Cuba (2007) (in Spanish)
Bacigál, T., Komorníková, M.: Fitting Archimedean copulas to bivariate geodetic data. In: Rizzi, A., Vichi, M. (eds.) Compstat 2006 Proceedings in Computational Statistics, pp. 649–656. Physica-Verlag HD, Heidelberg (2006)
Barba-Moreno, S.E.: Una propuesta para EDAs no paramétricos. Master’s thesis, Centro de Investigación en Matemáticas. Guanajuato, México (2007) (in Spanish)
Cherubini, U., Luciano, E., Vecchiato, W.: Copula Methods in Finance. Wiley, Chichester (2004)
Davy, M., Doucet, A.: Copulas: a new insight into positive time-frequency distributions. Signal Processing Letters, IEEE 10(7), 215–218 (2005)
De Bonet, J.S., Isbell, C.L., Viola, P.: MIMIC: Finding Optima by Estimating Probability Densities. In: Advances in Neural Information Processing Systems, vol. 9, pp. 424–430. The MIT Press, Cambridge (1997)
De-Waal, D.J., Van-Gelder, P.H.A.J.M.: Modelling of extreme wave heights and periods through copulas. Extremes 8(4), 345–356 (2005)
Etxeberria, R., Larrañaga, P.: Global optimization with Bayesian networks. In: Ochoa, A., Soto, M., Santana, R. (eds.) Second International Symposium on Artificial Intelligence, Adaptive Systems, CIMAF 1999, Academia, La Habana, pp. 332–339 (1999)
Genest, C., Favre, A.C.: Everything You Always Wanted to Know about Copula Modeling but Were Afraid to Ask. Journal of Hydrologic Engineering 12(4), 347–368 (2007)
Joe, H.: Multivariate models and dependence concepts. Chapman and Hall, London (1997)
Larrañaga, P., Etxeberria, R., Lozano, J.A., Peña, J.M.: Optimization by learning and simulation of Bayesian and Gaussian networks. Technical report KZZA-IK-4-99. Department of Computer Science and Artificial Intelligence, University of the Basque Country (1999)
Larrañaga, P., Etxeberria, R., Lozano, J.A., Peña, J.M.: Combinatorial optimization by learning and simulation of Bayesian networks. In: Proceedings of the Sixteenth Conference on Uncertainty in Artificial Intelligence, pp. 343–352 (2000)
Larrañaga, P., Etxeberria, R., Lozano, J.A., Peña, J.M.: Optimization in continuous domains by learning and simulation of Gaussian networks. In: Wu, A.S. (ed.) Proceedings of the 2000 Genetic and Evolutionary Computation Conference Workshop Program, pp. 201–204 (2000)
Larrañaga, P., Lozano, J.A., Bengoetxea, E.: Estimation of Distribution Algorithm based on multivariate normal and Gaussian networks. Technical report KZZA-IK-1-01. Department of Computer Science and Artificial Intelligence, University of the Basque Country (2001)
Larrañaga, P., Lozano, J.A.: Estimation of Distribution Algorithms: A New Tool for Evolutionary Computation. Kluwer Academic Publishers, Dordrecht (2002)
Monjardin, P.E.: Análisis de dependencia en tiempo de falla. Master’s thesis, Centro de Investigación en Matemáticas. Guanajuato, México (2007) (in Spanish)
Mühlenbein, H., Paaß, G.: From recombination of genes to the estimation of distributions I. Binary parameters. In: Ebeling, W., Rechenberg, I., Voigt, H.-M., Schwefel, H.-P. (eds.) PPSN 1996. LNCS, vol. 1141, pp. 178–187. Springer, Heidelberg (1996)
Mühlenbein, H.: The Equation for Response to Selection and its Use for Prediction. Evolutionary Computation 5(3), 303–346 (1998)
Nelsen, R.B.: An Introduction to Copulas. Springer, Heidelberg (2006)
Pelikan, M., Goldberg, D.E., Cantú-Paz, E.: BOA: The Bayesian optimization algorithm. In: Banzhaf, W., Daida, J., Eiben, A.E., Garzon, M.H., Honavar, V., Jakiela, M., Smith, R.E. (eds.) Proceedings of the Genetic and Evolutionary Computation Conference GECCO 1999, vol. 1, pp. 525–532. Morgan Kaufmann Publishers, San Francisco (1999)
Pelikan, M., Mühlenbein, H.: The Bivariate Marginal Distribution Algorithm. In: Roy, R., Furuhashi, T., Chawdhry, P.K. (eds.) Advances in Soft Computing - Engineering Design and Manufacturing, pp. 521–535. Springer, Heidelberg (1999)
Schölzel, C., Friederichs, P.: Multivariate non-normally distributed random variables in climate research – introduction to the copula approach. Nonlinear Processes in Geophysics 15(5), 761–772 (2008)
Sklar, A.: Fonctions de répartition à n dimensions et leurs marges. Publications de l’Institut de Statistique de l’Université de Paris 8, 229–231 (1959)
Soto, M., Ochoa, A., Acid, S., de Campos, L.M.: Introducing the polytree approximation of distribution algorithm. In: Ochoa, A., Soto, M., Santana, R. (eds.) Second International Symposium on Artificial Intelligence, Adaptive Systems, CIMAF 1999, Academia, La Habana, pp. 360–367 (1999)
Trivedi, P.K., Zimmer, D.M.: Copula Modeling: An Introduction for Practitioners. In: vol.1 of Foundations and Trends\(^\textrm{\textregistered}\) in Econometrics Now Publishers (2007)
Wang, L.F., Zeng, J.C., Hong, Y.: Estimation of Distribution Algorithm Based on Archimedean Copulas. In: GEC 2009: Proceedings of the first ACM/SIGEVO Summit on Genetic and Evolutionary Computation, pp. 993–996. ACM, New York (2009)
Wang, L.F., Zeng, J.C., Hong, Y.: Estimation of Distribution Algorithm Based on Copula Theory. In: Proceedings of the IEEE Congress on Evolutionary Computation, pp. 1057–1063. IEEE Press, Los Alamitos (2009)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Salinas-Gutiérrez, R., Hernández-Aguirre, A., Villa-Diharce, E.R. (2009). Using Copulas in Estimation of Distribution Algorithms. In: Aguirre, A.H., Borja, R.M., Garciá, C.A.R. (eds) MICAI 2009: Advances in Artificial Intelligence. MICAI 2009. Lecture Notes in Computer Science(), vol 5845. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-05258-3_58
Download citation
DOI: https://doi.org/10.1007/978-3-642-05258-3_58
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-05257-6
Online ISBN: 978-3-642-05258-3
eBook Packages: Computer ScienceComputer Science (R0)