[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Using Copulas in Estimation of Distribution Algorithms

  • Conference paper
MICAI 2009: Advances in Artificial Intelligence (MICAI 2009)

Abstract

A new way of modeling probabilistic dependencies in Estimation of Distribution Algorithm (EDAs) is presented. By means of copulas it is possible to separate the structure of dependence from marginal distributions in a joint distribution. The use of copulas as a mechanism for modeling joint distributions and its application to EDAs is illustrated on several benchmark examples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Arderí-García, R.J.: Algoritmo con Estimación de Distribuciones con Cópula Gaussiana. Bachelor’s thesis, Universidad de La Habana. La Habana, Cuba (2007) (in Spanish)

    Google Scholar 

  2. Bacigál, T., Komorníková, M.: Fitting Archimedean copulas to bivariate geodetic data. In: Rizzi, A., Vichi, M. (eds.) Compstat 2006 Proceedings in Computational Statistics, pp. 649–656. Physica-Verlag HD, Heidelberg (2006)

    Google Scholar 

  3. Barba-Moreno, S.E.: Una propuesta para EDAs no paramétricos. Master’s thesis, Centro de Investigación en Matemáticas. Guanajuato, México (2007) (in Spanish)

    Google Scholar 

  4. Cherubini, U., Luciano, E., Vecchiato, W.: Copula Methods in Finance. Wiley, Chichester (2004)

    MATH  Google Scholar 

  5. Davy, M., Doucet, A.: Copulas: a new insight into positive time-frequency distributions. Signal Processing Letters, IEEE 10(7), 215–218 (2005)

    Article  Google Scholar 

  6. De Bonet, J.S., Isbell, C.L., Viola, P.: MIMIC: Finding Optima by Estimating Probability Densities. In: Advances in Neural Information Processing Systems, vol. 9, pp. 424–430. The MIT Press, Cambridge (1997)

    Google Scholar 

  7. De-Waal, D.J., Van-Gelder, P.H.A.J.M.: Modelling of extreme wave heights and periods through copulas. Extremes 8(4), 345–356 (2005)

    Article  MathSciNet  Google Scholar 

  8. Etxeberria, R., Larrañaga, P.: Global optimization with Bayesian networks. In: Ochoa, A., Soto, M., Santana, R. (eds.) Second International Symposium on Artificial Intelligence, Adaptive Systems, CIMAF 1999, Academia, La Habana, pp. 332–339 (1999)

    Google Scholar 

  9. Genest, C., Favre, A.C.: Everything You Always Wanted to Know about Copula Modeling but Were Afraid to Ask. Journal of Hydrologic Engineering 12(4), 347–368 (2007)

    Article  Google Scholar 

  10. Joe, H.: Multivariate models and dependence concepts. Chapman and Hall, London (1997)

    MATH  Google Scholar 

  11. Larrañaga, P., Etxeberria, R., Lozano, J.A., Peña, J.M.: Optimization by learning and simulation of Bayesian and Gaussian networks. Technical report KZZA-IK-4-99. Department of Computer Science and Artificial Intelligence, University of the Basque Country (1999)

    Google Scholar 

  12. Larrañaga, P., Etxeberria, R., Lozano, J.A., Peña, J.M.: Combinatorial optimization by learning and simulation of Bayesian networks. In: Proceedings of the Sixteenth Conference on Uncertainty in Artificial Intelligence, pp. 343–352 (2000)

    Google Scholar 

  13. Larrañaga, P., Etxeberria, R., Lozano, J.A., Peña, J.M.: Optimization in continuous domains by learning and simulation of Gaussian networks. In: Wu, A.S. (ed.) Proceedings of the 2000 Genetic and Evolutionary Computation Conference Workshop Program, pp. 201–204 (2000)

    Google Scholar 

  14. Larrañaga, P., Lozano, J.A., Bengoetxea, E.: Estimation of Distribution Algorithm based on multivariate normal and Gaussian networks. Technical report KZZA-IK-1-01. Department of Computer Science and Artificial Intelligence, University of the Basque Country (2001)

    Google Scholar 

  15. Larrañaga, P., Lozano, J.A.: Estimation of Distribution Algorithms: A New Tool for Evolutionary Computation. Kluwer Academic Publishers, Dordrecht (2002)

    MATH  Google Scholar 

  16. Monjardin, P.E.: Análisis de dependencia en tiempo de falla. Master’s thesis, Centro de Investigación en Matemáticas. Guanajuato, México (2007) (in Spanish)

    Google Scholar 

  17. Mühlenbein, H., Paaß, G.: From recombination of genes to the estimation of distributions I. Binary parameters. In: Ebeling, W., Rechenberg, I., Voigt, H.-M., Schwefel, H.-P. (eds.) PPSN 1996. LNCS, vol. 1141, pp. 178–187. Springer, Heidelberg (1996)

    Chapter  Google Scholar 

  18. Mühlenbein, H.: The Equation for Response to Selection and its Use for Prediction. Evolutionary Computation 5(3), 303–346 (1998)

    Article  Google Scholar 

  19. Nelsen, R.B.: An Introduction to Copulas. Springer, Heidelberg (2006)

    MATH  Google Scholar 

  20. Pelikan, M., Goldberg, D.E., Cantú-Paz, E.: BOA: The Bayesian optimization algorithm. In: Banzhaf, W., Daida, J., Eiben, A.E., Garzon, M.H., Honavar, V., Jakiela, M., Smith, R.E. (eds.) Proceedings of the Genetic and Evolutionary Computation Conference GECCO 1999, vol. 1, pp. 525–532. Morgan Kaufmann Publishers, San Francisco (1999)

    Google Scholar 

  21. Pelikan, M., Mühlenbein, H.: The Bivariate Marginal Distribution Algorithm. In: Roy, R., Furuhashi, T., Chawdhry, P.K. (eds.) Advances in Soft Computing - Engineering Design and Manufacturing, pp. 521–535. Springer, Heidelberg (1999)

    Google Scholar 

  22. Schölzel, C., Friederichs, P.: Multivariate non-normally distributed random variables in climate research – introduction to the copula approach. Nonlinear Processes in Geophysics 15(5), 761–772 (2008)

    Google Scholar 

  23. Sklar, A.: Fonctions de répartition à n dimensions et leurs marges. Publications de l’Institut de Statistique de l’Université de Paris 8, 229–231 (1959)

    MathSciNet  Google Scholar 

  24. Soto, M., Ochoa, A., Acid, S., de Campos, L.M.: Introducing the polytree approximation of distribution algorithm. In: Ochoa, A., Soto, M., Santana, R. (eds.) Second International Symposium on Artificial Intelligence, Adaptive Systems, CIMAF 1999, Academia, La Habana, pp. 360–367 (1999)

    Google Scholar 

  25. Trivedi, P.K., Zimmer, D.M.: Copula Modeling: An Introduction for Practitioners. In: vol.1 of Foundations and Trends\(^\textrm{\textregistered}\) in Econometrics Now Publishers (2007)

    Google Scholar 

  26. Wang, L.F., Zeng, J.C., Hong, Y.: Estimation of Distribution Algorithm Based on Archimedean Copulas. In: GEC 2009: Proceedings of the first ACM/SIGEVO Summit on Genetic and Evolutionary Computation, pp. 993–996. ACM, New York (2009)

    Chapter  Google Scholar 

  27. Wang, L.F., Zeng, J.C., Hong, Y.: Estimation of Distribution Algorithm Based on Copula Theory. In: Proceedings of the IEEE Congress on Evolutionary Computation, pp. 1057–1063. IEEE Press, Los Alamitos (2009)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Salinas-Gutiérrez, R., Hernández-Aguirre, A., Villa-Diharce, E.R. (2009). Using Copulas in Estimation of Distribution Algorithms. In: Aguirre, A.H., Borja, R.M., Garciá, C.A.R. (eds) MICAI 2009: Advances in Artificial Intelligence. MICAI 2009. Lecture Notes in Computer Science(), vol 5845. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-05258-3_58

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-05258-3_58

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-05257-6

  • Online ISBN: 978-3-642-05258-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics