[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
research-article

Self-Parameterization Based Multi-Resolution Mesh Convolution Networks

Published: 01 September 2023 Publication History

Abstract

This paper addresses the challenges of designing mesh convolution neural networks for 3D mesh dense prediction. While deep learning has achieved remarkable success in image dense prediction tasks, directly applying or extending these methods to irregular graph data, such as 3D surface meshes, is nontrivial due to the non-uniform element distribution and irregular connectivity in surface meshes which make it difficult to adapt downsampling, upsampling, and convolution operations. In addition, commonly used multiresolution networks require repeated high-to-low and then low-to-high processes to boost the performance of recovering rich, high-resolution representations. To address these challenges, this paper proposes a self-parameterization-based multi-resolution convolution network that extends existing image dense prediction architectures to 3D meshes. The novelty of our approach lies in two key aspects. First, we construct a multi-resolution mesh pyramid directly from the high-resolution input data and propose area-aware mesh downsampling/upsampling operations that use sequential bijective inter-surface mappings between different mesh resolutions. The inter-surface mapping redefines the mesh, rather than reshaping it, which thus avoids introducing unnecessary errors. Second, we maintain the high-resolution representation in the multi-resolution convolution network, enabling multi-scale fusions to exchange information across parallel multi-resolution subnetworks, rather than through connections of high-to-low resolution subnetworks in series. These features differentiate our approach from most existing mesh convolution networks and enable more accurate mesh dense predictions, which is confirmed in experiments.

Graphical abstract

Display Omitted

Highlights

Construction of a multi-resolution mesh pyramid with bijective surface mapping.
Area-aware pooling and face convolution for efficient mesh feature learning.
Multi-resolution mesh convolution networks for mesh dense prediction.

References

[1]
Krizhevsky A, Sutskever I, Hinton GE. ImageNet Classification with Deep Convolutional Neural Networks. In: Proceedings of the 25th international conference on neural information processing systems - volume 1. 2012, p. 1097–105.
[2]
Simonyan K, Zisserman A. Very Deep Convolutional Networks for Large-Scale Image Recognition. In: International conference on learning representations. 2015.
[3]
He K, Zhang X, Ren S, Sun J. Deep Residual Learning for Image Recognition. In: 2016 IEEE conference on computer vision and pattern recognition. 2016, p. 770–8.
[4]
Noh H, Hong S, Han B. Learning deconvolution network for semantic segmentation. In: Proceedings of the IEEE international conference on computer vision. 2015, p. 1520–8.
[5]
Badrinarayanan V., Kendall A., Cipolla R., SegNet: A deep convolutional encoder-decoder architecture for image segmentation, IEEE Trans Pattern Anal Mach Intell 39 (12) (2017) 2481–2495.
[6]
Ronneberger O, Fischer P, Brox T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In: Medical image computing and computer-assisted intervention. 2015.
[7]
Newell A., Yang K., Deng J., Stacked hourglass networks for human pose estimation, in: Computer vision – ECCV 2016, Springer International Publishing, 2016, pp. 483–499.
[8]
Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid Scene Parsing Network. In: IEEE Conference on computer vision and pattern recognition. 2017, p. 6230–9.
[9]
Chen L.-C., Papandreou G., Kokkinos I., Murphy K., Yuille A.L., DeepLab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs, IEEE Trans Pattern Anal Mach Intell 40 (4) (2018) 834–848.
[10]
Chen L-C, Zhu Y, Papandreou G, Schroff F, Adam H. Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation. In: ECCV. 2018.
[11]
Sun K, Xiao B, Liu D, Wang J. Deep High-Resolution Representation Learning for Human Pose Estimation. In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2019.
[12]
Wang J, Sun K, Cheng T, Jiang B, Deng C, Zhao Y, et al. Deep High-Resolution Representation Learning for Visual Recognition. In: Proceedings of IEEE transactions on pattern analysis and machine intelligence. 2019.
[13]
Hanocka R., Hertz A., Fish N., Giryes R., Fleishman S., Cohen-Ore D., MeshCNN: A network with an edge, ACM TOG (2019) 90.
[14]
Milano F, Loquercio A, Rosinol A, Scaramuzza D, Carlone L. Primal-Dual Mesh Convolutional Neural Networks. In: Conference on neural information processing systems. 2020.
[15]
Hu S.-M., Liu Z.-N., Guo M.-H., Cai J.-X., Huang J., Mu T.-J., et al., Subdivision-based mesh convolution networks, ACM Trans Graph 41 (3) (2022) 25:1–25:16.
[16]
Garland M., Heckbert P.S., Surface simplification using quadric error metrics, in: Proceedings of the 24th annual conference on computer graphics and interactive techniques, ACM Press/Addison-Wesley Publishing Co., USA, 1997, pp. 209–216.
[17]
Schreiner J., Asirvatham A., Praun E., Hoppe H., Inter-surface mapping, ACM TOG 23 (3) (2004) 870–877.
[18]
Khodakovsky A., Litke N., Schröder P., Globally smooth parameterizations with low distortion, ACM TOG 22 (3) (2003) 350–357.
[19]
Masci J, Boscaini D, Bronstein MM, Vandergheynst P. Geodesic convolutional neural networks on Riemannian manifolds. In: IEEE international conference on computer vision workshop. 2015, p. 832–40.
[20]
Monti F, Boscaini D, Masci J, Rodol‘a E, Svoboda J, Bronstein MM. Geometric deep learning on graphs and manifolds using mixture model CNNs. In: Proceedings IEEE conference on computer vision and pattern recognition. 2017, p. 5425–34.
[21]
Fey M, Lenssen J, Weichert F, Mülle H. SplineCNN: Fast geometric deep learning with continuous B-spline kernels. In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2018, 869877.
[22]
Feng Y., Feng Y., You H., Zhao X., Gao Y., Meshnet: Mesh neural network for 3d shape representation, Proceedings of the AAAI conference on artificial intelligence, vol. 33, 2019, pp. 8279–8286.
[23]
Schult J., Engelmann F., KonACM TOGianni T., Leibe B., DualConvMesh-net: Joint geodesic and Euclidean convolutions on 3D meshes, 2020, pp. 8609–8619.
[24]
Li X.-J., Yang J., Zhang F.-L., Laplacian mesh transformer: Dual attention and topology aware network for 3D mesh classification and segmentation, in: Computer Vision – ECCV 2022, 2022, pp. 541–560.
[25]
Lahav A., Tal A., Meshwalker: Deep mesh understanding by random walks, ACM TOG 39 (6) (2020) 1–13.
[26]
Defferrard M., Bresson X., Vandergheynst P., Convolutional neural networks on graphs with fast localized spectral filtering, Adv Neural Inf Process Syst (NIPS) (2016) 3837–3845.
[27]
Ying Z., You J., Morris C., Ren X., Hamilton W., Jure M.M., Hierarchical graph representation learning with differentiable pooling, Adv Neural Inf Process Syst (NIPS) (2018) 4800–4810.
[28]
Liu H.-T.D., Kim V.G., Chaudhuri S., Aigerman N., Jacobson A., Neural subdivision, ACM Trans Graph 39 (4) (2020).
[29]
Aigerman N., Poranne R., Lipman Y., Lifted bijections for low distortion surface mappings, ACM TOG 33 (4) (2014) 1–12.
[30]
Schmidt P., Born J., Campen M., Kobbelt L., Distortion-minimizing injective maps between surfaces, ACM TOG 38 (6) (2019).
[31]
Aigerman N., Lipman Y., Orbifold Tutte embeddings, ACM TOG 34 (6) (2015) 190–191.
[32]
Aigerman N., Kovalsky S.Z., Lipman Y., Spherical orbifold Tutte embeddings, ACM TOG 36 (4) (2017).
[33]
Schmidt P., Campen M., Born J., Kobbelt L., Inter-surface maps via constant-curvature metrics, ACM TOG 39 (4) (2020).
[34]
Kraevoy V., Sheffer A., Cross-parameterization and compatible remeshing of 3D models, ACM TOG 23 (3) (2004) 861–869.
[35]
Liu H.-T., Zhang J., Ben-Chen M., Jacobson A., Surface multigrid via intrinsic prolongation, ACM Trans Graph 40 (2021) 1–13.
[36]
Lévy B., Petitjean S., Ray N., Maillot J., Least squares conformal maps for automatic texture atlas generation, ACM TOG 21 (3) (2002) 362–371.
[37]
Lee AWF, Sweldens W, Schröder P, Cowsar L, Dobkin D. MAPS: Multiresolution Adaptive Parameterization of Surfaces. In: Proceedings of SIGGRAPH 98. 1998, p. 95–104.
[38]
Brown P.J., Faigle C.T., A robust efficient algorithm for point location in triangulations, University of Cambridge, Computer Laboratory, 1997.
[39]
Mccoid C., Gander M.J., A provably robust algorithm for triangle-triangle intersections in floating-point arithmetic, ACM Trans Math Software 48 (2) (2022).
[40]
Hertz A., Hanocka R., Giryes R., Cohen-Or D., Deep geometric texture synthesis, ACM TOG 39 (4) (2020).
[41]
Lu H, Dai Y, Shen C, Xu S. Indices Matter: Learning to Index for Deep Image Matting. In: Proceedings of the IEEE/CVF international conference on computer vision. 2019.
[42]
Maron H., Galun M., Aigerman N., Trope M., Dym N., Yumer E., et al., Convolutional neural networks on surfaces via seamless toric covers, ACM TOG (2017).
[43]
Wang Y., Asafi S., van Kaick O., Zhang H., Cohen-Or D., Chen B., Active co-analysis of a set of shapes 31(6), 2012.
[44]
Bogo F, Romero J, Loper M, Black MJ. FAUST: Dataset and evaluation for 3D mesh registration. In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2014, p. 3794–801.
[45]
Qi CR, Yi L, Su H, Guibas LJ. PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space. In: Proceedings of the 31st international conference on neural information processing systems. 2017, p. 5105–14.
[46]
Sharp N., Attaiki S., Crane K., Ovsjanikov M., DiffusionNet: Discretization agnostic learning on surfaces 41 (3), 2022.
[47]
Li Q, Liu S, Hu L, Liu X. Shape correspondence using anisotropic Chebyshev spectral CNNs. In: 2020 IEEE/CVF conference on computer vision and pattern recognition. 2020, p. 14646–55.
[48]
Kim V.G., Lipman Y., Funkhouser T., Blended intrinsic maps, ACM TOG 30 (4) (2011).
[49]
Litany O, Remez T, Rodolà E, Bronstein AM, Bronstein MM. Deep Functional Maps: Structured Prediction for Dense Shape Correspondence. In: 2017 IEEE international conference on computer vision. 2017, p. 5660–8.

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Computer-Aided Design
Computer-Aided Design  Volume 162, Issue C
Sep 2023
147 pages

Publisher

Butterworth-Heinemann

United States

Publication History

Published: 01 September 2023

Author Tags

  1. Geometric deep learning
  2. Mesh dense prediction
  3. Self-parameterization
  4. Multi-resolution fusion

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 0
    Total Downloads
  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 22 Dec 2024

Other Metrics

Citations

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media