[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
research-article

QMLE: A Methodology for Statistical Inference of Service Demands from Queueing Data

Published: 22 August 2018 Publication History

Abstract

Estimating the demands placed by services on physical resources is an essential step for the definition of performance models. For example, scalability analysis relies on these parameters to predict queueing delays under increasing loads. In this article, we investigate maximum likelihood (ML) estimators for demands at load-independent and load-dependent resources in systems with parallelism constraints. We define a likelihood function based on state measurements and derive necessary conditions for its maximization. We then obtain novel estimators that accurately and inexpensively obtain service demands using only aggregate state data. With our approach, and also thanks to approximation methods for computing marginal and joint distributions for the load-dependent case, confidence intervals can be rigorously derived, explicitly taking into account both topology and concurrency levels of the services. Our estimators and their confidence intervals are validated against simulations and real system measurements for two multi-tier applications, showing high accuracy also in models with load-dependent resources.

References

[1]
V. Apte, T. V. S. Viswanath, D. Gawali, A. Kommireddy, and A. Gupta. 2017. AutoPerf: Automated load testing and resource usage profiling of multi-tier internet applications. In Proc. of ICPE. ACM, pp. 115--126.
[2]
M. Awad and D. A. Menascé. 2017. Deriving parameters for open and closed QN models of operational systems through black box optimization. In Proc. of ICPE. ACM, pp. 127--138.
[3]
G. Bolch, S. Greiner, H. de Meer, and K. S. Trivedi. 2006. Queueing Networks and Markov Chains: Modeling and Performance Evaluation with Computer Science Applications. John Wiley 8 Sons.
[4]
S. Bruell, G. Balbo, and P. V. Afshari. 1984. Mean value analysis of mixed, multiple class BCMP networks with load dependent service stations. PEVA 4, 4 (1984), 241--260.
[5]
G. Casale. 2009. CoMoM: Efficient class-oriented evaluation of multiclass performance models. IEEE TSE. 35, 2 (2009), 162--177.
[6]
G. Casale, P. Cremonesi, and R. Turrin. 2008. Robust workload estimation in queueing network performance models. In Proc. of IEEE PDP. pp. 183--187.
[7]
G. Casale, J. F. Pérez, and W. Wang. 2015. QD-AMVA: Evaluating systems with queue-dependent service requirements. PEVA 91 (2015), 80--98.
[8]
P. Cremonesi, K. Dhyani, and A. Sansottera. 2010. Service time estimation with a refinement enhanced hybrid clustering algorithm. In Proc. of ASMTA. Springer, pp. 291--305.
[9]
P. Cremonesi and A. Sansottera. 2014. Indirect estimation of service demands in the presence of structural changes. PEVA 73 (2014), 18--40.
[10]
E. De Souza e Silva and R. R. Muntz. 1988. Simple relationships among moments of queue lengths in product form queueing networks. IEEE TC 37, 9 (1988), 1125--1129.
[11]
E. De Souza e Silva and S. Lavenberg. 1989. Calculating joint queue length distributions in product form queueing networks. JACM 36, 1 (1989), 194--207.
[12]
G. Franks, T. Al-Omari, M. Woodside, O. Das, and S. Derisavi. 2009. Enhanced modeling and solution of layered queueing networks. IEEE TSE 35, 2 (2009), 148--161.
[13]
D. Gmach, J. Rolia, L. Cherkasova, and A. Kemper. 2007. Workload analysis and demand prediction of enterprise data center applications. In Proc. of IEEE IISWC. pp. 171--180.
[14]
A. Kalbasi, D. Krishnamurthy, J. Rolia, and S. Dawson. 2012. DEC: Service demand estimation with confidence. IEEE TSE 38, 3 (2012), 561--578.
[15]
A. Kalbasi, D. Krishnamurthy, J. Rolia, and M. Richter. 2011. Mode: Mix driven on-line resource demand estimation. In Proc. of IEEE CNSM. pp. 1--9.
[16]
A. Khan, X. Yan, S. Tao, and N. Anerousis. 2012. Workload characterization and prediction in the cloud: A multiple time series approach. In Proc. of IEEE NOMS. pp. 1287--1294.
[17]
S. Kraft, S. Pacheco-Sanchez, G. Casale, and S. Dawson. 2009. Estimating service resource consumption from response time measurements. In Proc. of ValueTools. p. 48.
[18]
D. Kumar, L. Zhang, and A. Tantawi. 2009. Enhanced inferencing: Estimation of a workload dependent performance model. In Proc. of ValueTools. p. 47.
[19]
S. S. Lam and Y. L. Lien. 1983. A tree convolution algorithm for the solution of queueing networks. CACM 26 (1983), 203--215.
[20]
S. S. Lavenberg and G. S. Shedler. 1975. Derivation of confidence intervals for work rate estimators in a closed queuing network. SIAM J. Comput. 4, 2 (1975), 108--124.
[21]
Z. Liu, L. Wynter, C. H. Xia, and F. Zhang. 2006. Parameter inference of queueing models for IT systems using end-to-end measurements. PEVA 63 (2006), 36--60.
[22]
D. A. Menascé. 2008. Computing missing service demand parameters for performance models. In Int. CMG Conf. pp. 241--248.
[23]
D. A. Menascé, V. A. F. Almeida, L. W. Dowdy, and L. Dowdy. 2004. Performance by Design: Computer Capacity Planning by Example. Prentice Hall.
[24]
J. Moschetta and G. Casale. 2012. OFBench: An enterprise application benchmark for cloud resource management studies. In Proc. of SYNASC. pp. 393--399.
[25]
I. J. Myung. 2003. Tutorial on maximum likelihood estimation. JMP 47, 1 (2003), 90--100.
[26]
A. Kattepur and M. K. Nambiar. 2017. Service demand modeling and performance prediction with single-user tests. PEVA 110 (2017), 1--21.
[27]
G. Pacifici, W. Segmuller, M. Spreitzer, and A. Tantawi. 2008. CPU demand for web serving: Measurement analysis and dynamic estimation. PEVA 65, 6 (2008), 531--553.
[28]
Y. Pawitan. 2001. In All Likelihood: Statistical Modelling and Inference Using Likelihood. Oxford University Press.
[29]
J. F. Perez, G. Casale, and S. Pacheco-Sanchez. 2015. Estimating computational requirements in multi-threaded applications. IEEE TSE 41, 3 (2015), 264--278.
[30]
M. Reiser and H. Kobayashi. 1975. Queuing networks with multiple closed chains: Theory and computational algorithms. IBM J. Res. Dev. 19, 3 (1975), 283--294.
[31]
M. Reiser and S. S. Lavenberg. 1980. Mean-value analysis of closed multichain queuing networks. JACM 27, 2 (1980), 313--322.
[32]
J. Rolia and V. Vetland. 1995. Parameter estimation for performance models of distributed application systems. In Proc. of CASCON. p. 54.
[33]
J. Rolia and V. Vetland. 1998. Correlating resource demand information with arm data for application services. In Proc. of ACM WOSP. pp. 219--230.
[34]
J. V. Ross, T. Taimre, and P. K. Pollett. 2007. Estimation for queues from queue length data. Queueing Syst. 55, 2 (2007), 131--138.
[35]
P. J. Schweitzer. 1979. Approximate analysis of multiclass closed networks of queues. In Proc. of Int. Conf. Stoc. Cont. Opt. pp. 25--29.
[36]
A. B Sharma, R. Bhagwan, M. Choudhury, L. Golubchik, R. Govindan, and G. M. Voelker. 2008. Automatic request categorization in internet services. ACM SIGMETRICS PER 36, 2 (2008), 16--25.
[37]
S. Spinner, G. Casale, F. Brosig, and S. Kounev. 2015. Evaluating approaches to resource demand estimation. PEVA 92 (2015), 51--71.
[38]
C. Sutton and M. I. Jordan. 2011. Bayesian inference for queueing networks and modeling of internet services. Ann. Appl. Stat. 5, 1 (2011), 254--282.
[39]
W. Wang, X. Huang, X. Qin, W. Zhang, J. Wei, and H. Zhong. 2012. Application-level cpu consumption estimation: Towards performance isolation of multi-tenancy web applications. In Proc. of IEEE CLOUD. IEEE, pp. 439--446.
[40]
W. Wang, G. Casale, and C. Sutton. 2016. A Bayesian approach to parameter inference in queueing networks. ACM Trans. Model. Comput. Simul. 27, 1 (Nov. 2016), Article No. 2.
[41]
W. Wang, G. Casale, A. Kattepur, and M. Nambiar. 2016. Maximum likelihood estimation of closed queueing network demands from queue length data. Proc. of ACM/SPEC ICPE. pp. 3--14.
[42]
X. Wu and M. Woodside. 2008. A calibration framework for capturing and calibrating software performance models. In Computer Performance Engineering. Springer, pp. 32--47.
[43]
Q. Zhang, L. Cherkasova, and E. Smirni. 2007. A regression-based analytic model for dynamic resource provisioning of multi-tier applications. In Proc. of IEEE ICAC. pp. 27--27.
[44]
T. Zheng, M. Woodside, and M. Litoiu. 2008. Performance model estimation and tracking using optimal filters. IEEE TSE 34, 3 (2008), 391--406.

Cited By

View all
  • (2023)Safe Maintenance of Railways using COTS Mobile Devices: The Remote Worker DashboardACM Transactions on Cyber-Physical Systems10.1145/36071937:4(1-20)Online publication date: 14-Oct-2023
  • (2022)FSpot: Fast and Efficient Video Encoding Workloads Over Amazon Spot InstancesComputers, Materials & Continua10.32604/cmc.2022.02363071:3(5677-5697)Online publication date: 2022
  • (2022)Architectural Design of Cloud Applications: A Performance-Aware Cost Minimization ApproachIEEE Transactions on Cloud Computing10.1109/TCC.2020.301570310:3(1571-1591)Online publication date: 1-Jul-2022
  • Show More Cited By

Index Terms

  1. QMLE: A Methodology for Statistical Inference of Service Demands from Queueing Data

    Recommendations

    Comments

    Please enable JavaScript to view thecomments powered by Disqus.

    Information & Contributors

    Information

    Published In

    cover image ACM Transactions on Modeling and Performance Evaluation of Computing Systems
    ACM Transactions on Modeling and Performance Evaluation of Computing Systems  Volume 3, Issue 4
    December 2018
    175 pages
    ISSN:2376-3639
    EISSN:2376-3647
    DOI:10.1145/3271433
    • Editors:
    • Sem Borst,
    • Carey Williamson
    Issue’s Table of Contents
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 22 August 2018
    Accepted: 01 June 2018
    Revised: 01 May 2018
    Received: 01 December 2017
    Published in TOMPECS Volume 3, Issue 4

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. Estimation
    2. maximum likelihood
    3. queueing networks
    4. service demand

    Qualifiers

    • Research-article
    • Research
    • Refereed

    Funding Sources

    • Amazon AWS in Education Research
    • European Commission
    • EPSRC

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)9
    • Downloads (Last 6 weeks)3
    Reflects downloads up to 04 Feb 2025

    Other Metrics

    Citations

    Cited By

    View all
    • (2023)Safe Maintenance of Railways using COTS Mobile Devices: The Remote Worker DashboardACM Transactions on Cyber-Physical Systems10.1145/36071937:4(1-20)Online publication date: 14-Oct-2023
    • (2022)FSpot: Fast and Efficient Video Encoding Workloads Over Amazon Spot InstancesComputers, Materials & Continua10.32604/cmc.2022.02363071:3(5677-5697)Online publication date: 2022
    • (2022)Architectural Design of Cloud Applications: A Performance-Aware Cost Minimization ApproachIEEE Transactions on Cloud Computing10.1109/TCC.2020.301570310:3(1571-1591)Online publication date: 1-Jul-2022
    • (2022)Exploring the Internet of Things sequence-structure detection and supertask network generation of temporal-spatial-based graph convolutional neural networkThe Journal of Supercomputing10.1007/s11227-021-04041-778:4(5029-5049)Online publication date: 1-Mar-2022
    • (2021)EPRT: An Efficient Privacy-Preserving Medical Service Recommendation and Trust Discovery Scheme for eHealth SystemACM Transactions on Internet Technology10.1145/339767821:3(1-24)Online publication date: 16-Jun-2021
    • (2019)SD: A Divergence-Based Estimation Method for Service Demands in Cloud Systems2019 7th International Conference on Future Internet of Things and Cloud (FiCloud)10.1109/FiCloud.2019.00035(197-204)Online publication date: Aug-2019

    View Options

    Login options

    Full Access

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Figures

    Tables

    Media

    Share

    Share

    Share this Publication link

    Share on social media