[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
research-article
Open access

Dynamic kelvinlets: secondary motions based on fundamental solutions of elastodynamics

Published: 30 July 2018 Publication History

Abstract

We introduce Dynamic Kelvinlets, a new analytical technique for real-time physically based animation of virtual elastic materials. Our formulation is based on the dynamic response to time-varying force distributions applied to an infinite elastic medium. The resulting displacements provide the plausibility of volumetric elasticity, the dynamics of compressive and shear waves, and the interactivity of closed-form expressions. Our approach builds upon the work of de Goes and James [2017] by presenting an extension of the regularized Kelvinlet solutions from elastostatics to the elastodynamic regime. To finely control our elastic deformations, we also describe the construction of compound solutions that resolve pointwise and keyframe constraints. We demonstrate the versatility and efficiency of our method with a series of examples in a production grade implementation.

Supplementary Material

ZIP File (081-123.zip)
Supplemental files.
MP4 File (081-123.mp4)

References

[1]
K. Aki and P.G. Richards. 1980. Quantitative Seismology: Theory and Methods. W.H. Freeman, San Francisco I (1980).
[2]
S. S. An, T. Kim, and D. L. James. 2008. Optimizing cubature for efficient integration of subspace deformations. In ACM Trans. Graph., Vol. 27. ACM, 165.
[3]
A. Angelidis and K. Singh. 2007. Kinodynamic Skinning Using Volume-preserving Deformations. In Proc. of the 2007 ACM SIGGRAPH/Eurographics Symp. on Computer Animation. 129--140.
[4]
Autodesk. 2016. Maya User Guide. (2016). https://autodesk.com/maya.
[5]
R. Barzel. 1997. Faking dynamics of ropes and springs. IEEE Computer Graphics and Applications 17, 3 (1997), 31--39.
[6]
S. Bouaziz, S. Martin, T. Liu, L. Kavan, and M. Pauly. 2014. Projective Dynamics: Fusing Constraint Projections for Fast Simulation. ACM Trans. Graph. 33, 4, Article 154 (2014).
[7]
J. A. Canabal, D. Miraut, N. Thürey, T. Kim, J. Portilla, and M. A. Otaduy. 2016. Dispersion Kernels for Water Wave Simulation. ACM Trans. on Graph. 35, 6 (2016).
[8]
M. G. Choi and H.-S. Ko. 2005. Modal Warping: Real-Time Simulation of Large Rotational Deformation and Manipulation. IEEE Trans. on Visualization and Computer Graphics 11, 1 (2005), 91--101.
[9]
R. Cortez. 2001. The Method of Regularized Stokeslets. SIAM J. on Scientific Computing 23, 4 (2001), 1204--1225.
[10]
R. Cortez, L. Fauci, and A. Medovikov. 2005. The method of regularized Stokeslets in three dimensions: Analysis, validation, and application to helical swimming. Physics of Fluids 17 (2005).
[11]
F. de Goes and D. L. James. 2017. Regularized Kelvinlets: Sculpting Brushes Based on Fundamental Solutions of Elasticity. ACM Trans. Graph. 36, 4, Article 40 (2017).
[12]
J. Dominguez. 1993. Boundary Elements in dynamics. WIT Press.
[13]
F. Hahn, S. Martin, B. Thomaszewski, R. Sumner, S. Coros, and M. Gross. 2012. Rig-space Physics. ACM Trans. Graph. 31, 4 (2012).
[14]
J. Huang, Y. Tong, K. Zhou, H. Bao, and M. Desbrun. 2011. Interactive Shape Interpolation Through Controllable Dynamic Deformation. IEEE Trans. on Visualization and Computer Graphics 17, 7 (2011), 983--992.
[15]
D. L. James and D. K. Pai. 2002. DyRT: dynamic response textures for real time deformation simulation with graphics hardware. In ACM Trans. Graph., Vol. 21. ACM, 582--585.
[16]
S. Jeschke and C. Wojtan. 2015. Water wave animation via wavefront parameter interpolation. ACM Trans. Graph. 34, 3 (2015), 27.
[17]
S. Jeschke and C. Wojtan. 2017. Water wave packets. ACM Trans. Graph. 36, 4 (2017), 103.
[18]
M. Kass and J. Anderson. 2008. Animating oscillatory motion with overlap: wiggly splines. In ACM Trans. Graph., Vol. 27. ACM, 28.
[19]
M. Kass and G. Miller. 1990. Rapid, Stable Fluid Dynamics for Computer Graphics. SIGGRAPH 24, 4 (1990), 49--57.
[20]
E. Kausel. 2006. Fundamental Solutions in Elastodynamics: A Compendium. Cambridge University Press.
[21]
T. Liu, A. W. Bargteil, J. F. O'Brien, and L. Kavan. 2013. Fast Simulation of Mass-spring Systems. ACM Trans. Graph. 32, 6, Article 214 (2013).
[22]
M. Müller and N. Chentanez. 2011. Solid Simulation with Oriented Particles. ACM Trans. Graph. 30, 4, Article 92 (2011).
[23]
M. Müller and M. H. Gross. 2004. Interactive Virtual Materials. In Graphics Interface 2004. 239--246.
[24]
M. Müller, B. Heidelberger, M. Teschner, and M. Gross. 2005. Meshless deformations based on shape matching. ACM Trans. Graph. 24, 3 (2005), 471--478.
[25]
A. Nealen, M. Müller, R. Keiser, E. Boxerman, and M. Carlson. 2006. Physically based deformable models in computer graphics. In Computer graphics forum, Vol. 25. 809--836.
[26]
G. Nielson, H. Hagen, and H. Müller. 1997. Scientific Visualization. IEEE Computer Society.
[27]
M. Pauly, D. K. Pai, and L. J. Guibas. 2004. Quasi-rigid Objects in Contact. In Proc. of the 2004 ACM SIGGRAPH/Eurographics Symp. on Computer Animation. Eurographics Association, 109--119.
[28]
A. Pentland and J. Williams. 1989. Good Vibrations: Modal Dynamics for Graphics and Animation. SIGGRAPH Comput. Graph. 23, 3 (1989), 207--214.
[29]
J. Reinders. 2007. Intel Threading Building Blocks. O'Reilly & Associates, Inc.
[30]
C. Schulz, C. von Tycowicz, H.-P. Seidel, and K. Hildebrandt. 2014. Animating Deformable Objects Using Sparse Spacetime Constraints. ACM Trans. Graph. 33, 4, Article 109 (2014).
[31]
C. Shen, T. Hahn, B. Parker, and S. Shen. 2015. Animation Recipes: Turning an Animator's Trick into an Automatic Animation System. In ACM SIGGRAPH Talks. ACM, Article 29.
[32]
Side Effects. 2018. Houdini Engine. (2018). http://www.sidefx.com.
[33]
G. G. Stokes. 1849. On the dynamical theory of diffraction. Trans. Camb. Phil. Soc. 9 (1849), 1--62.
[34]
J. Tessendorf. 2001. Simulating ocean water. Simulating nature: realistic and interactive techniques. SIGGRAPH Courses 1, 2 (2001), 5.
[35]
W. von Funck, H. Theisel, and H. P. Seidel. 2006. Vector field based shape deformations. ACM Trans. on Graph. 25, 3 (2006), 1118--1125.
[36]
W. von Funck, H. Theisel, and H. P. Seidel. 2007. Elastic Secondary Deformations by Vector Field Integration. In Proc. of the Fifth Eurographics Symp. on Geometry Processing. 99--108.
[37]
C. Yuksel, D. H. House, and J. Keyser. 2007. Wave particles. In ACM Trans. Graph., Vol. 26. ACM, 99.

Cited By

View all
  • (2023)Somigliana Coordinates: an elasticity-derived approach for cage deformationACM SIGGRAPH 2023 Conference Proceedings10.1145/3588432.3591519(1-8)Online publication date: 23-Jul-2023
  • (2023)Local Deformation for Interactive Shape EditingACM SIGGRAPH 2023 Conference Proceedings10.1145/3588432.3591501(1-10)Online publication date: 23-Jul-2023
  • (2023)Surface‐Only Dynamic Deformables using a Boundary Element MethodComputer Graphics Forum10.1111/cgf.1462541:8(75-86)Online publication date: 20-Mar-2023
  • Show More Cited By

Index Terms

  1. Dynamic kelvinlets: secondary motions based on fundamental solutions of elastodynamics

      Recommendations

      Comments

      Please enable JavaScript to view thecomments powered by Disqus.

      Information & Contributors

      Information

      Published In

      cover image ACM Transactions on Graphics
      ACM Transactions on Graphics  Volume 37, Issue 4
      August 2018
      1670 pages
      ISSN:0730-0301
      EISSN:1557-7368
      DOI:10.1145/3197517
      Issue’s Table of Contents
      Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses, contact the Owner/Author.

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      Published: 30 July 2018
      Published in TOG Volume 37, Issue 4

      Check for updates

      Author Tags

      1. elastic waves
      2. linear elastodynamics

      Qualifiers

      • Research-article

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • Downloads (Last 12 months)158
      • Downloads (Last 6 weeks)33
      Reflects downloads up to 01 Jan 2025

      Other Metrics

      Citations

      Cited By

      View all
      • (2023)Somigliana Coordinates: an elasticity-derived approach for cage deformationACM SIGGRAPH 2023 Conference Proceedings10.1145/3588432.3591519(1-8)Online publication date: 23-Jul-2023
      • (2023)Local Deformation for Interactive Shape EditingACM SIGGRAPH 2023 Conference Proceedings10.1145/3588432.3591501(1-10)Online publication date: 23-Jul-2023
      • (2023)Surface‐Only Dynamic Deformables using a Boundary Element MethodComputer Graphics Forum10.1111/cgf.1462541:8(75-86)Online publication date: 20-Mar-2023
      • (2022)Jacobian-free Deformation of Genus-0 Surfaces種数0サーフェスのヤコビアンフリーな変形シミュレーションThe Journal of the Society for Art and Science10.3756/artsci.21.14621:3(146-156)Online publication date: 30-Sep-2022
      • (2022)Go Green: General Regularized Green’s Functions for ElasticityACM SIGGRAPH 2022 Conference Proceedings10.1145/3528233.3530726(1-8)Online publication date: 27-Jul-2022
      • (2019)Sharp kelvinletsProceedings of the 2019 Digital Production Symposium10.1145/3329715.3338884(1-8)Online publication date: 27-Jul-2019
      • (2019)Fundamental solutions for water wave animationACM Transactions on Graphics10.1145/3306346.332300238:4(1-14)Online publication date: 12-Jul-2019
      • (2018)Art and technology at PixarSIGGRAPH Asia 2018 Courses10.1145/3277644.3277785(1-68)Online publication date: 4-Dec-2018

      View Options

      View options

      PDF

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader

      Login options

      Full Access

      Media

      Figures

      Other

      Tables

      Share

      Share

      Share this Publication link

      Share on social media