[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
10.1145/304893.304992acmconferencesArticle/Chapter ViewAbstractPublication PagessocgConference Proceedingsconference-collections
Article
Free access

Approximation and exact algorithms for minimum-width annuli and shells

Published: 13 June 1999 Publication History
First page of PDF

References

[1]
P. K. Agarwal, B. Aronov, and M. Sharir, Computing envelopes in four dimensions with applications, SIAM J. Comput., 26 (1997), 1714-1732.
[2]
P. K. Agarwal, H. Edelsbrunner, O. Schwarzkopf, and E. Welzl, Euclidean minimum spanning trees and bichromatic closest pairs, Discrete Comput. Geom., 6 (t991), 407-422.
[3]
P. K. Agarwal and J. Erickson, Geometric range searching and its relatives, in: Advances in Discrete and Computational Geometry (J. E. G. B. ChazeUe and R. Pollack, eds.), AMS Press, Providence, RI, 1998, pp. 1-56.
[4]
P. K. Agarwal and J. Matou#ek. On range searching with semialgebraic sets. Discrete Comput. Geom., 11:393-418, 1994.
[5]
P.K. Agarwal and M. Sharir, Efficient randomized algorithms for some geometric optimization problems, Discrete Cornput. Geom., 16 (1996), 317-337.
[6]
P. K. Agarwal, M. Sharir, and S. Toledo, Applications of parametric searching in geometric optimization, J. Algorithms, 17 (1994), 292-318.
[7]
A. Aggarwal, L. J. Guibas, J. Saxe, and P. W. Shor, A linear-time algorithm for computing the Voronoi diagram of a convex polygon, Discrete Comput. Geom., 4 (1989), 591-604.
[8]
F. Aurenhammer. Voronoi diagrams: A survey of a fundamental geometric data structure. A CM Comput. Sure., 23:345-405, 1991.
[9]
T. M. Chan, Geometric applications of a randomized optimization technique, Proc. l#th Annu. A CM Sympos. Comput. Geom., 1998, pp. 269-278.
[10]
B. Chazelle, H. Edelsbrunner, L. J. Guibas, and M. Sharir, A singly-exponential stratification scheme for real semi-algebraic varieties and its applications, Theoret. Comput. Sci., 84 (1991), ??-105.
[11]
M. de Berg, J. Bose, D. Bremner, S. Ramaswami, and G. Wilfong, Computing constrained minimum-width annuli of point sets, Proc. 5th Workshop Algorithms Data Struct., Lecture Notes Comput. Sei., Vol. 1272, Springer-Verlag, 1997, pp. 3-16.
[12]
D. P. Dobkin and D. G. Kirkpatrick, A linear algorithm for determining the separation of convex polyhedra, J. Algorithms, 6 (1985), 381-392.
[13]
C. A. Duncan, M. T. Goodrich, and E. A. Ramos, Efficient approximation and optimization algorithms for computational metrology, Proc. 8th A CM-SIAM Sympos. Discrete Algorithms, 1997, pp. 121-130.
[14]
M. Dyer and N. Megiddo, Linear programming in low dimensions, in: Handbook o.f Discrete and Computational Geometry (J. E. Goodman and J. O'Rourke, eds.), CRC Press LLC, Boca Raton, FL, 1997, pp. 699- 710.
[15]
H. Ebara, N. Fukuyama, H. Nakano, and Y. Nakanishi, Roundness algorithms using the Voronoi diagrams, Abstracts 1st Canad. Con}. Comput. Geom., 1989, p. 41.
[16]
H. Edelsbrunner, L. J. Guibas, and J. Stolfi, Optimal point location in a monotone subdivision, SIAM J. Comput., 15 (1986), 317-340.
[17]
O. Egecioglu and B. Kalantari, Approximating the diameter of a set of points in the Euclidean space, Inform. Process. Lett., 32 (1989), 205-211.
[18]
L. W. Foster, GEO-METRICS II: The Application of Geometric Tolerancing Techniques, Addison-Wesley, Reading, MA, 1982.
[19]
J. Garcla-Lopez and P. Ramos, Fitting a set of points by a circle, Proc. 13th Annu. A CM Sympos. Comput. Geom., 1997, pp. 139-146.
[20]
S. Har-Peled, Constructing approximate shortest path maps in three dimensions, Proc. i$th Annu. A CM Sympos. Comput. Geom., 1998, pp. 383-391.
[21]
D. Haussler and E. Welzl, Epsilon-nets and simplex range queries, Discrete Comput. Geom., 2 (1987), 127- 151.
[22]
R. Kumar, and D. Sivakumar, Roundness estimation via random sampling, Proc. l Oth A CM-SIAM Sympos. Discrete Algorithms, 1999, pp. 603-612.
[23]
V. B. Le and D. T. Lee, Out-of-roundness problem revisited, IEEE Trans. Pattern Anal. Math. InteU., PAMI-13 (1991), 217-223.
[24]
J. Matou#ek, M. Sharir, and E. Welzl, A subexponential bound for linear programming, Algorithmica, 16 (1996), 498-516.
[25]
K. Mehlhorn, T. Shermer, and C. Yap, A complete roundness classification procedure, Proc. 13th A nnu. A CM Sympos. Comput. Geom., 1997, pp. 129-138.
[26]
J. S. B. Mitchell, D. M. Mount, and C. H. Papadimitriou, The discrete geodesic problem, SIAM J. Cornput., 16 (1987), 647-668.
[27]
F. P. Preparata and M. I. Shamos, Computational Geometry: An Introduction, Springer-Verlag, New York, 1985.
[28]
T. J. Rivlin, Approximating by circles, Computing, 21 (1979), 93-104.
[29]
U. Roy, C. R. Liu, and T. C. Woo, Review of dimensioning and tolerancing: representation and processing, Comput. Aided Design, 23 (1991), 466-483.
[30]
U. Roy and X. Zhang, Establishment of a pair of concentric circles with the minimum radial separation for assessing roundness error, Comput. Aided Design, 24 (1992), 161-168.
[31]
M. Sharir and P. Agarwal. Davenport-Schinzel Sequences and Their Geometric Applications. Cambridge University Press, New York, 1995.
[32]
T. C. Shermer and C. K. Yap, Probing for near centers and relative roundness, Proc. A SME Workshop on Toleraneing and Metrology, 1995.
[33]
M. Staid and R. Janardan, On the width and roundness of a set of points in the plane, Proe. 7th Canad. Conf. Comput. Geom., 1995, pp. 193-198.
[34]
K. Swanson, D. T. Lee, and V. L. Wu, An optimal algorithm for roundness determination on convex polygons, Comput. Geom. Theory Appl., 5 (1995), 225-235.
[35]
C. K. Yap and E.-C. Chang, Issues in the metrology of geometric tolerancing, Algorithms for Robotic Motion and Manipulation (J.-P. Laumond and M. Overmars, ed.), A.K. Peters, Wellesley, MA, 1997, pp. 393-400.

Cited By

View all

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image ACM Conferences
SCG '99: Proceedings of the fifteenth annual symposium on Computational geometry
June 1999
432 pages
ISBN:1581130686
DOI:10.1145/304893
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Sponsors

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 13 June 1999

Permissions

Request permissions for this article.

Check for updates

Qualifiers

  • Article

Conference

SoCG99
SoCG99: The Symposium on Computational Geometry
June 13 - 16, 1999
Florida, Miami Beach, USA

Acceptance Rates

SCG '99 Paper Acceptance Rate 44 of 103 submissions, 43%;
Overall Acceptance Rate 625 of 1,685 submissions, 37%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)40
  • Downloads (Last 6 weeks)13
Reflects downloads up to 13 Jan 2025

Other Metrics

Citations

Cited By

View all
  • (2024)Equality cases of the Alexandrov–Fenchel inequality are not in the polynomial hierarchyForum of Mathematics, Pi10.1017/fmp.2024.2012Online publication date: 11-Nov-2024
  • (2020)Locating Dimensional Facilities in a Continuous SpaceLocation Science10.1007/978-3-030-32177-2_7(143-184)Online publication date: 17-Mar-2020
  • (2016)Locating a minisum annulus: a new partial coverage distance modelTOP10.1007/s11750-016-0435-y25:2(373-393)Online publication date: 24-Oct-2016
  • (2015)Location of Dimensional Facilities in a Continuous SpaceLocation Science10.1007/978-3-319-13111-5_7(135-175)Online publication date: 21-Jan-2015
  • (2011)APPROXIMATING THE DIAMETER, WIDTH, SMALLEST ENCLOSING CYLINDER, AND MINIMUM-WIDTH ANNULUSInternational Journal of Computational Geometry & Applications10.1142/S021819590200074812:01n02(67-85)Online publication date: 20-Nov-2011
  • (2011)Faster circularity estimation by randomizationIEEE Technology Students' Symposium10.1109/TECHSYM.2011.5783817(160-165)Online publication date: Jan-2011
  • (2011)FACETProceedings of the 2011 Second International Conference on Emerging Applications of Information Technology10.1109/EAIT.2011.45(106-109)Online publication date: 19-Feb-2011
  • (2010)Measure of circularity for parts of digital boundaries and its fast computationPattern Recognition10.1016/j.patcog.2009.06.01443:1(37-46)Online publication date: 1-Jan-2010
  • (2004)Almost-Delaunay simplicesProceedings of the fifteenth annual ACM-SIAM symposium on Discrete algorithms10.5555/982792.982851(410-419)Online publication date: 11-Jan-2004
  • (2000)Evaluating the cylindricity of a nominally cylindrical point setProceedings of the eleventh annual ACM-SIAM symposium on Discrete algorithms10.5555/338219.338601(518-527)Online publication date: 1-Feb-2000
  • Show More Cited By

View Options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Login options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media