[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
10.5555/314161.314196acmconferencesArticle/Chapter ViewAbstractPublication PagessodaConference Proceedingsconference-collections
Article
Free access

Efficient approximation and optimization algorithms for computational metrology

Published: 05 January 1997 Publication History
First page of PDF

References

[1]
P. K. AGARWAL, B. ARONOV, AND M. SHARIR, Computing envelopes in four dimensions with applications, in Proc. 10th Annu. ACM Sympos. Comput. Geom., 1994, pp. 348-358.
[2]
P. K. AGARWAL, J. J, MATOUSEK, AND S. SURI, Farthest neighbors, maximum spanning trees and related problems in higher dimensions, Comput. Geom. Theory Appl., I (1992), pp. 189-201.
[3]
P. K. AGARWAL AND M. SHARIR, Off-line dynamic maintenance of the width of a planar point set, Comput. Geom. Theory Appl., I (1991), pp. 65-78.
[4]
~, Planar geometric location problems and maintaining the width of a planar set, Algorithmica, 11 (1994), pp. 185-195.
[5]
, Efficient randomized algorithms for some geometric optimization problems, in Proc. 11th Annu. ACM Sympos. Comput. Geom., 1995, pp. 326-335.
[6]
P. $. AGARWAL, M. SHARIR, AND S. TOLEDO, Applications of parametric searching in geometric optimization, J. Algorithms, 17 (1994), pp. 292-318.
[7]
S. ARYA, D. M. MOUNT, N. S. NETANYAHU, R. SILVERMAN, AND A. Wu, An optimal algorithm for approximate nearest neighbor searching, in Proc. 5th ACM-SIAM Sympos. Discrete Algorithms, 1994, pp. 573-582.
[8]
B. CHAZELLE, An optimal convex hull algorithm in any fixed dimension, Discrete Comput. Geom., 10 (1993), pp. 377-409.
[9]
B. CHAZELLE, H. EDELSBRUNNER, L. GUIBAS, AND M. SHARIR: Diameter, width, closest line pair and parametric searching, Discrete Comput. Geom., 10 (1993), pp. 183~196.
[10]
K. L. CLARKSON, Linear programming in O(n3d2) time, Inform. Process. Lett., 22 (1986), pp. 21-24.
[11]
~, ALas Vegas algorithm for linear programming when the dimension is small, in Proc. 29th Annu. IEEE Sympos. Found. Comput. Sci., 1988, pp. 452-456.
[12]
R. COLE, Slowing down sorting networks to obtain 208.
[13]
M. B. DILLENCOURT, D. M. MOUNT, AND N. S. NET- ANYAHU, A randomized algorithm for slope selection, Internat. J. Comput. Geom. Appl., 2 (1992), pp. 1-27.
[14]
W. P. DONG, E. MAINSAH, P. F. SULLIVAN, AND K. F. STOUT, Instruments and measurement techniques of 3-dimensional surface topography, in Three- Dimensional Surface Topography: Measurement, Interpretation and Applications, K. F. Stout, ed., Penton Press, Bristol, Penn., 1994.
[15]
M. E. DYBR, On a multidimensional search technique and its application to the Euclidean one-center problem, SIAM J. Comput., 15 (1986), pp. 725-738.
[16]
H. EBARA, N. FUKUYAMA, H. NAKANO, AND Y. NA- KANISHI, Roundness algorithms using the Voronoi diagrams, in Abstracts 1st Caned. Conf. Comput. Geom., 1989, p. 41.
[17]
H. EDELSBRUNNER, Algorithms in Combinatorial Geometry, vol. 10 of EATCS Monographs on Theoretical Computer Science, Springer-Verlag, Heidelberg, West Germany, 1987.
[18]
S. FORTUNE AND C. J. VAN WYK, Efficient exact arithmetic for computational geometry, in Proc. 9th Annu. ACM Sympos. Comput. Geom., 1993, pp. 163- 172.
[19]
M. E. HOULE AND G. T. TOUSSAINT, Computing the width of a set, in Proc. 1st Annu. ACM Sympos. Comput. Geom., 1985, pp. 1-7.
[20]
, Computing the width of a set, IEEE Trans. Pattern Anal. Mach. Intell., PAMI-10 (1988), pp. 761- 765.
[21]
R. JANAROAN, On maintaining the width and diameter of a planar point-set online, Internat. J. Comput. Geom. Appl., 3 (1993), pp. 331-344.
[22]
V. B. LE AND D. T. LEE, Out-of-roundness problem revisited, IEEE Trans. Pattern Anal. Mech. Intell., PAMI-13 (1991), pp. 217-223.
[23]
J. M^TOU~EK, Randomized optimal algorithm for slope selection, Inform. Process. Lett., 39 (1991), pp. 183- 187.
[24]
P. MCMULLEN, The maximal number/of faces of a convex polytope, Mathematica, 17 (1970), pp. 179-184.
[25]
N. MEGIDDO, Applying parallel computation algorithms in the design of serial algorithms, J. ACM, 30 (1983), pp. 852-865.
[26]
~, Linear-time algorithms }or linear programming in Ra and related problems, SIAM J. Comput., 12 (1983), pp. 759-776.
[27]
, Linear programming in linear time when the dimension is fixed, J. ACM, 31 (1984), pp. 114-127.
[28]
F. P. PaEPARATX AND M. I. SHAMOS, Computational Geometry: An Introduction, Springer-Verlag, New York, NY, 1985.
[29]
A. A. G. REQUICHA, Mathematical meaning and computational representation of tolerance specifications, in Proc. 1993 Int. Forum on Dimensional Tolerancing and Metrology, 1993, pp. 61-68.
[30]
G. ROTE, C. SCHWARZ, AND J. SNOEYINK, Maintaining the approximate width of a set of points in the plane, in Proc. 5th Caned. Conf. Comput. Geom., Waterloo, Canada, 1993, pp. 258-263.
[31]
R. SEIDEL, Small-dimensional linear programming and convex hulls made easy, Discrete Comput. Geom., 6 (1991), pp. 423-434.
[32]
L. SHAPER AND W. STEIGER, Randomizi?~g optimal geometric algorithms, Technical Report 94-22, DIMACS, 1995.
[33]
T. C. SHERMER AND C. K. YAP, Probing for nearcenters and estimating relative roundness, in Proc. ASME Workshop on Tolerancing and Metrology, 1995.
[34]
J. R. SUEWCHUK, Robust adaptive floating-point geometric predicates, in Proc. 12th Annu. ACM Sympos. Comput. Geom., 1996, pp. 141-150.
[35]
M. SMID AND R. J ANARDAN, On the width and roundness of a set of points in the plane, in Proc. 7th Caned. Conf. Comput. Geom., 1995, pp. 193-198.
[36]
V. SRINIVASAN, Role of sweeps in tolerance semantics, in Proc. 1993 Int. Forum on Dimensional Tolerancing and Metrology, 1993, pp. 69-78.
[37]
K. SWANSON, D. T. LEE, AND V. L. Wu, An optimal algorithm for roundness determination on convex polygons, Computational Geometry: Theory and Applications, 5 (1995), pp. 225-235.
[38]
R. K. WALKER AND V. SRINIVASAN, Creation and evolution of the ASME YIj.5.1M standard, in Proc. 1993 Int. Forum on Dimensional Tolerancing and Metrology, 1993, pp. 19-30.
[39]
C. K. YAP, Towards exact geometric computation, in Proc. 5th Canadian Conference on Computational Geometry (CCCG), 1993, pp. 405-419.
[40]
~, Exact computational geometry and tolerancing metrology, in Snapshots of Computational and Discrete Geometry, Vol. 3, Tech. Rep. SOCS-94.50, D. Avis and J. Bose, eds., McGill School of Comp. Sci., 1995.

Cited By

View all
  • (2013)Fitting cylinders to dataJournal of Computational and Applied Mathematics10.5555/2397198.2397254239(250-269)Online publication date: 1-Feb-2013
  • (2013)Minimum-width rectangular annulusTheoretical Computer Science10.1016/j.tcs.2012.02.041508(74-80)Online publication date: 1-Oct-2013
  • (2011)Minimum width rectangular annulusProceedings of the 5th joint international frontiers in algorithmics, and 7th international conference on Algorithmic aspects in information and management10.5555/2021911.2021951(364-374)Online publication date: 28-May-2011
  • Show More Cited By

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image ACM Conferences
SODA '97: Proceedings of the eighth annual ACM-SIAM symposium on Discrete algorithms
January 1997
788 pages
ISBN:0898713900

Sponsors

Publisher

Society for Industrial and Applied Mathematics

United States

Publication History

Published: 05 January 1997

Check for updates

Qualifiers

  • Article

Acceptance Rates

Overall Acceptance Rate 411 of 1,322 submissions, 31%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)38
  • Downloads (Last 6 weeks)8
Reflects downloads up to 13 Jan 2025

Other Metrics

Citations

Cited By

View all

View Options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Login options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media