[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
research-article

Multi-Behavior Recommendation with Personalized Directed Acyclic Behavior Graphs

Published: 09 December 2024 Publication History

Abstract

A well-developed recommendation system can not only leverage multi-typed interactions (such as page view, add-to-cart, and purchase) to better identify user preferences but also demonstrate high performance, low complexity, and strong interpretability. However, many existing solutions for multi-behavior recommendation fall short of intuitive modeling of real-world scenarios, leading to overly complex models with massive parameters and cumbersome components. In particular, they share two critical limitations: (1) Some pioneering models are built upon the strict assumption of cascade effects across behaviors, which contradicts multifarious behavior paths in practical applications. (2) Existing approaches fail to explicitly capture the unique idiosyncrasies of users and even neglect the inherent nature of items involved in the multi-behavior interactions. To this end, we propose a novel Directed Acyclic Graph Convolutional Network (DA-GCN) for the multi-behavior recommendation task. Specifically, we pinpoint the partial order relations within the monotonic behavior chain and extend it to personalized directed acyclic behavior graphs to exploit behavior dependencies. Then, a GCN-based directed edge encoder is employed to distill rich collaborative signals embodied by each directed edge. In light of the information flows over the directed acyclic structure, we propose an attentive aggregation module to gather messages from all potential antecedent behaviors, representing distinct perspectives to understand the terminated behavior. Thus, we obtain comprehensive representations for the follow-up behavior through learnable distributions over its preceding behaviors, explicitly reflecting personalized interactive patterns of users and underlying properties of items simultaneously. Finally, we design a customized multi-task learning objective for flexible joint optimization. Extensive experiments on public benchmarking datasets fully demonstrate the superiority of DA-GCN with significant performance improvement and computational efficiency over a wide range of state-of-the-art methods. Our code is available at https://github.com/xizhu1022/DA-GCN.

References

[1]
Antoine Bordes, Nicolas Usunier, Alberto García-Durán, Jason Weston, and Oksana Yakhnenko. 2013. Translating Embeddings for Modeling Multi-Relational Data. In Advances in Neural Information Processing Systems 26: 27th Annual Conference on Neural Information Processing Systems 2013. Christopher J. C. Burges, Léon Bottou, Zoubin Ghahramani, and Kilian Q. Weinberger (Eds.), 2787–2795. Retrieved from https://proceedings.neurips.cc/paper/2013/hash/1cecc7a77928ca8133fa24680a88d2f9-Abstract.html
[2]
Chong Chen, Weizhi Ma, Min Zhang, Zhaowei Wang, Xiuqiang He, Chenyang Wang, Yiqun Liu, and Shaoping Ma. 2021. Graph Heterogeneous Multi-Relational Recommendation. In Proceedings of the 35th AAAI Conference on Artificial Intelligence (AAAI ’21), 33rd Conference on Innovative Applications of Artificial Intelligence (IAAI ’21), The 11th Symposium on Educational Advances in Artificial Intelligence (EAAI ’21). AAAI Press, 3958–3966. Retrieved from https://ojs.aaai.org/index.php/AAAI/article/view/16515
[3]
Chong Chen, Min Zhang, Yongfeng Zhang, Weizhi Ma, Yiqun Liu, and Shaoping Ma. 2020. Efficient Heterogeneous Collaborative Filtering without Negative Sampling for Recommendation. In Proceedings of the 34th AAAI Conference on Artificial Intelligence (AAAI ’20), 32nd Innovative Applications of Artificial Intelligence Conference (IAAI ’20), 10th AAAI Symposium on Educational Advances in Artificial Intelligence (EAAI ’20). AAAI Press, 19–26. Retrieved from https://aaai.org/ojs/index.php/AAAI/article/view/5329
[4]
Xiaoqing Chen, Zhitao Li, Weike Pan, and Zhong Ming. 2023. A Survey on Multi-Behavior Sequential Recommendation. arXiv:2308.15701. Retrieved from https://doi.org/10.48550/ARXIV.2308.15701
[5]
Zhiyong Cheng, Sai Han, Fan Liu, Lei Zhu, Zan Gao, and Yuxin Peng. 2023. Multi-Behavior Recommendation with Cascading Graph Convolution Networks. In Proceedings of the ACM Web Conference 2023 (WWW ’23). Ying Ding, Jie Tang, Juan F. Sequeda, Lora Aroyo, Carlos Castillo, and Geert-Jan Houben (Eds.), ACM, 1181–1189. DOI:
[6]
Paul Covington, Jay Adams, and Emre Sargin. 2016. Deep Neural Networks for YouTube Recommendations. In Proceedings of the 10th ACM Conference on Recommender Systems. Shilad Sen, Werner Geyer, Jill Freyne, and Pablo Castells (Eds.), ACM, 191–198. DOI:
[7]
Yuxiao Dong, Nitesh V. Chawla, and Ananthram Swami. 2017. metapath2vec: Scalable Representation Learning for Heterogeneous Networks. In Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, 135–144. DOI:
[8]
Chen Gao, Xiangnan He, Dahua Gan, Xiangning Chen, Fuli Feng, Yong Li, Tat-Seng Chua, and Depeng Jin. 2019. Neural Multi-Task Recommendation from Multi-Behavior Data. In Proceedings of the 35th IEEE International Conference on Data Engineering (ICDE ’19). IEEE, 1554–1557. DOI:
[9]
Chen Gao, Xiangnan He, Dahua Gan, Xiangning Chen, Fuli Feng, Yong Li, Tat-Seng Chua, Lina Yao, Yang Song, and Depeng Jin. 2021. Learning to Recommend with Multiple Cascading Behaviors. IEEE Trans. Knowl. Data Eng. 33, 6 (2021), 2588–2601. DOI:
[10]
Xudong Gong, Qinlin Feng, Yuan Zhang, Jiangling Qin, Weijie Ding, Biao Li, Peng Jiang, and Kun Gai. 2022. Real-Time Short Video Recommendation on Mobile Devices. In Proceedings of the 31st ACM International Conference on Information & Knowledge Management. Mohammad Al Hasan and Li Xiong (Eds.), ACM, 3103–3112. DOI:
[11]
Shuyun Gu, Xiao Wang, Chuan Shi, and Ding Xiao. 2022. Self-Supervised Graph Neural Networks for Multi-Behavior Recommendation. In Proceedings of the 31st International Joint Conference on Artificial Intelligence (IJCAI ’22). Luc De Raedt (Ed.), ijcai.org, 2052–2058. DOI:
[12]
Xiangnan He, Kuan Deng, Xiang Wang, Yan Li, Yong-Dong Zhang, and Meng Wang. 2020. LightGCN: Simplifying and Powering Graph Convolution Network for Recommendation. In Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’20). Jimmy X. Huang, Yi Chang, Xueqi Cheng, Jaap Kamps, Vanessa Murdock, Ji-Rong Wen, and Yiqun Liu (Eds.), ACM, 639–648. DOI:
[13]
Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-Seng Chua. 2017. Neural Collaborative Filtering. In Proceedings of the 26th International Conference on World Wide Web (WWW ’17). Rick Barrett, Rick Cummings, Eugene Agichtein, and Evgeniy Gabrilovich (Eds.), ACM, 173–182. DOI:
[14]
Zhipeng Huang, Yudian Zheng, Reynold Cheng, Yizhou Sun, Nikos Mamoulis, and Xiang Li. 2016. Meta Structure: Computing Relevance in Large Heterogeneous Information Networks. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Balaji Krishnapuram, Mohak Shah, Alexander J. Smola, Charu C. Aggarwal, Dou Shen, and Rajeev Rastogi (Eds.), ACM, 1595–1604. DOI:
[15]
Bowen Jin, Chen Gao, Xiangnan He, Depeng Jin, and Yong Li. 2020. Multi-Behavior Recommendation with Graph Convolutional Networks. In Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’20). Jimmy Huang, Yi Chang, Xueqi Cheng, Jaap Kamps, Vanessa Murdock, Ji-Rong Wen, and Yiqun Liu (Eds.), ACM, 659–668. DOI:
[16]
Yongquan Liang, Qiuyu Song, Zhongying Zhao, Hui Zhou, and Maoguo Gong. 2023. BA-GNN: Behavior-Aware Graph Neural Network for Session-Based Recommendation. Front. Comput. Sci. 17, 6 (2023), 176613. DOI:
[17]
Fake Lin, Ziwei Zhao, Xi Zhu, Da Zhang, Shitian Shen, Xueying Li, Tong Xu, Suojuan Zhang, and Enhong Chen. 2024. When Box Meets Graph Neural Network in Tag-Aware Recommendation. In Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD 2024). Ricardo Baeza-Yates and Francesco Bonchi (Eds.), ACM, 1770–1780. DOI:
[18]
Chang Meng, Chenhao Zhai, Yu Yang, Hengyu Zhang, and Xiu Li. 2023. Parallel Knowledge Enhancement Based Framework for Multi-Behavior Recommendation. In Proceedings of the 32nd ACM International Conference on Information and Knowledge Management (CIKM 2023). Ingo Frommholz, Frank Hopfgartner, Mark Lee, Michael Oakes, Mounia Lalmas, Min Zhang, and Rodrygo L. T. Santos (Eds.), ACM, 1797–1806. DOI:
[19]
Chang Meng, Hengyu Zhang, Wei Guo, Huifeng Guo, Haotian Liu, Yingxue Zhang, Hongkun Zheng, Ruiming Tang, Xiu Li, and Rui Zhang. 2023. Hierarchical Projection Enhanced Multi-Behavior Recommendation. In Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD ’23). Ambuj K. Singh, Yizhou Sun, Leman Akoglu, Dimitrios Gunopulos, Xifeng Yan, Ravi Kumar, Fatma Ozcan, and Jieping Ye (Eds.), ACM, 4649–4660. DOI:
[20]
Chang Meng, Ziqi Zhao, Wei Guo, Yingxue Zhang, Haolun Wu, Chen Gao, Dong Li, Xiu Li, and Ruiming Tang. 2024. Coarse-to-Fine Knowledge-Enhanced Multi-Interest Learning Framework for Multi-Behavior Recommendation. ACM Trans. Inf. Syst. 42, 1 (2024), 30:1–30:27. DOI:
[21]
Maxim Naumov, Dheevatsa Mudigere, Hao-Jun Michael Shi, Jianyu Huang, Narayanan Sundaraman, Jongsoo Park, Xiaodong Wang, Udit Gupta, Carole-Jean Wu, Alisson G. Azzolini, Dmytro Dzhulgakov, Andrey Mallevich, Ilia Cherniavskii, Yinghai Lu, Raghuraman Krishnamoorthi, Ansha Yu, Volodymyr Kondratenko, Stephanie Pereira, Xianjie Chen, Wenlin Chen, Vijay Rao, Bill Jia, Liang Xiong, and Misha Smelyanskiy. 2019. Deep Learning Recommendation Model for Personalization and Recommendation Systems. arXiv: 1906.00091. Retrieved from http://arxiv.org/abs/1906.00091
[22]
Steffen Rendle. 2010. Factorization Machines. In Proceedings of the 10th IEEE International Conference on Data Mining (ICDM ’10). Geoffrey I. Webb, Bing Liu, Chengqi Zhang, Dimitrios Gunopulos, and Xindong Wu (Eds.), IEEE Computer Society, 995–1000. DOI:
[23]
Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-Thieme. 2009. BPR: Bayesian Personalized Ranking from Implicit Feedback. In Proceedings of the 25th Conference on Uncertainty in Artificial Intelligence (UAI ’09). Jeff A. Bilmes and Andrew Y. Ng (Eds.), AUAI Press, 452–461. Retrieved from https://www.auai.org/uai2009/papers/UAI2009_0139_48141db02b9f0b02bc7158819ebfa2c7.pdf
[24]
Ziqi Tan, Shengyu Zhang, Nuanxin Hong, Kun Kuang, Yifan Yu, Jin Yu, Zhou Zhao, Hongxia Yang, Shiyuan Pan, Jingren Zhou, and Fei Wu. 2022. Uncovering Causal Effects of Online Short Videos on Consumer Behaviors. In Proceedings of the 15th ACM International Conference on Web Search and Data Mining (WSDM ’22). K. Selcuk Candan, Huan Liu, Leman Akoglu, Xin Luna Dong, and Jiliang Tang (Eds.), ACM, 997–1006. DOI:
[25]
Mengting Wan and Julian J. McAuley. 2018. Item Recommendation on Monotonic Behavior Chains. In Proceedings of the 12th ACM Conference on Recommender Systems (RecSys ’18). Sole Pera, Michael D. Ekstrand, Xavier Amatriain, and John O’Donovan (Eds.), ACM, 86–94. DOI:
[26]
Xiao Wang, Deyu Bo, Chuan Shi, Shaohua Fan, Yanfang Ye, and Philip S. Yu. 2023. A Survey on Heterogeneous Graph Embedding: Methods, Techniques, Applications and Sources. IEEE Trans. Big Data 9, 2 (2023), 415–436. DOI:
[27]
Xiang Wang, Xiangnan He, Meng Wang, Fuli Feng, and Tat-Seng Chua. 2019. Neural Graph Collaborative Filtering. In Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’19). Benjamin Piwowarski, Max Chevalier, Éric Gaussier, Yoelle Maarek, Jian-Yun Nie, and Falk Scholer (Eds.), ACM, 165–174. DOI:
[28]
Xiang Wang, Hongye Jin, An Zhang, Xiangnan He, Tong Xu, and Tat-Seng Chua. 2020. Disentangled Graph Collaborative Filtering. In Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’20). Jimmy X. Huang, Yi Chang, Xueqi Cheng, Jaap Kamps, Vanessa Murdock, Ji-Rong Wen, and Yiqun Liu (Eds.), ACM, 1001–1010. DOI:
[29]
Wei Wei, Chao Huang, Lianghao Xia, Yong Xu, Jiashu Zhao, and Dawei Yin. 2022. Contrastive Meta Learning with Behavior Multiplicity for Recommendation. In Proceedings of the 15th ACM International Conference on Web Search and Data Mining (WSDM ’22). K. Selcuk Candan, Huan Liu, Leman Akoglu, Xin Luna Dong, and Jiliang Tang (Eds.), ACM, 1120–1128. DOI:
[30]
Jiancan Wu, Xiangnan He, Xiang Wang, Qifan Wang, Weijian Chen, Jianxun Lian, and Xing Xie. 2022. Graph Convolution Machine for Context-Aware Recommender System. Frontiers Comput. Sci. 16, 6 (2022), 166614. DOI:
[31]
Jiancan Wu, Xiang Wang, Fuli Feng, Xiangnan He, Liang Chen, Jianxun Lian, and Xing Xie. 2021. Self-Supervised Graph Learning for Recommendation. In Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’21). Fernando Diaz, Chirag Shah, Torsten Suel, Pablo Castells, Rosie Jones, and Tetsuya Sakai (Eds.), ACM, 726–735. DOI:
[32]
Lianghao Xia, Chao Huang, Yong Xu, Peng Dai, Bo Zhang, and Liefeng Bo. 2020. Multiplex Behavioral Relation Learning for Recommendation via Memory Augmented Transformer Network. In Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’20). Jimmy Huang, Yi Chang, Xueqi Cheng, Jaap Kamps, Vanessa Murdock, Ji-Rong Wen, and Yiqun Liu (Eds.), ACM, 2397–2406. DOI:
[33]
Lianghao Xia, Chao Huang, Yong Xu, Peng Dai, Xiyue Zhang, Hongsheng Yang, Jian Pei, and Liefeng Bo. 2021. Knowledge-Enhanced Hierarchical Graph Transformer Network for Multi-Behavior Recommendation. In Proceedings of the 35th AAAI Conference on Artificial Intelligence (AAAI ’21), 33rd Conference on Innovative Applications of Artificial Intelligence (IAAI ’21), 11th Symposium on Educational Advances in Artificial Intelligence (EAAI 2021). AAAI Press, 4486–4493. Retrieved from https://ojs.aaai.org/index.php/AAAI/article/view/16576
[34]
Lianghao Xia, Chao Huang, Yong Xu, Jiashu Zhao, Dawei Yin, and Jimmy X. Huang. 2022. Hypergraph Contrastive Collaborative Filtering. In Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’22). Enrique Amigó, Pablo Castells, Julio Gonzalo, Ben Carterette, J. Shane Culpepper, and Gabriella Kazai (Eds.), ACM, 70–79. DOI:
[35]
Lianghao Xia, Yong Xu, Chao Huang, Peng Dai, and Liefeng Bo. 2021. Graph Meta Network for Multi-Behavior Recommendation. In Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’21). Fernando Diaz, Chirag Shah, Torsten Suel, Pablo Castells, Rosie Jones, and Tetsuya Sakai (Eds.), ACM, 757–766. DOI:
[36]
Xin Xin, Xiangyuan Liu, Hanbing Wang, Pengjie Ren, Zhumin Chen, Jiahuan Lei, Xinlei Shi, Hengliang Luo, Joemon M. Jose, Maarten de Rijke, and Zhaochun Ren. 2023. Improving Implicit Feedback-Based Recommendation through Multi-Behavior Alignment. In Proceedings of the 46th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’23). Hsin-Hsi Chen, Wei-Jou (Edward) Duh, Hen-Hsen Huang, Makoto P. Kato, Josiane Mothe, and Barbara Poblete (Eds.), ACM, 932–941. DOI:
[37]
Jingcao Xu, Chaokun Wang, Cheng Wu, Yang Song, Kai Zheng, Xiaowei Wang, Changping Wang, Guorui Zhou, and Kun Gai. 2023. Multi-Behavior Self-Supervised Learning for Recommendation. In Proceedings of the 46th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’23). Hsin-Hsi Chen, Wei-Jou (Edward) Duh, Hen-Hsen Huang, Makoto P. Kato, Josiane Mothe, and Barbara Poblete (Eds.), ACM, 496–505. DOI:
[38]
Wujiang Xu, Qitian Wu, Runzhong Wang, Mingming Ha, Qiongxu Ma, Linxun Chen, Bing Han, and Junchi Yan. 2024. Rethinking Cross-Domain Sequential Recommendation under Open-World Assumptions. In Proceedings of the ACM on Web Conference 2024 (WWW ’24). Tat-Seng Chua, Chong-Wah Ngo, Ravi Kumar, Hady W. Lauw, and Roy Ka-Wei Lee (Eds.), ACM, 3173–3184. DOI:
[39]
Hongrui Xuan, Yi Liu, Bohan Li, and Hongzhi Yin. 2023. Knowledge Enhancement for Contrastive Multi-Behavior Recommendation. In Proceedings of the 16th ACM International Conference on Web Search and Data Mining (WSDM ’23). Tat-Seng Chua, Hady W. Lauw, Luo Si, Evimaria Terzi, and Panayiotis Tsaparas (Eds.), ACM, 195–203. DOI:
[40]
Hansheng Xue, Luwei Yang, Vaibhav Rajan, Wen Jiang, Yi Wei, and Yu Lin. 2021. Multiplex Bipartite Network Embedding Using Dual Hypergraph Convolutional Networks. In Proceedings of the Web Conference 2021 (WWW ’21). Jure Leskovec, Marko Grobelnik, Marc Najork, Jie Tang, and Leila Zia (Eds.), ACM/IW3C2, 1649–1660. DOI:
[41]
Mingshi Yan, Zhiyong Cheng, Chen Gao, Jing Sun, Fan Liu, Fuming Sun, and Haojie Li. 2024. Cascading Residual Graph Convolutional Network for Multi-Behavior Recommendation. ACM Trans. Inf. Syst. 42, 1 (2024), 10:1–10:26. DOI:
[42]
Mingshi Yan, Fan Liu, Jing Sun, Fuming Sun, Zhiyong Cheng, and Yahong Han. 2024. Behavior-Contextualized Item Preference Modeling for Multi-Behavior Recommendation. In Proceedings of the 47th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’24). Grace Hui Yang, Hongning Wang, Sam Han, Claudia Hauff, Guido Zuccon, and Yi Zhang (Eds.), ACM, 946–955. DOI:
[43]
Tiansheng Yao, Xinyang Yi, Derek Zhiyuan Cheng, Felix X. Yu, Ting Chen, Aditya Krishna Menon, Lichan Hong, Ed H. Chi, Steve Tjoa, Jieqi (Jay) Kang, and Evan Ettinger. 2021. Self-Supervised Learning for Large-Scale Item Recommendations. In Proceedings of the 30th ACM International Conference on Information and Knowledge Management (CIKM ’21). Gianluca Demartini, Guido Zuccon, J. Shane Culpepper, Zi Huang, and Hanghang Tong (Eds.), ACM, 4321–4330. DOI:
[44]
Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L. Hamilton, and Jure Leskovec. 2018. Graph Convolutional Neural Networks for Web-Scale Recommender Systems. In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (KDD ’18). Yike Guo and Faisal Farooq (Eds.), ACM, 974–983. DOI:
[45]
Chi Zhang, Rui Chen, Xiangyu Zhao, Qilong Han, and Li Li. 2023. Denoising and Prompt-Tuning for Multi-Behavior Recommendation. In Proceedings of the ACM Web Conference 2023 (WWW ’23). Ying Ding, Jie Tang, Juan F. Sequeda, Lora Aroyo, Carlos Castillo, and Geert-Jan Houben (Eds.), ACM, 1355–1363. DOI:
[46]
Huan Zhao, Quanming Yao, Jianda Li, Yangqiu Song, and Dik Lun Lee. 2017. Meta-Graph Based Recommendation Fusion over Heterogeneous Information Networks. In Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, 635–644. DOI:
[47]
Ziwei Zhao, Xi Zhu, Tong Xu, Aakas Lizhiyu, Yu Yu, Xueying Li, Zikai Yin, and Enhong Chen. 2023. Time-Interval Aware Share Recommendation via Bi-Directional Continuous Time Dynamic Graphs. In Proceedings of the 46th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’23). Hsin-Hsi Chen, Wei-Jou (Edward) Duh, Hen-Hsen Huang, Makoto P. Kato, Josiane Mothe, and Barbara Poblete (Eds.), ACM, 822–831. DOI:
[48]
Guorui Zhou, Xiaoqiang Zhu, Chengru Song, Ying Fan, Han Zhu, Xiao Ma, Yanghui Yan, Junqi Jin, Han Li, and Kun Gai. 2018. Deep Interest Network for Click-Through Rate Prediction. In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (KDD ’18). Yike Guo and Faisal Farooq (Eds.), ACM, 1059–1068. DOI:
[49]
Xiangmin Zhou, Dong Qin, Xiaolu Lu, Lei Chen, and Yanchun Zhang. 2019. Online Social Media Recommendation Over Streams. In Proceedings of the 35th IEEE International Conference on Data Engineering (ICDE ’19). IEEE, 938–949. DOI:

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image ACM Transactions on Information Systems
ACM Transactions on Information Systems  Volume 43, Issue 1
January 2025
814 pages
EISSN:1558-2868
DOI:10.1145/3702036
Issue’s Table of Contents

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 09 December 2024
Online AM: 19 September 2024
Accepted: 07 September 2024
Revised: 14 June 2024
Received: 28 August 2023
Published in TOIS Volume 43, Issue 1

Check for updates

Author Tags

  1. Multi-Behavior Recommendation
  2. Directed Acyclic Graph
  3. Graph Neural Network

Qualifiers

  • Research-article

Funding Sources

  • National Natural Science Foundation of China

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 559
    Total Downloads
  • Downloads (Last 12 months)559
  • Downloads (Last 6 weeks)223
Reflects downloads up to 31 Dec 2024

Other Metrics

Citations

View Options

Login options

Full Access

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Full Text

View this article in Full Text.

Full Text

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media