[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
10.1145/3495243.3560549acmconferencesArticle/Chapter ViewAbstractPublication PagesmobicomConference Proceedingsconference-collections
research-article
Open access

RF-transformer: a unified backscatter radio hardware abstraction

Published: 14 October 2022 Publication History

Abstract

This paper presents RF-Transformer, a unified backscatter radio hardware abstraction that allows a low-power IoT device to directly communicate with heterogeneous wireless receivers at the minimum power consumption. Unlike existing backscatter systems that are tailored to a specific wireless communication protocol, RF-Transformer provides a programmable interface to the micro-controller, allowing IoT devices to synthesize different types of protocol-compliant backscatter signals sharing radically different PHY-layer designs. To show the efficacy of our design, we implement a PCB prototype of RF-Transformer on 2.4 GHz ISM band and showcase its capability on generating standard ZigBee, Bluetooth, LoRa, and Wi-Fi 802.11b/g/n/ac packets. Our extensive field studies show that RF-Transformer achieves 23.8 Mbps, 247.1 Kbps, 986.5 Kbps, and 27.3 Kbps throughput when generating standard Wi-Fi, ZigBee, Bluetooth, and LoRa signals while consuming 7.6--74.2X less power than their active counterparts. Our ASIC simulation based on the 65-nm CMOS process shows that the power gain of RF-Transformer can further grow to 92--678X. We further integrate RF-Transformer with pressure sensors and present a case study on detecting foot traffic density in hallways. Our 7-day case studies demonstrate RF-Transformer can reliably transmit sensor data to a commodity gateway by synthesizing LoRa packets on top of Wi-Fi signals. Our experimental results also verify the compatibility of RF-Transformer with commodity receivers. Code and hardware schematics can be found at: https://github.com/LeFsCC/RF-Transformer.

References

[1]
14-bit DAC AD9767. https://www.analog.com/cn/products/ad9767.html#product-overview.
[2]
2.4GHz LoRa chip SX1280. https://www.semtech.com/products/wireless-rf/lora-24ghz/sx1280.
[3]
3 dBi omni-directional antenna in 2.45 GHz. https://www.ebay.com/itm/2450Mhz-Magnetic-base-Antenna-3dbi-SMB-Connector-3m-cable-for-Ham-radio-/154317399569.
[4]
Bluetooth transceiver CC2650. https://www.ti.com/lit/ds/symlink/cc2650.pdf?ts=1645762817519&ref_url=https%253A%252F%252Fwww.ti.com%252Fproduct%252FCC2650.
[5]
FCC Rules for Unlicensed Wireless Equipment operating in the ISM bands. http://afar.net/tutorials/fcc-rules/.
[6]
Free space loss model. http://www.sis.pitt.edu/prashk/inf1072/Fall16/lec5.pdf.
[7]
IEEE 802.11 a/g/n transceiver for GNU Radio. https://github.com/bastibl/gr-ieee802-11.
[8]
IEEE 802.15.1 GFSK transceiver for GNU Radio. https://github.com/greatscottgadgets/gr-bluetooth.
[9]
IEEE 802.15.4 O-QPSK transceiver for GNU Radio. https://github.com/bastibl/gr-ieee802-15-4.
[10]
Input impedance and reflection coefficient of transmission line. https://www.sciencedirect.com/topics/computer-science/reflection-coefficient.
[11]
LoRa CSS PHY for GNU Radio. https://github.com/BastilleResearch/gr-lora.
[12]
MOSFET ATF54143. https://pdf1.alldatasheetcn.com/datasheet-pdf/view/102973/HP/ATF54143.html.
[13]
Quadrature Amplitude Modulation. https://eprints.soton.ac.uk/260296/1/QAM3-chaps_1-22-24.pdf.
[14]
RF Switch ADG901. https://www.analog.com/media/en/technical-documentation/data-sheets/ADG901-EP.pdf.
[15]
Smith chart. https://www.maximintegrated.com/en/design/technical-documents/tutorials/7/742.html.
[16]
Transmission-line theory. https://s2629002012.files.wordpress.com/2012/11/huitransmissionlines.pdf.
[17]
Vector Network Analyser (VNA), CEYEAR 3672A. https://mcs-testequipment.com/products/rf-mw-network-analysers/network-analysers/3672a-s.
[18]
Wilkinson power splitter. https://www.microwaves101.com/encyclopedias/wilkinson-power-splitters.
[19]
Xilinx Artix-7 FPGA. https://www.xilinx.com/products/silicon-devices/fpga/artix-7.html.
[20]
ZFL-1000VH+ 10-1000 MHz high dynamic range RF amplifier. https://www.minicircuits.com/WebStore/dashboard.html?model=ZFL-1000VH%2B.
[21]
ZigBee transceiver CC2480. https://www.ti.com/lit/ds/swrs074a/swrs074a.pdf?ts=1645762704834&ref_url=https%253A%252F%252Fwww.google.com.hk%252F.
[22]
A. Abedi, F. Dehbashi, M. H. Mazaheri, O. Abari, and T. Brecht. WiTAG: Seamless WiFi backscater communication. In Proceedings of ACM SIGCOMM, Online, August 10--14, 2020.
[23]
D. Bharadia, K. R. Joshi, M. Kotaru, and S. Katti. BackFi: High throughput WiFi backscatter. In Proceedings of ACM SIGCOMM, Budapest, Hungary, August 20--25, 2018.
[24]
X. Dan, Z. Xiaolong, Y. Fu, L. Liang, and M. Huadong. WiRa: Enabling cross-technology communication from WiFi to LoRa with IEEE 802.11ax. In Proceedings of IEEE INFOCOM, Virtual Conference, May 2--5, 2022.
[25]
B. Daniel, C. Ricardo, D. Yuan, D. S. Nektarios, G. George, G. Apostolos, and C. N. Borges. IQ impedance modulator front-end for low-power LoRa backscattering devices. IEEE Transactions on Microwave Theory and Techniques, 67(12):5307--5314, 2019.
[26]
D. Dobkin. The RF in RFID: UHF RFID in practice. Newnes, 2012.
[27]
J. F. Ensworth and M. S. Reynolds. Every smart phone is a backscatter reader: Modulated backscatter compatibility with Bluetooth 4.0 Low Energy (BLE) devices. In Proceedings of IEEE RFID, San Diego, CA, USA, April 15--17, 2015.
[28]
W. Gong, L. Yuan, Q. Wang, and J. Zhao. Multiprotocol backscatter for personal IoT sensors. In Proceedings of ACM CoNEXT, Barcelona, Spain, December 1--4, 2020.
[29]
X. Guo, Y. He, J. Zhang, and H. Jiang. WIDE: Physical-level CTC via digital emulation. In Proceedings of IEEE/ACM IPSN, Montreal, Canada, April 16--18, 2019.
[30]
X. Guo, L. Shangguan, Y. He, N. Jing, J. Zhang, H. Jiang, and Y. Liu. Saiyan: Design and implementation of a low-power demodulator for LoRa backscatter systems. In Proceedings of USENIX NSDI, Renton, WA, USA, April 4--6, 2022.
[31]
X. Guo, L. Shangguan, Y. He, J. Zhang, H. Jiang, A. A. Siddiqi, and Y. Liu. Aloba: Rethinking ON-OFF keying modulation for ambient LoRa backscatter. In Proceedings of ACM SenSys, Virtual Event Japan, November 16--19, 2020.
[32]
X. Guo, L. Shangguan, Y. He, J. Zhang, H. Jiang, A. A. Siddiqi, and Y. Liu. Efficient ambient LoRa backscatter with ON-OFF keying modulation. IEEE/ACM Transactions on Networking, 30(2):641--654, 2022.
[33]
M. He, A. M. Alba, A. Basta, A. Blenk, and W. Kellerer. Flexibility in softwarized networks: Classifications and research challenges. IEEE Communications Surveys & Tutorials, 21(3):2600--2636, 2019.
[34]
P. Hu, P. Zhang, and D. Ganesan. Laissez-faire: Fully asymmetric backscatter communication. In Proceedings of ACM SIGCOMM, London, United Kingdom, August 17--21, 2015.
[35]
V. Iyer, V. Talla, B. Kellogg, S. Gollakota, and J. Smith. Inter-technology backscatter: Towards internet connectivity for implanted devices. In Proceedings of ACM SIGCOMM, Florianopolis, Brazil, August 22--26, 2016.
[36]
W. Jeong, J. Jung, Y. Wang, S. Wang, S. Yang, Q. Yan, Y. Yi, and S. M. Kim. SDR receiver using commodity WiFi via physical-layer signal reconstruction. In Proceedings of ACM MobiCom, Virtual event, September 21--25, 2020.
[37]
J. Jung, J. Ryoo, Y. Yi, and S. M. Kim. Gateway over the air: Towards pervasive Internet connectivity for commodity IoT. In Proceedings of ACM MobiSys, Toronto Ontario, Canada, June 15--19, 2020.
[38]
B. Kellogg, A. Parks, S. Gollakota, J. R. Smith, and D. Wetherall. WiFi backscatter: Internet connectivity for RF-powered devices. In Proceedings of ACM SIGCOMM, Chicago, USA, August 17--22, 2014.
[39]
B. Kellogg, V. Talla, J. R. Smith, and S. Gollakot. Passive WiFi: Bringing low power to WiFi transmissions. In Proceedings of USENIX NSDI, Santa Clara, CA, March 16--18, 2018.
[40]
C. Li, X. Guo, L. Shangguan, Z. Cao, and kyle Jamieson. CurvingLoRa to boost LoRa network throughput via concurrent transmission. In Proceedings of USENIX NSDI, Renton, WA, USA, April 4--6, 2022.
[41]
Z. Li and T. He. WEBee: Physical-layer cross-technology communication via emulation. In Proceedings of ACM MobiCom, Snowbird, UT, USA, October 16--20, 2017.
[42]
V. Liu, A. Parks, V. Talla, S. Gollakota, D. Wetherall, and J. R. Smith. Ambient backscatter: Wireless communication out of thin air. In Proceedings of ACM SIGCOMM, Hong Kong, China, August 12--16, 2013.
[43]
D. Matos, M. D. C. Jordao, R. Correia, and N. B. Carvalho. Millimeter-wave BiCMOS backscatter modulator for 5G-IoT applications. IEEE Microwave and Wireless Components Letters, 31(2): 173--176, 2021.
[44]
M. H. Mazaheri, A. Chen, and O. Abari. mmTag: A millimeter wave backscatter network. In Proceedings of the 2021 ACM SIGCOMM 2021 Conference, pages 463--474, 2021.
[45]
A. N. Parks, A. Liu, S. Gollakota, and J. R. Smith. Turbocharging ambient backscatter communication. In Proceedings of ACM SIGCOMM, Chicago, USA, August 17--22, 2014.
[46]
Y. Peng, L. Shangguan, Y. Hu, Y. Qian, X. Lin, X. Chen, D. Fang, and K. Jamieson. PLoRa: A passive long-range data network from ambient LoRa transmissions. In Proceedings of ACM SIGCOMM, Budapest, Hungary, August 20--25, 2018.
[47]
M. Rostami, K. Sundaresan, E. Chai, S. Rangarajan, and D. Ganesan. Redefining passive in backscattering with commodity devices. In Proceedings of ACM MobiCom, Virtual event, September 21--25, 2020.
[48]
C. Shao, H. Park, H. Roh, W. Lee, and H. Kim. PolarScout: Wi-Fi interference-resilient ZigBee communication via shell-shaping. IEEE/ACM Transactions on Networking, 28(4):1587--1600, 2020.
[49]
V. Talla, M. Hessar, B. Kellogg, A. Najafi, J. R. Smith, and S. Gollakota. LoRa backscatter: Enabling the vision of ubiquitous connectivity. In Proceedings of ACM UbiComp, Maui, HI, USA, September 11--15, 2017.
[50]
D. tutorials. Fundamentals of direct digital synthesis (DDS). https://www.analog.com/media/en/training-seminars/tutorials/MT-085.pdf. Accessed 30-May-2021.
[51]
A. Varshney and L. Corneo. Tunnel emitter: Tunnel diode based low-power carrier emitters for backscatter tags. In Proceedings of ACM MobiCom, Virtual event, September 21--25, 2020.
[52]
A. Wang, V. Iyer, V. Talla, J. R. Smith, and S. Gollakota. FM backscatter: Enabling connected cities and smart fabrics. In Proceedings of USENIX NSDI, Boston, MA, USA, March 27--29, 2017.
[53]
J. Wang, H. Hassanieh, D. Katabi, and P. Indyk. Efficient and reliable low-power backscatter networks. In Proceedings of ACM SIGCOMM, Helsinki, Finland, August 13--17, 2012.
[54]
Y. He, X. Guo, X. Zheng, Z. Yu, J. Zhang, H. Jiang, Xin Na and J. Zhang. Cross-technology communication for the Internet of Things: A survey. https://arxiv.org/abs/2203.14813v2. Accessed 28-March-2022.
[55]
M. E. Yuksel. Power consumption analysis of a WiFi-based IoT device. Electrica, 20(1):72--70, 2020.
[56]
P. Zhang, D. Bharadia, K. Joshi, and S. Katti. HitchHike: Practical backscatter using commodity WiFi. In Proceedings of ACM SenSys, Stanford, CA, USA, November 14--16, 2016.
[57]
P. Zhang, C. Josephson, D. Bharadia, and S. Katti. FreeRider: Backscatter communication using commodity radios. In Proceedings of ACM CONEXT, Online, December 12--15, 2017.
[58]
P. Zhang, M. Rostami, P. Hu, and D. Ganesan. Enabling practical backscatter communication for on-body sensors. In Proceedings of ACM SIGCOMM, Salvador, Brazil, August 22--26, 2016.
[59]
F. Zhu, M. Ouyang, L. Feng, Y. Liu, X. Tian, M. Jin, D. Chen, and X. Wang. Enabling software-defined PHY for backscatter networks. In Proceedings of ACM MobiSys, Portland, Oregon, June 27--July 1, 2022.

Cited By

View all
  • (2024)A Unified Tunnel-diode Based Low Power Signal Waveform Transform Hardware for RF ComputingProceedings of the First International Workshop on Radio Frequency (RF) Computing10.1145/3698386.3699993(36-37)Online publication date: 4-Nov-2024
  • (2024)LiTEfoot: Ultra-low-power Localization using Ambient Cellular SignalsProceedings of the 22nd ACM Conference on Embedded Networked Sensor Systems10.1145/3666025.3699356(535-548)Online publication date: 4-Nov-2024
  • (2024)Frequency-agile OFDM BackscatterProceedings of the 22nd Annual International Conference on Mobile Systems, Applications and Services10.1145/3643832.3661873(252-264)Online publication date: 3-Jun-2024
  • Show More Cited By

Index Terms

  1. RF-transformer: a unified backscatter radio hardware abstraction

      Recommendations

      Comments

      Please enable JavaScript to view thecomments powered by Disqus.

      Information & Contributors

      Information

      Published In

      cover image ACM Conferences
      MobiCom '22: Proceedings of the 28th Annual International Conference on Mobile Computing And Networking
      October 2022
      932 pages
      ISBN:9781450391818
      DOI:10.1145/3495243
      This work is licensed under a Creative Commons Attribution International 4.0 License.

      Sponsors

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      Published: 14 October 2022

      Check for updates

      Author Tags

      1. PHY layer design
      2. backscatter technology
      3. internet of things (IoT)
      4. wireless communication

      Qualifiers

      • Research-article

      Funding Sources

      • National Science Fund of China
      • R&D Project of Key Core Technology and Generic Technology in Shanxi Province
      • China Postdoctoral Science Foundation
      • Key Program of China Postdoctoral Science Foundation
      • University of Pittsburgh

      Conference

      ACM MobiCom '22
      Sponsor:

      Acceptance Rates

      Overall Acceptance Rate 440 of 2,972 submissions, 15%

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • Downloads (Last 12 months)540
      • Downloads (Last 6 weeks)71
      Reflects downloads up to 14 Dec 2024

      Other Metrics

      Citations

      Cited By

      View all
      • (2024)A Unified Tunnel-diode Based Low Power Signal Waveform Transform Hardware for RF ComputingProceedings of the First International Workshop on Radio Frequency (RF) Computing10.1145/3698386.3699993(36-37)Online publication date: 4-Nov-2024
      • (2024)LiTEfoot: Ultra-low-power Localization using Ambient Cellular SignalsProceedings of the 22nd ACM Conference on Embedded Networked Sensor Systems10.1145/3666025.3699356(535-548)Online publication date: 4-Nov-2024
      • (2024)Frequency-agile OFDM BackscatterProceedings of the 22nd Annual International Conference on Mobile Systems, Applications and Services10.1145/3643832.3661873(252-264)Online publication date: 3-Jun-2024
      • (2024)Pushing the Throughput Limit of OFDM-based Wi-Fi Backscatter CommunicationProceedings of the 30th Annual International Conference on Mobile Computing and Networking10.1145/3636534.3690672(968-983)Online publication date: 4-Dec-2024
      • (2024)Inter-Carrier Interference Reduction Technique for Backscattered OFDMIEEE Transactions on Vehicular Technology10.1109/TVT.2024.3381868(1-5)Online publication date: 2024
      • (2024)A Low-Power Demodulator for LoRa Backscatter Systems With Frequency-Amplitude TransformationIEEE/ACM Transactions on Networking10.1109/TNET.2024.339650932:4(3515-3527)Online publication date: Aug-2024
      • (2024)Enabling Dual-Band Wi-Fi BackscatterIEEE Transactions on Mobile Computing10.1109/TMC.2024.340001323:12(11750-11764)Online publication date: Dec-2024
      • (2024)Bitalign: Bit Alignment for Bluetooth Backscatter CommunicationIEEE Transactions on Mobile Computing10.1109/TMC.2024.337481523:10(10191-10201)Online publication date: Oct-2024
      • (2024)Trident: Interference Avoidance in Multi-reader Backscatter Network via Frequency-space DivisionIEEE INFOCOM 2024 - IEEE Conference on Computer Communications10.1109/INFOCOM52122.2024.10621258(1761-1770)Online publication date: 20-May-2024
      • (2023)A New Design Paradigm for Polymorphic Backscatter RadiosGetMobile: Mobile Computing and Communications10.1145/3631588.363159427:3(18-22)Online publication date: 1-Nov-2023
      • Show More Cited By

      View Options

      View options

      PDF

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader

      Login options

      Media

      Figures

      Other

      Tables

      Share

      Share

      Share this Publication link

      Share on social media