[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
research-article
Open access

Data Protection in AI Services: A Survey

Published: 05 March 2021 Publication History

Abstract

Advances in artificial intelligence (AI) have shaped today’s user services, enabling enhanced personalization and better support. As such AI-based services inevitably require user data, the resulting privacy implications are de facto the unacceptable face of this technology. In this article, we categorize and survey the cutting-edge research on privacy and data protection in the context of personalized AI services. We further review the different protection approaches at three different levels, namely, the management, system, and AI levels—showing that (i) not all of them meet our identified requirements of evolving AI services and that (ii) many challenges are addressed separately or fragmentarily by different research communities. Finally, we highlight open research challenges and future directions in data protection research, especially that comprehensive protection requires more interdisciplinary research and a combination of approaches at different levels.

References

[1]
Martin Abadi, Andy Chu, Ian Goodfellow, H. Brendan McMahan, Ilya Mironov, Kunal Talwar, and Li Zhang. 2016. Deep learning with differential privacy. In CCS’16. ACM, 308--318.
[2]
Saeed Abdullah, Nicholas D. Lane, and Tanzeem Choudhury. 2012. Towards population scale activity recognition: A framework for handling data diversity. In AAAI’12. AAAI Press, 851--857.
[3]
Tigist Abera, N. Asokan, Lucas Davi, Farinaz Koushanfar, Andrew Paverd, Ahmad-Reza Sadeghi, and Gene Tsudik. 2016. Things, trouble, trust: On building trust in IoT systems. In DAC’16. ACM, 121--126.
[4]
Charu C. Aggarwal and Philip S. Yu. 2008. A general survey of privacy-preserving data mining models and algorithms. In Privacy-preserving Data Mining. Springer, 11--52.
[5]
Rakesh Agrawal and Ramakrishnan Srikant. 2000. Privacy-preserving data mining. In SIGMOD’00. ACM, 439--450.
[6]
Google AI. 2019. Federated Learning. Retrieved from https://federated.withgoogle.com.
[7]
JongGwan An, Wenbin Li, Franck Le Gall, Ernoe Kovac, Jaeho Kim, Tarik Taleb, and JaeSeung Song. 2019. EiF: Toward an elastic IoT fog framework for AI services. IEEE Commun. Mag. 57, 5 (2019), 28--33.
[8]
Annie I. Antón, Julia B. Earp, and Jessica D. Young. 2010. How internet users’ privacy concerns have evolved since 2002. IEEE Secur. Priv. 8, 1 (2010), 21--27.
[9]
Sergei Arnautov, Bohdan Trach, Franz Gregor, Thomas Knauth, Andre Martin, Christian Priebe, Joshua Lind, Divya Muthukumaran et al. 2016. SCONE: Secure Linux containers with Intel SGX. In USENIX OSDI’16. 689--703.
[10]
Sasikanth Avancha, Amit Baxi, and David Kotz. 2012. Privacy in mobile technology for personal healthcare. Comput. Surv. 45, 1 (2012), 3:1--3:54.
[11]
Louise Barkhuus and Anind K. Dey. 2003. Location-based services for mobile telephony: A study of users’ privacy concerns. In INTERACT’03, Vol. 3. Citeseer, 702--712.
[12]
Mauro Barni, Pierluigi Failla, Riccardo Lazzeretti, Ahmad-Reza Sadeghi, and Thomas Schneider. 2011. Privacy-preserving ECG classification with branching programs and neural networks. IEEE Trans. Inf. Forens. Secur. 6, 2 (2011), 452--468.
[13]
Solon Barocas, Moritz Hardt, and Arvind Narayanan. 2017. Fairness in machine learning. NIPS Tutor. 1 (2017).
[14]
Avron Barr and Edward A. Feigenbaum. 1981. The Handbook of Artificial Intelligence. Butterworth-Heinemann.
[15]
Susanne Barth and Menno D. T. De Jong. 2017. The privacy paradox--Investigating discrepancies between expressed privacy concerns and actual online behavior—A systematic literature review. Elsevier Telemat. Inf. 34, 7 (2017), 1038--1058.
[16]
Andrew Baumann, Marcus Peinado, and Galen Hunt. 2014. Shielding applications from an untrusted cloud with Haven. In USENIX OSDI’14. 267--283.
[17]
Sebastian P. Bayerl, Tommaso Frassetto, Patrick Jauernig, Korbinian Riedhammer, Ahmad-Reza Sadeghi, Thomas Schneider, et al. 2020. Offline model guard: Secure and private ML on mobile devices. In DATE’20. IEEE, 460--465.
[18]
Elisa Bertino, Gabriel Ghinita, and Ashish Kamra. 2011. Access control for databases: Concepts and systems. Found. Trends® Datab. 3, 1--2 (2011), 1--148.
[19]
Laurent Beslay and Hannu Hakala. 2007. Digital territory: Bubbles. In European Visions for the Knowledge Age: A Quest for New Horizons in the Information Society. Cheshire Henbury, 69--78.
[20]
Igor Bilogrevic and Martin Ortlieb. 2016. “If you put all the pieces together...”: Attitudes towards data combination and sharing across services and companies. In CHI’16. ACM, 5215--5227.
[21]
Enrico Blanzieri and Anton Bryl. 2008. A survey of learning-based techniques of email spam filtering. Artif. Intell. Rev. 29, 1 (2008), 63--92.
[22]
Avrim Blum, Cynthia Dwork, Frank McSherry, and Kobbi Nissim. 2005. Practical privacy: The SuLQ framework. In PODS’05. ACM, 128--138.
[23]
Keith Bonawitz, Vladimir Ivanov, Ben Kreuter, Antonio Marcedone, H. Brendan McMahan, Sarvar Patel, et al. 2017. Practical secure aggregation for privacy-preserving machine learning. In CCS’17. ACM, 1175--1191.
[24]
Ferdinand Brasser, Srdjan Capkun, Alexandra Dmitrienko, Tommaso Frassetto, Kari Kostiainen, and Ahmad-Reza Sadeghi. 2019. DR.SGX: Automated and adjustable side-channel protection for SGX using data location randomization. In ACSAC’19. ACM, 788--800.
[25]
Ferdinand Brasser, Tommaso Frassetto, Korbinian Riedhammer, Ahmad-Reza Sadeghi, Thomas Schneider, and Christian Weinert. 2018. VoiceGuard: Secure and private speech processing. In Interspeech’18. ISCA, 1303--1307.
[26]
Luca Canzian and Mirco Musolesi. 2015. Trajectories of depression: Unobtrusive monitoring of depressive states by means of smartphone mobility traces analysis. In UbiComp’15. ACM, 1293--1304.
[27]
Swarup Chandra, Vishal Karande, Zhiqiang Lin, Latifur Khan, Murat Kantarcioglu, and Bhavani Thuraisingham. 2017. Securing data analytics on SGX with randomization. In ESORICS’17. Springer, 352--369.
[28]
Amir Chaudhry, Jon Crowcroft, Heidi Howard, Anil Madhavapeddy, Richard Mortier, Hamed Haddadi, and Derek McAuley. 2015. Personal data: Thinking inside the box. In AA’15. ACM, 29--32.
[29]
Ramnath K. Chellappa and Raymond G. Sin. 2005. Personalization versus privacy: An empirical examination of the online consumer’s Dilemma. Inf. Technol. Manag. 6, 2-3 (2005), 181--202.
[30]
Siyun Chen, Ting Liu, Feng Gao, Jianting Ji, Zhanbo Xu, Buyue Qian, Hongyu Wu, et al. 2017. Butler, not servant: A human-centric smart home energy management system. IEEE Commun. Mag. 55, 2 (2017), 27--33.
[31]
Raymond Cheng, Fan Zhang, Jernej Kos, Warren He, Nicholas Hynes, Noah Johnson, Ari Juels, Andrew Miller, and Dawn Song. 2019. Ekiden: A platform for confidentiality-preserving, trustworthy, and performant smart contract execution. In EuroS&P. IEEE, 185--200.
[32]
Terry Chia. 2012. Confidentiality, integrity, availability: The three components of the CIA triad. IT Security Community Blog (2012). https://security.blogoverflow.com/2012/08/confidentiality-integrity-availability-the-three-components-of-the-cia-triad/.
[33]
Minho Choi and Sang Woo Kim. 2017. Online SVM-based personalizing method for the drowsiness detection of drivers. In EMBC’17. IEEE, 4195--4198.
[34]
Victor Costan and Srinivas Devadas. 2016. Intel SGX explained. IACR Cryptol. Arch. 2016, 086 (2016), 1--118.
[35]
Andy Crabtree, Tom Lodge, James Colley, Chris Greenhalgh, et al. 2016. Enabling the new economic actor: Data protection, the digital economy, and the databox. Person. Ubiq. Comput. 20, 6 (2016), 947--957.
[36]
John Criswell, Nathan Dautenhahn, and Vikram Adve. 2014. Virtual ghost: Protecting applications from hostile operating systems. In ASPLOS’14. ACM, 81--96.
[37]
Nigel Davies, Nina Taft, Mahadev Satyanarayanan, Sarah Clinch, and Brandon Amos. 2016. Privacy mediators: Helping IoT cross the chasm. In HotMobile’16. 39--44.
[38]
Allan de Barcelos Silva, Marcio Miguel Gomes, Cristiano André da Costa, Rodrigo da Rosa Righi, Jorge Luis Victoria Barbosa, Gustavo Pessin, Geert De Doncker, and Gustavo Federizzi. 2020. Intelligent personal assistants: A systematic literature review. Exp. Syst. Applic. 147 (2020), 113193.
[39]
Jaybie A. De Guzman, Kanchana Thilakarathna, and Aruna Seneviratne. 2019. Security and privacy approaches in mixed reality: A literature survey. Comput. Surv. 52, 6 (2019).
[40]
Yves-Alexandre De Montjoye, Erez Shmueli, Samuel S. Wang, and Alex Sandy Pentland. 2014. openPDS: Protecting the privacy of metadata through SafeAnswers. PLoS ONE 9, 7 (2014), e98790.
[41]
George Demiris and Brian K. Hensel. 2008. Technologies for an aging society: A systematic review of smart home applications. Yearb. Med. Inf. 17, 01 (2008), 33--40.
[42]
Sarah M. Diesburg and An-I Andy Wang. 2010. A survey of confidential data storage and deletion methods. Comput. Surveys 43, 1 (2010).
[43]
Nathan Dowlin, Ran Gilad-Bachrach, Kim Laine, Kristin Lauter, Michael Naehrig, and John Wernsing. 2016. CryptoNets: Applying neural networks to encrypted data with high throughput and accuracy. In ICML’16. JMLR.org, 201--210.
[44]
Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. 2006. Calibrating noise to sensitivity in private data analysis. In TCC’06. Springer, 265--284.
[45]
Milan Erdelj, Enrico Natalizio, Kaushik R. Chowdhury, and Ian F. Akyildiz. 2017. Help from the sky: Leveraging UAVs for disaster management. IEEE Pervas. Comput. 16, 1 (2017), 24--32.
[46]
Úlfar Erlingsson, Vasyl Pihur, and Aleksandra Korolova. 2014. RAPPOR: Randomized aggregatable privacy-preserving ordinal response. In CCS’14. ACM, 1054--1067.
[47]
Liyue Fan et al. 2015. A practical framework for privacy-preserving data analytics. In WWW’15. ACM, 311--321.
[48]
Earlence Fernandes, Justin Paupore, Amir Rahmati, Daniel Simionato, Mauro Conti, and Atul Prakash. 2016. FlowFence: Practical data protection for emerging IoT application frameworks. In USENIX Security’16. 531--548.
[49]
Brian J. Fogg. 1999. Persuasive technologies. Commun. ACM 42, 5 (1999), 26--29.
[50]
Benjamin C. M. Fung, Ke Wang, Rui Chen, and Philip S. Yu. 2010. Privacy-preserving data publishing: A survey of recent developments. Comput. Surv. 42, 4 (2010).
[51]
John Gantz and David Reinsel. 2012. The digital universe in 2020: Big data, bigger digital shadows, and biggest growth in the far east. IDC iView: IDC Anal. Fut. 2007, 2012 (2012), 1--16.
[52]
Simson Garfinkel. 1995. PGP: Pretty Good Privacy. O’Reilly Media, Inc.
[53]
Bugra Gedik and Ling Liu. 2007. Protecting location privacy with personalized k-anonymity: Architecture and algorithms. IEEE Trans. Mob. Comput. 7, 1 (2007), 1--18.
[54]
Craig Gentry. 2009. Fully homomorphic encryption using ideal lattices. In STOC’09. ACM, 169--178.
[55]
Nina Gerber, Paul Gerber, and Melanie Volkamer. 2018. Explaining the privacy paradox: A systematic review of literature investigating privacy attitude and behavior. Comput. Secur. 77 (2018), 226--261.
[56]
Nina Gerber, Benjamin Reinheimer, and Melanie Volkamer. 2019. Investigating people’s privacy risk perception. In PETS’19. Sciendo, 267--288.
[57]
Vipul Goyal, Omkant Pandey, Amit Sahai, and Brent Waters. 2006. Attribute-based encryption for fine-grained access control of encrypted data. In CCS’06. ACM, 89--98.
[58]
Thore Graepel, Kristin Lauter, and Michael Naehrig. 2012. ML confidential: Machine learning on encrypted data. In ICISC’12. Springer, 1--21.
[59]
Mike Graves, Adam Constabaris, and Dan Brickley. 2007. FOAF: Connecting people on the semantic web. Catalog. Classif. Quart. 43, 3--4 (2007), 191--202.
[60]
Jonathan Grudin and Richard Jacques. 2019. Chatbots, humbots, and the quest for artificial general intelligence. In CHI’19. ACM, 209:1--209:11.
[61]
Andrew Hard, Kanishka Rao, Rajiv Mathews, Swaroop Ramaswamy, Françoise Beaufays, Sean Augenstein, Hubert Eichner, Chloé Kiddon, and Daniel Ramage. 2018. Federated Learning for Mobile Keyboard Prediction. arxiv:1811.03604.
[62]
Thomas Hardjono, Patrick Deegan, and John Henry Clippinger. 2014. Social use cases for the ID3 open mustard seed platform. IEEE Technol. Soc. Mag. 33, 3 (2014), 48--54.
[63]
Thomas Hardjono and Alex Pentland. 2019. Data cooperatives: Towards a foundation for decentralized personal data management. arxiv:1905.08819.
[64]
Thomas Hardjono, David L. Shrier, and Alex Pentland. 2019. Trusted Data: A New Framework for Identity and Data Sharing. MIT Connection Science & Engineering.
[65]
Michael Henson and Stephen Taylor. 2014. Memory encryption: A survey of existing techniques. Comput. Surv. 46, 4 (2014).
[66]
Owen S. Hofmann, Sangman Kim, Alan M. Dunn, Michael Z. Lee, and Emmett Witchel. 2013. InkTag: Secure applications on an untrusted operating system. In ASPLOS’13, Vol. 48. ACM, 265--278.
[67]
White House. 2012. Consumer data privacy in a networked world: A framework for protecting privacy and promoting innovation in the global digital economy. White House, Washington, DC (2012), 1--62. Retrieved from https://www.hsdl.org/?view&did=700959.
[68]
Yun Chao Hu, Milan Patel, Dario Sabella, Nurit Sprecher, and Valerie Young. 2015. Mobile edge computing—A key technology towards 5G. ETSI White Paper 11, 11 (2015), 1--16.
[69]
Mathias Humbert, Benjamin Trubert, and Kévin Huguenin. 2019. A survey on interdependent privacy. Comput. Surv. 52, 6 (2019).
[70]
Tyler Hunt, Congzheng Song, Reza Shokri, Vitaly Shmatikov, and Emmett Witchel. 2018. Chiron: Privacy-preserving machine learning as a service. arxiv:1803.05961.
[71]
Tyler Hunt, Zhiting Zhu, Yuanzhong Xu, Simon Peter, and Emmett Witchel. 2016. Ryoan: A distributed sandbox for untrusted computation on secret data. In USENIX OSDI’16. 533--549.
[72]
Iulia Ion, Niharika Sachdeva, Ponnurangam Kumaraguru, and Srdjan Čapkun. 2011. Home is safer than the cloud! Privacy concerns for consumer cloud storage. In SOUPS’11. ACM, 13.
[73]
Corey Brian Jackson and Yang Wang. 2018. Addressing the privacy paradox through personalized privacy notifications. Proc. ACM Interact. Mob. Wear. Ubiq. Technol. 2, 2 (2018), 68.
[74]
Alejandro Jaimes and Nicu Sebe. 2007. Multimodal human--computer interaction: A survey. Comput. Vis. Image Underst. 108, 1--2 (2007), 116--134.
[75]
Zhanglong Ji, Zachary C. Lipton, and Charles Elkan. 2014. Differential Privacy and Machine Learning: A Survey and Review. arxiv:1412.7584.
[76]
Michael I. Jordan. 2019. Artificial intelligence--The revolution hasn’t happened yet. Harvard Data Sci. Rev.
[77]
Thivya Kandappu, Archan Misra, Shih-Fen Cheng, Randy Tandriansyah, et al. 2018. Obfuscation at-source: Privacy in context-aware mobile crowd-sourcing. Proc. ACM Interact. Mob. Wear. Ubiq. Technol. 2, 1 (2018), 16.
[78]
Yiping Kang, Johann Hauswald, Cao Gao, Austin Rovinski, Trevor Mudge, et al. 2017. Neurosurgeon: Collaborative intelligence between the cloud and mobile edge. ACM SIGARCH Comput. Archit. News 45, 1 (2017), 615--629.
[79]
Fabian Kaup, Stefan Hacker, Eike Mentzendorff, Christian Meurisch, and David Hausheer. 2018. The Progress of the Energy-efficiency of Single-board Computers. Technical Report. NetSys-TR-2018-01.
[80]
Sebastian Kauschke and Johannes Fürnkranz. 2018. Batchwise patching of classifiers. In AAAI’18. 3374--3381.
[81]
Predrag Klasnja, Sunny Consolvo, Tanzeem Choudhury, Richard Beckwith, and Jeffrey Hightower. 2009. Exploring privacy concerns about personal sensing. In Pervasive’09. Springer, 176--183.
[82]
Klaudia Krawiecka, Arseny Kurnikov, Andrew Paverd, Mohammad Mannan, and N. Asokan. 2018. SafeKeeper: Protecting web passwords using trusted execution environments. In WWW’18. ACM, 349--358.
[83]
Andrew L. Kun, Susanne Boll, and Albrecht Schmidt. 2016. Shifting gears: User interfaces in the age of autonomous driving. IEEE Pervas. Comput. 15, 1 (2016), 32--38.
[84]
Carl Landwehr. 2019. 2018: A big year for privacy. Commun. ACM 62, 2 (2019), 20--22.
[85]
Nicholas D. Lane, Mu Lin, Mashfiqui Mohammod, Xiaochao Yang, Hong Lu, Giuseppe Cardone, Shahid Ali, Afsaneh Doryab, Ethan Berke, Andrew T. Campbell, et al. 2014. BeWell: Sensing sleep, physical activities and social interactions to promote wellbeing. Mob. Netw. Applic. 19, 3 (2014), 345--359.
[86]
Nicholas D. Lane, Emiliano Miluzzo, Hong Lu, Daniel Peebles, Tanzeem Choudhury, and Andrew T. Campbell. 2010. A survey of mobile phone sensing. IEEE Commun. Mag. 48, 9 (2010), 140--150.
[87]
Nicholas D. Lane, Ye Xu, Hong Lu, Shaohan Hu, Tanzeem Choudhury, Andrew T. Campbell, and Feng Zhao. 2011. Enabling large-scale human activity inference on smartphones using community similarity networks (CSN). In UbiComp’11. ACM, 355--364.
[88]
Marc Langheinrich. 2002. A privacy awareness system for ubiquitous computing environments. In UbiComp’02. Springer, 237--245.
[89]
Neal Lathia, Veljko Pejovic, Kiran K. Rachuri, Cecilia Mascolo, Mirco Musolesi, and Peter J. Rentfrow. 2013. Smartphones for large-scale behavior change interventions. IEEE Pervas. Comput. 12, 3 (2013), 66--73.
[90]
Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. 2015. Deep learning. Nature 521, 7553 (2015), 436--444.
[91]
Sangmin Lee, Edmund L. Wong, Deepak Goel, Mike Dahlin, et al. 2013. πBox: A platform for privacy-preserving apps. In USENIX NSDI’13. 501--514.
[92]
Yaniv Leviathan and Yossi Matias. 2018. Google duplex: An AI system for accomplishing real-world tasks over the phone. Google AI Blog 8 (2018). Retrieved from https://ai.googleblog.com/2018/05/duplex-ai-system-for-natural-conversation.html.
[93]
Ninghui Li, Tiancheng Li, and S. Venkatasubramanian. 2007. t-closeness: Privacy beyond k-anonymity and l-diversity. In ICDE’07. IEEE, 106--115.
[94]
Yanlin Li, Jonathan McCune, James Newsome, Adrian Perrig, Brandon Baker, and Will Drewry. 2014. MiniBox: A two-way sandbox for x86 native code. In USENIX ATC’14. 409--420.
[95]
Blerina Lika, Kostas Kolomvatsos, and Stathes Hadjiefthymiades. 2014. Facing the cold start problem in recommender systems. Exp. Syst. Applic. 41, 4 (2014), 2065--2073.
[96]
Bin Liu, Yurong Jiang, Fei Sha, and Ramesh Govindan. 2012. Cloud-enabled privacy-preserving collaborative learning for mobile sensing. In SenSys’12. ACM, 57--70.
[97]
Hong Lu, Denise Frauendorfer, Mashfiqui Rabbi, Marianne Schmid Mast, Gokul T. Chittaranjan, Andrew T. Campbell, Daniel Gatica-Perez, and Tanzeem Choudhury. 2012. StressSense: Detecting stress in unconstrained acoustic environments using smartphones. In UbiComp’12. ACM, 351--360.
[98]
Yang Lu. 2019. Artificial intelligence: A survey on evolution, models, applications and future trends. J. Manag. Anal. 6, 1 (2019), 1--29.
[99]
Ewa Luger and Abigail Sellen. 2016. Like having a really bad PA: The gulf between user expectation and experience of conversational agents. In CHI’16. ACM, 5286--5297.
[100]
George F. Luger and William A. Stubblefield. 1993. Artificial Intelligence: Structures and Strategies for Complex Problem Solving. Benjamin/Cummings Pub. Co.
[101]
Ashwin Machanavajjhala, Daniel Kifer, Johannes Gehrke, and Muthuramakrishnan Venkitasubramaniam. 2007. L-diversity: Privacy beyond k-anonymity. ACM Trans. Knowl. Discov. Data 1, 1 (2007), 3.
[102]
Kirsten Martin and Katie Shilton. 2016. Putting mobile application privacy in context: An empirical study of user privacy expectations for mobile devices. Inf. Soc. 32, 3 (2016), 200--216.
[103]
Rahat Masood, Dinusha Vatsalan, Muhammad Ikram, et al. 2018. Incognito: A method for obfuscating web data. In WWW’18. ACM, 267--276.
[104]
Markus Maurer, J. Christian Gerdes, Barbara Lenz, and Hermann Winner. 2016. Autonomous Driving. Springer Berlin.
[105]
H. Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas. 2017. Communication-efficient learning of deep networks from decentralized data. In AISTATS’17. JMLR: W&CP, 1273--1282.
[106]
Abhinav Mehrotra and Mirco Musolesi. 2017. Intelligent Notification Systems: A Survey of the State of the Art and Research Challenges. arxiv:1711.10171
[107]
Christian Meurisch, Bekir Bayrak, Florian Giger, and Max Mühlhäuser. 2020. PDSProxy: Trusted IoT proxies for confidential ad-hoc personalization of AI services. In ICCCN’20. IEEE, 1--2.
[108]
Christian Meurisch, Bekir Bayrak, and Max Mühlhäuser. 2019. AssistantGraph: An approach for reusable and composable data-driven assistant components. In COMPSAC’19. IEEE, 513--522.
[109]
Christian Meurisch, Bekir Bayrak, and Max Mühlhäuser. 2019. EdgeBox: Confidential ad-hoc personalization of nearby IoT applications. In GLOBECOM’19. IEEE, 1--6.
[110]
Christian Meurisch, Bekir Bayrak, and Max Mühlhäuser. 2020. Privacy-preserving AI services through data decentralization. In WWW’20. ACM, 190--200.
[111]
Christian Meurisch, Maria-Dorina Ionescu, Benedikt Schmidt, and Max Mühlhäuser. 2017. Reference model of next-generation digital personal assistant: Integrating proactive behavior. In Proceedings of the ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the ACM International Symposium on Wearable Computers. ACM, 149--152.
[112]
Christian Meurisch, Bennet Jeutter, Wladimir Schmidt, Nickolas Gündling, Benedikt Schmidt, Fabian Herrlich, and Max Mühlhäuser. 2017. An extensible pervasive platform for large-scale anticipatory mobile computing. In COMPSAC’17. IEEE, 459--464.
[113]
Christian Meurisch, Sebastian Kauschke, Tim Grube, Bekir Bayrak, and Max Mühlhäuser. 2019. {P}Net: Privacy-preserving personalization of AI-based models by anonymous inter-person similarity networks. In MobiQuitous’19. ACM, 60--69.
[114]
Christian Meurisch, Cristina Mihale-Wilson, Adrian Hawlitschek, Florian Giger, Florian Müller, Oliver Hinz, and Max Mühlhäuser. 2020. Exploring user expectations of proactive AI systems. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies 4, 4 (12 2020), 1--22.
[115]
Christian Meurisch, Benedikt Schmidt, Michael Scholz, Immanuel Schweizer, and Max Mühlhäuser. 2015. Labels: Quantified self app for human activity sensing. In UbiComp/ISWC’15. ACM, 1413--1422.
[116]
Christian Meurisch, Dennis Werner, Bekir Bayrak, Florian Giger, and Max Mühlhäuser. 2020. PDSProxy++: Proactive proxy deployment for confidential personalization of AI services. In ICCCN’20. IEEE, 1--9.
[117]
Cristina Mihale-Wilson, Jan Zibuschka, and Oliver Hinz. 2017. About user preferences and willingness to pay for a secure and privacy protective ubiquitous personal assistant. In ECIS’17. AIS Electronic Library, 32--47.
[118]
Cristina Mihale-Wilson, Jan Zibuschka, and Oliver Hinz. 2019. User preferences and willingness to pay for in-vehicle assistance. Electron. Mark. 29, 1 (2019), 37--53.
[119]
Mateusz Mikusz, Kenny Tsu Wei Choo, Rajesh Krishna Balan, Nigel Davies, and Youngki Lee. 2019. New challenges in display-saturated environments. IEEE Pervas. Comput. 18, 2 (2019), 67--75.
[120]
Thomas M. Mitchell. 1997. Machine Learning (1st ed.). McGraw-Hill, Inc., New York, NY.
[121]
Payman Mohassel and Yupeng Zhang. 2017. SecureML: A system for scalable privacy-preserving machine learning. In SP’17. IEEE, 19--38.
[122]
Adam D. Moore. 2003. Privacy: Its meaning and value. Amer. Philos. Quart. 40, 3 (2003), 215--227.
[123]
Richard Mortier, Jianxin Zhao, Jon Crowcroft, Liang Wang, Qi Li, Hamed Haddadi, Yousef Amar, Andy Crabtree, et al. 2016. Personal data management with the databox: What’s inside the box? In CAN’16. ACM, 49--54.
[124]
Max Mühlhäuser, Christian Meurisch, Michael Stein, Jörg Daubert, Julius von Willich, Jan Riemann, and Lin Wang. 2020. Street lamps as a platform. Commun. ACM 63, 6 (2020), 75--83.
[125]
Min Mun, Shuai Hao, Nilesh Mishra, Katie Shilton, Jeff Burke, Deborah Estrin, Mark Hansen, et al. 2010. Personal data vaults: A locus of control for personal data streams. In CoNEXT’10. ACM.
[126]
Huseyin Naci and John P. A. Ioannidis. 2015. Evaluation of wellness determinants and interventions by citizen scientists. Jama 314, 2 (2015), 121--122.
[127]
Pardis Emami Naeini, Sruti Bhagavatula, Hana Habib, Martin Degeling, Lujo Bauer, Lorrie Faith Cranor, and Norman Sadeh. 2017. Privacy expectations and preferences in an IoT world. In USENIX SOUPS’17. 399--412.
[128]
Arvind Narayanan, Vincent Toubiana, Solon Barocas, Helen Nissenbaum, and Dan Boneh. 2012. A Critical Look at Decentralized Personal Data Architectures. arxiv:1202.4503.
[129]
Milad Nasr, Reza Shokri, and Amir Houmansadr. 2018. Comprehensive Privacy Analysis of Deep Learning: Stand-alone and Federated Learning under Passive and Active White-box Inference Attacks. arxiv:1812.00910.
[130]
Muhammad Naveed, Erman Ayday, Ellen W. Clayton, Jacques Fellay, Carl A. Gunter, Jean-Pierre Hubaux, Bradley A. Malin, and Xiaofeng Wang. 2015. Privacy in the genomic era. Comput. Surv. 48, 1 (2015).
[131]
The An Binh Nguyen, Christian Meurisch, Stefan Niemczyk, Doreen Böhnstedt, Kurt Geihs, Max Mühlhäuser, and Ralf Steinmetz. 2017. Adaptive task-oriented message template for in-network processing. In NetSys’17. IEEE, 1--8.
[132]
Bettina Nissen, Victoria Neumann, Mateusz Mikusz, Rory Gianni, Sarah Clinch, Chris Speed, and Nigel Davies. 2019. Should I agree? Delegating consent decisions beyond the individual. In CHI’19. 1--13.
[133]
Helen Nissenbaum. 2004. Privacy as contextual integrity. Wash. L. Rev. 79 (2004), 119.
[134]
Olga Ohrimenko, Felix Schuster, Cédric Fournet, Aastha Mehta, Sebastian Nowozin, Kapil Vaswani, and Manuel Costa. 2016. Oblivious multi-party machine learning on trusted processors. In USENIX SEC’16. 619--636.
[135]
Oleksii Oleksenko, Bohdan Trach, Robert Krahn, Mark Silberstein, and Christof Fetzer. 2018. Varys: Protecting SGX enclaves from practical side-channel attacks. In USENIX ATC’18. 227--240.
[136]
World Health Organization. 2001. The World Health Report 2001: Mental Health: New Understanding, New Hope. World Health Organization. https://www.who.int/whr/2001/en/.
[137]
Seyed Ali Osia, Ali Shahin Shamsabadi, Sina Sajadmanesh, Ali Taheri, Kleomenis Katevas, Hamid R. Rabiee, Nicholas D. Lane, et al. 2017. A Hybrid Deep Learning Architecture for Privacy-Preserving Mobile Analytics. arxiv:1703.02952.
[138]
Sinno Jialin Pan and Qiang Yang. 2009. A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 22, 10 (2009), 1345--1359.
[139]
Elias P. Papadopoulos, Michalis Diamantaris, Panagiotis Papadopoulos, Thanasis Petsas, Sotiris Ioannidis, et al. 2017. The long-standing privacy debate: Mobile websites vs mobile apps. In WWW’17. ACM, 153--162.
[140]
Veljko Pejovic and Mirco Musolesi. 2014. InterruptMe: Designing intelligent prompting mechanisms for pervasive applications. In UbiComp’14. ACM, 897--908.
[141]
Veljko Pejovic and Mirco Musolesi. 2015. Anticipatory mobile computing: A survey of the state of the art and research challenges. Comput. Surv. 47, 3 (2015).
[142]
Zhenhui Peng, Yunhwan Kwon, Jiaan Lu, Ziming Wu, and Xiaojuan Ma. 2019. Design and evaluation of service robot’s proactivity in decision-making support process. In CHI’19. ACM, 98:1--98:13.
[143]
Alex Pentland. 2009. Reality mining of mobile communications: Toward a new deal on data. In Social Computing and Behavioral Modeling. Springer-Verlag.
[144]
Charith Perera, Susan Y. L. Wakenshaw, Tim Baarslag, Hamed Haddadi, et al. 2017. Valorising the IoT databox: Creating value for everyone. Trans. Emerg. Telecomm. Technol. 28, 1 (2017), e3125.
[145]
Martin Pielot, Bruno Cardoso, Kleomenis Katevas, Joan Serrà, Aleksandar Matic, and Nuria Oliver. 2017. Beyond interruptibility: Predicting opportune moments to engage mobile phone users. Proc. ACM Interact. Mob. Wear. Ubiq. Technol. 1, 3 (2017), 91.
[146]
Benny Pinkas. 2002. Cryptographic techniques for privacy-preserving data mining. ACM SigKDD Explor. Newslett. 4, 2 (2002), 12--19.
[147]
Otto Julio Ahlert Pinno, Andre Ricardo Abed Gregio, and Luis C. E. De Bona. 2017. ControlChain: Blockchain as a central enabler for access control authorizations in the IoT. In GLOBECOM’17. IEEE, 1--6.
[148]
Moo-Ryong Ra, Ramesh Govindan, and Antonio Ortega. 2013. P3: Toward privacy-preserving photo sharing. In USENIX NSDI’13. 515--528.
[149]
Mashfiqui Rabbi, Min Hane Aung, Mi Zhang, and Tanzeem Choudhury. 2015. MyBehavior: Automatic personalized health feedback from user behaviors and preferences using smartphones. In UbiComp’15. ACM, 707--718.
[150]
Kiran K. Rachuri, Cecilia Mascolo, Mirco Musolesi, and Peter J. Rentfrow. 2011. SociableSense: Exploring the trade-offs of adaptive sampling and computation offloading for social sensing. In MobiCom’11. ACM, 73--84.
[151]
Kiran K. Rachuri, Mirco Musolesi, Cecilia Mascolo, Peter J. Rentfrow, et al. 2010. EmotionSense: A mobile phones based adaptive platform for experimental social psychology research. In UbiComp’10. ACM, 281--290.
[152]
Dave Raggett. 2015. The web of things: Challenges and opportunities. Computer 48, 5 (2015), 26--32.
[153]
Bita Darvish Rouhani, M. Sadegh Riazi, and Farinaz Koushanfar. 2018. DeepSecure: Scalable provably-secure deep learning. In DAC’18. ACM.
[154]
Stuart J. Russell and Peter Norvig. 2016. Artificial Intelligence: A Modern Approach. Pearson Education Limited.
[155]
Fariba Sadri. 2011. Ambient intelligence: A survey. Comput. Surv. 43, 4 (2011).
[156]
Andrei Vlad Sambra, Essam Mansour, Sandro Hawke, Maged Zereba, Nicola Greco, Abdurrahman Ghanem, Dmitri Zagidulin, Ashraf Aboulnaga, and Tim Berners-Lee. 2016. Solid: A Platform for Decentralized Social Applications Based on Linked Data. Technical Report. MIT CSAIL & Qatar Computing Research Institute.
[157]
Ruhi Sarikaya. 2017. The technology behind personal digital assistants: An overview of the system architecture and key components. IEEE Sig. Proc. Mag. 34, 1 (2017), 67--81.
[158]
Mahadev Satyanarayanan. 2017. The emergence of edge computing. Computer 50, 1 (2017), 30--39.
[159]
Benedikt Schmidt, Sebastian Benchea, Rüdiger Eichin, and Christian Meurisch. 2015. Fitness tracker or digital personal coach: How to personalize training. In Adjunct Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2015 ACM International Symposium on Wearable Computers. ACM, 1063--1067.
[160]
Philipp M. Scholl, Matthias Wille, and Kristof Van Laerhoven. 2015. Wearables in the wet lab: A laboratory system for capturing and guiding experiments. In UbiComp’15. ACM, 589--599.
[161]
Felix Schuster, Manuel Costa, Cédric Fournet, Christos Gkantsidis, Marcus Peinado, Gloria Mainar-Ruiz, and Mark Russinovich. 2015. VC3: Trustworthy data analytics in the cloud using SGX. In SP’15. IEEE, 38--54.
[162]
Klaus Schwab, Alan Marcus, J. O. Oyola, William Hoffman, and M. Luzi. 2011. Personal data: The emergence of a new asset class. Retrieved from http://www3.weforum.org/docs/WEF_ITTC_PersonalDataNewAsset_Report_2011.pdf.
[163]
Sandra Servia-Rodríguez, Liang Wang, Jianxin R. Zhao, Richard Mortier, and Hamed Haddadi. 2018. Privacy-preserving personal model training. In IoTDI’18. IEEE, 153--164.
[164]
Hossein Shafagh, Lukas Burkhalter, Anwar Hithnawi, and Simon Duquennoy. 2017. Towards blockchain-based auditable storage and sharing of IoT data. In CCSW’17. ACM, 45--50.
[165]
Peter Shaw, Mateusz Mikusz, Ludwig Trotter, Mike Harding, and Nigel Davies. 2019. Towards an understanding of emerging cyber security threats in mapping the IoT. In IoT’19. IET Digital Library.
[166]
Reza Shokri and Vitaly Shmatikov. 2015. Privacy-preserving deep learning. In CCS’15. ACM, 1310--1321.
[167]
Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly Shmatikov. 2017. Membership inference attacks against machine learning models. In SP’17. IEEE, 3--18.
[168]
Yan Shvartzshnaider, Zvonimir Pavlinovic, Ananth Balashankar, Thomas Wies, Lakshminarayanan Subramanian, et al. 2019. VACCINE: Using contextual integrity for data leakage detection. In WWW’19. ACM, 1702--1712.
[169]
Daniel J. Solove. 2005. A taxonomy of privacy. U. Pa. L. Rev. 154 (2005), 477.
[170]
Nili Steinfeld. 2016. “I agree to the terms and conditions”: (How) do users read privacy policies online? An eye-tracking experiment. Comput. Hum. Behav. 55 (2016), 992--1000.
[171]
Yu Sun, Nicholas Jing Yuan, Yingzi Wang, Xing Xie, Kieran McDonald, and Rui Zhang. 2016. Contextual intent tracking for personal assistants. In KDD’16. ACM, 273--282.
[172]
Latanya Sweeney. 2002. k-anonymity: A model for protecting privacy. Int.J. Uncert. Fuzz. Knowl.-based Syst. 10, 5 (2002), 557--570.
[173]
Jun Tang, Yong Cui, Qi Li, Kui Ren, Jiangchuan Liu, and Rajkumar Buyya. 2016. Ensuring security and privacy preservation for cloud data services. Comput. Surv. 49, 1 (2016).
[174]
Daniel Teghe and Kathryn Rendell. 2005. Social Well-being: A Literature Review. School of Social Work and Welfare Studies, CQU, Rockhampton.
[175]
Eran Toch, Yang Wang, and Lorrie Faith Cranor. 2012. Personalization and privacy: A survey of privacy risks and remedies in personalization-based systems. User Model. User-adapt. Interact. 22, 1--2 (2012), 203--220.
[176]
Paul Tran-Van, Nicolas Anciaux, and Philippe Pucheral. 2017. SWYSWYK: A privacy-by-design paradigm for personal information management systems. In ISD’17. AIS.
[177]
Chia-Che Tsai, Donald E. Porter, and Mona Vij. 2017. Graphene-SGX: A practical library OS for unmodified applications on SGX. In USENIX ATC’17. 645--658.
[178]
Kenneth Tung. 2019. AI, the Internet of legal things, and lawyers. J. Manag. Anal. 6, 4 (2019), 390--403.
[179]
Robert van den Hoven van Genderen. 2017. Privacy and data protection in the age of pervasive technologies in AI and robotics. Eur. Data Prot. L. Rev. 3 (2017), 338.
[180]
Max Van Kleek and Kieron O’Hara. 2014. The future of social is personal: The potential of the personal data store. In Social Collective Intelligence. Springer, 125--158.
[181]
Ricardo Vilalta and Youssef Drissi. 2002. A perspective view and survey of meta-learning. Artif. Intell. Rev. 18, 2 (2002), 77--95.
[182]
Isabel Wagner and David Eckhoff. 2018. Technical privacy metrics: A systematic survey. Comput. Surv. 51, 3 (2018).
[183]
Huaiqing Wang, Matthew K. O. Lee, and Chen Wang. 1998. Consumer privacy concerns about Internet marketing. Commun. ACM 41, 3 (1998), 63--70.
[184]
Jiaqiu Wang and Zhongjie Wang. 2014. A survey on personal data cloud. Sci. World J. 2014 (2014).
[185]
Shiqiang Wang, Tiffany Tuor, Theodoros Salonidis, Kin K. Leung, Christian Makaya, et al. 2018. When edge meets learning: Adaptive control for resource-constrained distributed machine learning. In INFOCOM’18. IEEE, 63--71.
[186]
Xiaofei Wang, Yiwen Han, Chenyang Wang, Qiyang Zhao, Xu Chen, and Min Chen. 2019. In-edge AI: Intelligentizing mobile edge computing, caching and communication by federated learning. IEEE Netw. 33, 5 (2019), 156--165.
[187]
Samuel D. Warren and Louis D. Brandeis. 1890. Right to privacy. Harv. L. Rev. 4 (1890), 193.
[188]
Mark Weiser. 1991. The computer for the 21st century. Sci. Amer. 265, 3 (1991), 94--105.
[189]
Alan F. Westin. 1968. Privacy and freedom. Wash. Lee Law Rev. 25, 1 (1968), 166.
[190]
Jason Wiese, Sauvik Das, Jason I. Hong, and John Zimmerman. 2017. Evolving the ecosystem of personal behavioral data. Hum.-comput. Interact. 32, 5--6 (2017), 447--510.
[191]
Depeng Xu, Shuhan Yuan, and Xintao Wu. 2019. Achieving differential privacy and fairness in logistic regression. In WWW’19 Comp. ACM, 594--599.
[192]
Heng Xu, Xin Robert Luo, John Carroll, and Mary Rosson. 2011. The personalization privacy paradox: An exploratory study of decision making process for location-aware marketing. Decis. Supp. Syst. 51, 1 (2011), 42--52.
[193]
Zhi Xu and Sencun Zhu. 2015. SemaDroid: A privacy-aware sensor management framework for smartphones. In CODASPY’15. ACM, 61--72.
[194]
Zhu Yan, Guhua Gan, and Khaled Riad. 2017. BC-PDS: Protecting privacy and self-sovereignty through blockchains for OpenPDS. In SOSE’17. IEEE, 138--144.
[195]
Qiang Yang, Yang Liu, Tianjian Chen, and Yongxin Tong. 2019. Federated machine learning: Concept and applications. ACM Trans. Intell. Syst. Technol. 10, 2 (2019), 12:1--12:19.
[196]
Neil Yorke-Smith, Shahin Saadati, Karen L. Myers, and David N. Morley. 2012. The design of a proactive personal agent for task management. Int. J. Artif. Intell. Tools 21, 01 (2012), 1250004.
[197]
Muhammad Bilal Zafar, Isabel Valera, Manuel Gomez Rodriguez, and Krishna P. Gummadi. 2017. Fairness beyond disparate treatment & disparate impact: Learning classification without disparate mistreatment. In WWW’17. 1171--1180.
[198]
Yan Zhai, Lichao Yin, Jeffrey Chase, Thomas Ristenpart, and Michael Swift. 2016. CQSTR: Securing cross-tenant applications with cloud containers. In SoCC’16. ACM, 223--236.
[199]
Rui Zhang, Rui Xue, and Ling Liu. 2019. Security and privacy on blockchain. Comput. Surv. 52, 3 (2019).
[200]
Wenting Zheng, Ankur Dave, Jethro G. Beekman, Raluca Ada Popa, Joseph E. Gonzalez, and Ion Stoica. 2017. Opaque: An oblivious and encrypted distributed analytics platform. In USENIX NSDI’17. 283--298.
[201]
Zhi Zhou, Xu Chen, En Li, Liekang Zeng, Ke Luo, and Junshan Zhang. 2019. Edge intelligence: Paving the last mile of artificial intelligence with edge computing. Proc. IEEE 107, 8 (2019), 1738--1762.
[202]
Qingyi Zhu, Seng W. Loke, Rolando Trujillo-Rasua, Frank Jiang, and Yong Xiang. 2019. Applications of distributed ledger technologies to the Internet of Things: A survey. Comput. Surv. 52, 6 (2019).
[203]
M. Tarek Ibn Ziad, Amr Alanwar, Moustafa Alzantot, and Mani Srivastava. 2016. CryptoImg: Privacy preserving processing over encrypted images. In CNS’16. IEEE, 570--575.
[204]
Philip R. Zimmermann. 1995. The Official PGP User’s Guide. Vol. 5. The MIT Press, Cambridge, MA.
[205]
Guy Zyskind, Oz Nathan, and Alex Pentland. 2015. Enigma: Decentralized Computation Platform with Guaranteed Privacy. arxiv:1506.03471

Cited By

View all
  • (2025)Artificial intelligence and its impact on corporate social responsibilitySouthern perspective / Perspectiva austral10.56294/pa2025323(32)Online publication date: 1-Jan-2025
  • (2025)New Developments in Research Data Management - The Potential of AIEncyclopedia of Libraries, Librarianship, and Information Science10.1016/B978-0-323-95689-5.00253-4(206-211)Online publication date: 2025
  • (2024)Artificial Intelligence in Intellectual Property Protection: Application of Deep Learning ModelEAI Endorsed Transactions on Internet of Things10.4108/eetiot.538810Online publication date: 12-Mar-2024
  • Show More Cited By

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image ACM Computing Surveys
ACM Computing Surveys  Volume 54, Issue 2
March 2022
800 pages
ISSN:0360-0300
EISSN:1557-7341
DOI:10.1145/3450359
Issue’s Table of Contents
This work is licensed under a Creative Commons Attribution International 4.0 License.

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 05 March 2021
Accepted: 01 December 2020
Revised: 01 October 2020
Received: 01 March 2020
Published in CSUR Volume 54, Issue 2

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. AI services
  2. data decentralization
  3. data protection
  4. personalization
  5. privacy

Qualifiers

  • Research-article
  • Research
  • Refereed

Funding Sources

  • Deutsche Forschungsgemeinschaft (DFG) - GRK 2050 Privacy & Trust
  • National Research Center for Applied Cybersecurity ATHENE
  • German Federal Ministry of Education and Research and the Hessian Ministry of Higher Education, Research, Science

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)2,390
  • Downloads (Last 6 weeks)272
Reflects downloads up to 01 Jan 2025

Other Metrics

Citations

Cited By

View all
  • (2025)Artificial intelligence and its impact on corporate social responsibilitySouthern perspective / Perspectiva austral10.56294/pa2025323(32)Online publication date: 1-Jan-2025
  • (2025)New Developments in Research Data Management - The Potential of AIEncyclopedia of Libraries, Librarianship, and Information Science10.1016/B978-0-323-95689-5.00253-4(206-211)Online publication date: 2025
  • (2024)Artificial Intelligence in Intellectual Property Protection: Application of Deep Learning ModelEAI Endorsed Transactions on Internet of Things10.4108/eetiot.538810Online publication date: 12-Mar-2024
  • (2024)Generative AI for Secure User Interface (UI) DesignReshaping CyberSecurity With Generative AI Techniques10.4018/979-8-3693-5415-5.ch010(333-394)Online publication date: 13-Sep-2024
  • (2024)AI in 6G Network Security and ManagementReshaping CyberSecurity With Generative AI Techniques10.4018/979-8-3693-5415-5.ch005(173-200)Online publication date: 13-Sep-2024
  • (2024)AI-Driven Personalization in Omnichannel MarketingLeveraging AI for Effective Digital Relationship Marketing10.4018/979-8-3693-5340-0.ch004(97-130)Online publication date: 18-Oct-2024
  • (2024)Hospitality and Tourism Value Co-Creation in the Light of Artificial IntelligenceFuture of Customer Engagement Through Marketing Intelligence10.4018/979-8-3693-2367-0.ch005(95-114)Online publication date: 7-Jun-2024
  • (2024)Ethical Considerations and Privacy Concerns in AI-Enabled LibrariesApplications of Artificial Intelligence in Libraries10.4018/979-8-3693-1573-6.ch003(45-77)Online publication date: 28-Jun-2024
  • (2024)Labyrinth of AI’s Legal Compass; In the Nexus of Legal ProceedingsSSRN Electronic Journal10.2139/ssrn.4815582Online publication date: 2024
  • (2024)LOOM: a Privacy-Preserving Linguistic Observatory of Online MisinformationProceedings of the Second International Symposium on Trustworthy Autonomous Systems10.1145/3686038.3686062(1-9)Online publication date: 16-Sep-2024
  • Show More Cited By

View Options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

HTML Format

View this article in HTML Format.

HTML Format

Login options

Full Access

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media