[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
10.1145/2330784.2330790acmconferencesArticle/Chapter ViewAbstractPublication PagesgeccoConference Proceedingsconference-collections
research-article

Evolutionary prediction of photovoltaic power plant energy production

Published: 07 July 2012 Publication History

Abstract

This paper presents an application of genetic programming to the evolution of fuzzy predictors based on fuzzy information retrieval. The fuzzy predictors are used to estimate the output of a Photovoltaic Power Plant (PVPP). The PVPPs are energy sources with an unstable production of electrical energy. It is necessary to back up the energy produced by the PVPPs for stable electric network operations. An optimal value of backup power can be set with advanced prediction models that can contribute to the robustness of the electric network within the framework of an intelligent power grid. This work extends previous research on evolutionary design of fuzzy PVPP output predictors by the evaluation of the method on a larger data set describing the operations of a real PVPP.

References

[1]
M. Affenzeller, S. Winkler, S. Wagner, and A. Beham. Genetic Algorithms and Genetic Programming: Modern Concepts and Practical Applications. Chapman & Hall/CRC, 2009.
[2]
J. C. Bezdek, J. Keller, R. Krisnapuram, and N. R. Pal. Fuzzy Models and Algorithms for Pattern Recognition and Image Processing (The Handbooks of Fuzzy Sets). Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2005.
[3]
O. Cordón. A historical review of evolutionary learning methods for mamdani-type fuzzy rule-based systems: Designing interpretable genetic fuzzy systems. International Journal of Approximate Reasoning, 52(6):894 -- 913, 2011.
[4]
O. Cordón, M. J. del Jesus, and F. Herrera. Genetic learning of fuzzy rule-based classification systems cooperating with fuzzy reasoning methods. International Journal of Intelligent Systems, 13:1025--1053, 1998.
[5]
F. Crestani and G. Pasi. Soft information retrieval: Applications of fuzzy set theory and neural networks. In N. Kasabov and R. Kozma, editors, Neuro-Fuzzy Techniques for Intelligent Information Systems, pages 287--315. Springer Verlag, Heidelberg, DE, 1999.
[6]
M. Freischlad, M. Schnellenbach-Held, and T. Pullmann. Evolutionary generation of implicative fuzzy rules for design knowledge representation. In I. F. C. Smith, editor, EG-ICE, volume 4200 of Lecture Notes in Computer Science, pages 222--229. Springer, 2006.
[7]
D. Húsek, S. S. J. Owais, V. Snásel, and P. Krömer. Boolean queries optimization by genetic programming. Neural Network World, pages 359--409, 2005.
[8]
D. Húsek, V. Snásel, R. Neruda, S. S. J. Owais, and P. Krömer. Boolean queries optimization by genetic programming. WSEAS Transactions on Information Science and Applications, 3(1):15--20, 2006.
[9]
H. Ishibuchi and Y. Nojima. Multiobjective formulations of fuzzy rule-based classification system design. In E. Montseny and P. Sobrevilla, editors, EUSFLAT Conf., pages 285--290. Universidad Polytecnica de Catalunya, 2005.
[10]
J. Jantzen. phTutorial On Fuzzy Logic. Technical Report 98-E-868 (logic), Technical University of Denmark, Dept. of Automation, 1998.
[11]
P. Kacor, S. Misák, and L. Prokop. Optimization and redesign of vertical axis wind turbine for generator of independent source of energy. In B. Katalinic, editor, Annals of DAAAM for 2010 & Proceedings of the 21st International DAAAM Symposium, pages 1053--1054. DAAAM International Vienna, Vienna, October 2010.
[12]
J. Koza. Genetic programming: A paradigm for genetically breeding populations of computer programs to solve problems. Technical Report STAN-CS-90--1314, Dept. of Computer Science, Stanford University, 1990.
[13]
J. R. Koza. Genetic Programming: On the Programming of Computers by Means of Natural Selection. MIT Press, Cambridge, MA, USA, 1992.
[14]
D. H. Kraft, F. E. Petry, B. P. Buckles, and T. Sadasivan. Genetic Algorithms for Query Optimization in Information Retrieval: Relevance Feedback. In E. Sanchez, T. Shibata, and L. Zadeh, editors, Genetic Algorithms and Fuzzy Logic Systems, Singapore, 1997. World Scientific.
[15]
P. Kromer, J. Platos, V. Snasel, and A. Abraham. Towards intrusion detection by information retrieval and genetic programming. In 2010 Sixth International Conference on Information Assurance and Security (IAS 2010), pages 148--153, Atlanta, Georgia, USA, 8 2010. IEEE Catalog numberCFP1061C-CDR, ISBN978--1--4244--7408-0.
[16]
P. Krömer, J. Plato\vs, V. Snásel, A. Abraham, L. Prokop, and S. Misák. Genetically evolved fuzzy predictor for photovoltaic power output estimation. In 2011 Third International Conference on Intelligent Networking and Collaborative Systems (INCoS), pages 41 -- 46. IEEE, 2011.
[17]
P. Krömer, V. Snásel, and J. Platos. Learning patterns from data by an evolutionary-fuzzy approach. In E. Corchado, V. Snásel, J. Sedano, A. Hassanien, J. Calvo, and D. Slezák, editors, Soft Computing Models in Industrial and Environmental Applications, 6th International Conference SOCO 2011, volume 87 of Advances in Intelligent and Soft Computing, pages 127--135. Springer Berlin / Heidelberg, 2011. 10.1007/978--3--642--19644--7--14.
[18]
P. Krömer, V. Snásel, J. Platos, and A. Abraham. Evolving fuzzy classifier for data mining - an information retrieval approach. In Ã. Herrero, E. Corchado, C. Redondo, and Ã. Alonso, editors, Computational Intelligence in Security for Information Systems 2010, volume 85 of Advances in Intelligent and Soft Computing, pages 25--32. Springer Berlin / Heidelberg, 2010. 10.1007/978--3--642--16626--6--3.
[19]
S. Owais, P. Krömer, V. Snásel, D. Husek, and R. Neruda. Implementing GP on optimizing both boolean and extended boolean queries in IR and fuzzy IR systems with respect to the users profiles. In G. G. Yen, L. Wang, P. Bonissone, and S. M. Lucas, editors, Proceedings of the 2006 IEEE Congress on Evolutionary Computation, pages 5648--5654, Vancouver, BC, Canada, 6--21 July 2006. IEEE Computer Society.
[20]
R. Prado, S. Garcia-Galán, J. Exposito, and A. Yuste. Knowledge acquisition in fuzzy-rule-based systems with particle-swarm optimization. Fuzzy Systems, IEEE Transactions on, 18(6):1083 --1097, dec. 2010.
[21]
G. Salton and C. Buckley. Term-weighting approaches in automatic text retrieval. Information Processing and Management, 24(5):pp. 513--523, 1988.
[22]
V. Snasel, A. Abraham, S. Owais, J. Platos, and P. Kromer. Emergent Web Intelligence: Advanced Information Retrieval, chapter User Profiles Modeling in Information Retrieval Systems, pages 169--198. Advanced Information and Knowledge Processing. Springer London, 2010. ISBN 978--1--84996-073--1 (Print) 978--1--84996-074--8 (Online), $DOI 10.1007/978--1--84996-074--8_7$.
[23]
V. Snásel, P. Krömer, J. Platos, and A. Abraham. The evolution of fuzzy classifier for data mining with applications. In K. Deb, A. Bhattacharya, N. Chakraborti, P. Chakroborty, S. Das, J. Dutta, S. K. Gupta, A. Jain, V. Aggarwal, J. Branke, S. J. Louis, and K. C. Tan, editors, SEAL, volume 6457 of Lecture Notes in Computer Science, pages 349--358. Springer, 2010.
[24]
C. J. Van Rijsbergen. Information Retrieval, 2nd edition. Dept. of Computer Science, University of Glasgow, 1979.
[25]
A. Verikas, J. Guzaitis, A. Gelzinis, and M. Bacauskiene. A general framework for designing a fuzzy rule-based classifier. Knowledge and Information Systems, pages 1--19. 10.1007/s10115-010-0340-x.
[26]
C.-H. Wang, T.-P. Hong, and S.-S. Tseng. Integrating membership functions and fuzzy rule sets from multiple knowledge sources. Fuzzy Sets Syst., 112:141--154, May 2000.
[27]
L. A. Zadeh. Fuzzy sets. Information and Control, 8:pp. 338--353, 1965.
[28]
L. A. Zadeh. Empirical Semantics, volume 1 of Quantitative Semantics, Vol. 12, chapter Test-score semantics dor natural languages and meaning representation via Pruf, pages 281--349. Studienverlag Brockmeyer, Bochum, 1981.
[29]
E. Zhou and A. Khotanzad. Fuzzy classifier design using genetic algorithms. Pattern Recogn., 40:3401--3414, December 2007.

Cited By

View all
  • (2016)A literature review on estimating of PV-array hourly power under cloudy weather conditionsRenewable and Sustainable Energy Reviews10.1016/j.rser.2016.05.02763(579-592)Online publication date: Sep-2016
  • (2014)Short-circuit protection in Off-Grid system2014 14th International Conference on Environment and Electrical Engineering10.1109/EEEIC.2014.6835890(339-344)Online publication date: May-2014

Index Terms

  1. Evolutionary prediction of photovoltaic power plant energy production

    Recommendations

    Comments

    Please enable JavaScript to view thecomments powered by Disqus.

    Information & Contributors

    Information

    Published In

    cover image ACM Conferences
    GECCO '12: Proceedings of the 14th annual conference companion on Genetic and evolutionary computation
    July 2012
    1586 pages
    ISBN:9781450311786
    DOI:10.1145/2330784
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

    Sponsors

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 07 July 2012

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. fuzzy rules
    2. genetic programming
    3. prediction

    Qualifiers

    • Research-article

    Conference

    GECCO '12
    Sponsor:
    GECCO '12: Genetic and Evolutionary Computation Conference
    July 7 - 11, 2012
    Pennsylvania, Philadelphia, USA

    Acceptance Rates

    Overall Acceptance Rate 1,669 of 4,410 submissions, 38%

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)1
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 19 Dec 2024

    Other Metrics

    Citations

    Cited By

    View all
    • (2016)A literature review on estimating of PV-array hourly power under cloudy weather conditionsRenewable and Sustainable Energy Reviews10.1016/j.rser.2016.05.02763(579-592)Online publication date: Sep-2016
    • (2014)Short-circuit protection in Off-Grid system2014 14th International Conference on Environment and Electrical Engineering10.1109/EEEIC.2014.6835890(339-344)Online publication date: May-2014

    View Options

    Login options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media