[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

A general framework for designing a fuzzy rule-based classifier

  • Short Paper
  • Published:
Knowledge and Information Systems Aims and scope Submit manuscript

Abstract

This paper presents a general framework for designing a fuzzy rule-based classifier. Structure and parameters of the classifier are evolved through a two-stage genetic search. To reduce the search space, the classifier structure is constrained by a tree created using the evolving SOM tree algorithm. Salient input variables are specific for each fuzzy rule and are found during the genetic search process. It is shown through computer simulations of four real world problems that a large number of rules and input variables can be eliminated from the model without deteriorating the classification accuracy. By contrast, the classification accuracy of unseen data is increased due to the elimination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Vapnik VN (1998) Statistical learning theory. Wiley, New York

    MATH  Google Scholar 

  2. Bishop CM (2006) Pattern recognition and machine learning. Springer, Singapore

    MATH  Google Scholar 

  3. Tipping ME (2001) Sparse bayesian learning and the relevance vector machine. J Mach Learn Res 1: 211–244

    MathSciNet  MATH  Google Scholar 

  4. Hamel L (2006) Visualization of support vector machines with unsupervised learning. In: Proceedings of IEEE symposium computational intelligence and bioinformatics and computational biology, 2006 CIBCB’06, IEEE 1–8

  5. Strumbelj E, Bosnic Z, Kononenko I, Zakotnik B, Kuhar CG (2010) Explanation and reliability of prediction models: the case of breast cancer recurrence. Knowl Inf Syst 24(2): 305–324

    Article  Google Scholar 

  6. Janikow CZ (1998) Fuzzy decision trees: issues and methods. IEEE Trans Syst Man Cybern Part B Cybern 28(1): 1–14

    Article  Google Scholar 

  7. Olaru C, Wehenkel L (2003) A complete fuzzy decision tree technique. Fuzzy Sets Syst 138: 221–254

    Article  MathSciNet  Google Scholar 

  8. Jang JR (1993) anfis: adaptive-network-based fuzzy inference system. IEEE Trans Syst Man Cybern 23: 665–685

    Article  Google Scholar 

  9. Carpenter GA, Grossberg S, Markuzon N, Reynolds JH, Rosen DB (1992) Fuzzy artmap: a neural network architecture for incremental supervised learning of analog multidimensional maps. IEEE Trans Neural Netw 3(5): 698–713

    Article  Google Scholar 

  10. Simpson KP (1992) Fuzzy min-max neural networks—part 1: classification. IEEE Trans Neural Netw 3(5): 776–786

    Article  Google Scholar 

  11. Abe S, Lan MS (1995) A method for fuzzy rules extraction directly from numerical data and its application to parten classification. IEEE Trans Fuzzy Syst 3(1): 18–28

    Article  MathSciNet  Google Scholar 

  12. Pedrycz W (1990) Fuzzy sets in pattern recognition: methodology and methods. Pattern Recognit 23(1–2): 121–146

    Article  Google Scholar 

  13. Jaffar MA, Hussain A, Mirza AM (2010) Fuzzy entropy based optimization of clusters for the segmentation of lungs in ct scanned images. Knowl Inf Syst 24(1): 91–111

    Article  Google Scholar 

  14. Denton AM, Wu J (2009) Data mining of vector-item patterns using neighborhood histograms. Knowl Inf Syst 21: 173–199

    Article  Google Scholar 

  15. Takagi T, Sugeno M (1985) Fuzzy identification of systems and its applications to modeling and control. IEEE Trans Syst Man Cybern 15(1): 116–132

    MATH  Google Scholar 

  16. Tao F, Zhao D, Zhang L (2009) Resource service optimal-selection based on intuitionistic fuzzy set and non-functionality qos in manufacturing grid system. Knowl Inf Syst doi:10.1007/s10115-009-0263-6

  17. Wang LX (1997) Modeling and control of hierarchical systems with fuzzy systems. Automatica 33(6): 1041–1053

    Article  MathSciNet  MATH  Google Scholar 

  18. Nauck D, Klawon F, Kruse R (1997) Foundations of neuro-fuzzy systems. Wiley, Chichester

    Google Scholar 

  19. Duda RO, Hart PE, Stork DG (2001) Pattern classification, 2nd edn. Wiley, New York

    MATH  Google Scholar 

  20. Bezdek JC (1981) Pattern recognition with fuzzy objective function algorithms. Plenum Press, New York

    MATH  Google Scholar 

  21. Kohonen T (1990) The self-organizing map. Proc IEEE 78(9): 1461–1480

    Article  Google Scholar 

  22. Yoshinari Y, Pedrycz W, Hirota K (1993) Construction of fuzzy models through clustering techniques. Fuzzy Sets Syst 54(2): 157–165

    Article  MathSciNet  Google Scholar 

  23. Wang Y, Rong GA (1999) self-organizing neural-network based fuzzy system. Fuzzy Sets Syst 103: 1–11

    Article  Google Scholar 

  24. Chen MY, Linkens DA (2001) A systematic neuro-fuzzy modeling framework with application to material property prediction. IEEE Trans Syst Man Cybern Part B 31(5): 781–790

    Article  Google Scholar 

  25. Castellano G, Castiello C, Fanelli AM, Mencar C (2005) Knowledge discovery by a neuro-fuzzy medeling framework. Fuzzy Sets Syst 149: 187–207

    Article  MathSciNet  MATH  Google Scholar 

  26. Zhou E, Khotanzad A (2007) Fuzzy classifier design using genetic algorithms. Pattern Recognit 40(12): 3401–3414

    Article  MATH  Google Scholar 

  27. Nishina T, Hagiwara M (1997) Fuzzy inference neural network. Neurocomputing 14: 223–239

    Article  Google Scholar 

  28. Chang PC, Liao TW (2006) Combining som and fuzzy rule base for flow time prediction in semiconductor manufacturing factory. Appl Soft Comput 6: 198–206

    Article  Google Scholar 

  29. Kasabov N (2001) Evolving fuzzy neural networks for supervised/unsupervised on-line, knowledge-based learning. IEEE Trans Syst Man Cybern 31(6): 902–918

    Article  Google Scholar 

  30. Minku FL, Ludermir TB (2008) Clustering and co-evolution to construct network ensembles: an experimental study. Neural Netw 21: 1363–1379

    Article  Google Scholar 

  31. Abonyi J, Roubos JA, Szeifert F (2003) Data-driven generation of compact, accurate, and linguistically sound fuzzy classifiers based on a decision-tree initialization. Int J Approx Reason 32(1): 1–21

    Article  MATH  Google Scholar 

  32. Kbir MM, Benkirane H, Maalmi K, Benslimane R (2000) Hierarchical fuzzy partition for pattern classification with fuzzy if-then rules. Pattern Recognit Lett 21: 503–509

    Article  Google Scholar 

  33. Pulkkinen P, Koivisto H (2007) Identification of interpretable and accurate fuzzy classifiers and function estimators with hybrid methods. Appl Soft Comput 7: 433–520

    Article  Google Scholar 

  34. Verikas A, Bacauskiene M (2002) Feature selection with neural networks. Pattern Recognit Lett 23(11): 1323–1335

    Article  MATH  Google Scholar 

  35. Roubos JA, Setnes M, Abonyi J (2003) Learning fuzzy classification rules from labeled data. Inf Sci 150: 77–93

    Article  MathSciNet  Google Scholar 

  36. Nauck D, Kruse R (1999) Obtaining interpretable fuzzy classification rules from medical data. Artif Intell Med 16(2): 149–169

    Article  MathSciNet  Google Scholar 

  37. Lin CT, Lu YC (1995) A neural fuzzy system with linguistic teachnig signals. IEEE Trans Fuzzy Syst 3(2): 169–189

    Article  Google Scholar 

  38. Tung WL, Quek C, Cheng P (2004) Genso: a novel neural-fuzzy based early warning system for predicting bank failures. Neural Netw 17: 567–587

    Article  Google Scholar 

  39. Nozaki K, Ishibuchi H, Tanaka H (1996) Adaptive fuzzy rule-based classification systems. IEEE Trans Fuzzy Syst 4(3): 238–250

    Article  Google Scholar 

  40. Wang CH, Hong TP, Tseng SS (1998) Integrating fuzzy knowledge by genetic algorithms. IEEE Trans Evol Comput 2(4): 138–149

    Article  Google Scholar 

  41. Tsang CH, Kwong S, Wang H (2007) Genetic-fuzzy rule mining approach and evaluation of feature selection techniques for anomaly intrusion detection. Pattern Recognit 40(9): 2373–2391

    Article  MATH  Google Scholar 

  42. Ozyer T, Alhajj R, Barker K (2007) Intrusion detection by integrating boosting genetic fuzzy classifier and data mining criteria for rule pre-screening. J Netw Comput Appl 30(1): 99–113

    Article  Google Scholar 

  43. Hoffmann F (2004) Combining boosting and evolutionary algorithms for learning of fuzzy classification rules. Fuzzy Sets Syst 141: 47–58

    Article  MATH  Google Scholar 

  44. Wang CH, Hong TP, Tseng SS (2000) Integrating membership functions and fuzzy rule sets from multiple knowledge sources. Fuzzy Sets Syst 112: 141–154

    Article  Google Scholar 

  45. Er MJ, Zhou Y (2008) Automatic generation of fuzzy inference systems via unsupervised learning. Neural Netw 21(10): 1556–1566

    Article  Google Scholar 

  46. Chen CH, Tseng VS, Hong TP (2008) Cluster-based evaluation in fuzzy-genetic data mining. IEEE Trans Fuzzy Syst 16(1): 249–262

    Article  Google Scholar 

  47. Nakashima T, Schaefer G, Yokota Y, Ishibuchi H (2007) A weighted fuzzy classifier and its application to image processing tasks. Fuzzy Sets Syst 158: 284–294

    Article  MathSciNet  Google Scholar 

  48. Ishibuchi H, Nojima Y (2007) Analysis of interpretability-accuracy tradeoff of fuzzy systems by multiobjective fuzzy genetics-based machine learning. Int J Approx Reason 44(1): 4–31

    Article  MathSciNet  MATH  Google Scholar 

  49. Ishibuchi H, Nakashima T, Murata T (2001) Three-objective genetics-based machine learning for linguistic rule extraction. Inf Sci 136: 109–133

    Article  MATH  Google Scholar 

  50. Ishibuchi H, Nakashima T, Morisawa T (1999) Voting in fuzzy rule-based systems for pattern classification problems. Fuzzy Sets Syst 103: 223–238

    Article  Google Scholar 

  51. Lei Z, Ren-hou L (2008) Designing of classifiers based on immune principles and fuzzy rules. Inf Sci 178: 1836–1847

    Article  Google Scholar 

  52. Mohamadi H, Habibi J, Abadeh MS, Saadi H (2008) Data mining with a simulated annealing based fuzzy classification system. Pattern Recognit 41(5): 1824–1833

    Article  MATH  Google Scholar 

  53. Lowe DG (1995) Similarity metric learning for a variable-kernel classifier. Neural Comput 7: 72–85

    Article  Google Scholar 

  54. Chang CL (1974) Finding prototypes for nearest neighbour classifiers. IEEE Trans Comput 23: 1179–1184

    Article  MATH  Google Scholar 

  55. Tomek I (1976) An experiment with the edited nearest-neighbour rule. IEEE Trans Syst Man Cybern 6: 448–452

    Article  MathSciNet  MATH  Google Scholar 

  56. Tomek I (1976) Two modifications of cnn. IEEE Trans Syst Man Cybern 6: 769–772

    Article  MathSciNet  MATH  Google Scholar 

  57. Verikas A, Bacauskiene M, Malmqvist K (2003) Learning an adaptive dissimilarity measure for nearest neighbour classification. Neural Comput Appl 11(3–4): 203–209

    Article  MATH  Google Scholar 

  58. Mamdani EH, Assilian S (1975) An experiment in linguistic synthesis with a fuzzy logic controller. Int J Man-Mach Stud 7(1): 1–12

    Article  MATH  Google Scholar 

  59. Lin Y, Cunningham GA (1995) A new approach to fuzzy-neural system modeling. IEEE Trans Fuzzy Syst 3(2): 190–198

    Article  Google Scholar 

  60. Zolghadri MJ, Mansoori EG (2007) Weighting fuzzy classification rules using receiver operating characteristics (roc) analysis. Inf Sci 177: 2296–2307

    Article  Google Scholar 

  61. Pakkanen J, Iivarinen J, Oja E (2004) The evolving tree—a novel self-organizing network for data analysis. Neural Process Lett 20: 199–211

    Article  Google Scholar 

  62. Kohonen T (2001) Self-organizing maps, 3rd edn. Springer, Berlin

    Book  MATH  Google Scholar 

  63. Guzaitis J, Verikas A (2008) An efficient technique to detect visual defects in particleboards. Informatica 19(3): 363–376

    MATH  Google Scholar 

  64. Song HH, Lee SW (1996) lvq combined with simulated annealing for optimal design of large-set reference patterns. Neural Netw 9(2): 329–336

    Article  MathSciNet  Google Scholar 

  65. Kalina A, Mezyk E (2008) Accuracy boosting induction of fuzzy rules with artificial immune systems. In: Proceedings of the international multiconference on computer science and information technology vol 3, IEEE, pp 155–159

  66. Halavati R, Shouraki SB, Lotfi S, Esfandiar P (2009) Symbiotic evolution of rule based classifier systems. Int J Artif Intell Tools 18(1): 1–16

    Article  Google Scholar 

  67. Ho SY, Chen HM, Ho SJ (2004) Design of accurate classifiers with a compact fuzzy-rule base using an evolutionary scatter partition of feature space. IEEE Trans Syst Man Cybern Part B 34(2): 1031–1043

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antanas Verikas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Verikas, A., Guzaitis, J., Gelzinis, A. et al. A general framework for designing a fuzzy rule-based classifier. Knowl Inf Syst 29, 203–221 (2011). https://doi.org/10.1007/s10115-010-0340-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10115-010-0340-x

Keywords

Navigation