[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
10.1145/2669043.2669045acmotherconferencesArticle/Chapter ViewAbstractPublication Pagessiggraph-asiaConference Proceedingsconference-collections
research-article

Efficient view-based 3d reflection symmetry detection

Published: 24 November 2014 Publication History

Abstract

Symmetries exist in many 3D models while efficiently finding their symmetry planes is important and useful for many related applications. This paper presents a simple and efficient view-based reflection symmetry detection method based on the viewpoint entropy features of a set of sample views of a 3D model. Before symmetry detection, we align the 3D model based on the Continuous Principal Component Analysis (CPCA) method. To avoid the high computational load resulting from a directly combinatorial matching among the sample views, we develop a fast symmetry plane detection method by first generating a candidate symmetry plane based on a matching pair of sample views and then verifying whether the number of remaining matching pairs is within a minimum number. Experiments demonstrate better accuracy, efficiency, and flexibility of our algorithm than state-of-the-art approaches.

References

[1]
AIM@SHAPE, 2014. http://shapes.aimatshape.net/.
[2]
Aubry, M., Schlickewei, U., and Cremers, D. 2011. The wave kernel signature: A quantum mechanical approach to shape analysis. In ICCV Workshops, IEEE, 1626--1633.
[3]
Berner, A., Wand, M., Mitra, N. J., Mewes, D., and Seidel, H.-P. 2011. Shape analysis with subspace symmetries. Comput. Graph. Forum 30, 2, 277--286.
[4]
Bokeloh, M., Berner, A., Wand, M., Seidel, H.-P., and Schilling, A. 2009. Symmetry detection using feature lines. Comput. Graph. Forum 28, 2, 697--706.
[5]
Cailliere, D., Denis, F., Pele, D., and Baskurt, A. 2008. 3D mirror symmetry detection using hough transform. In ICIP, IEEE, 1772--1775.
[6]
Cao, J., Tagliasacchi, A., Olson, M., Zhang, H., and Su, Z. 2010. Point cloud skeletons via laplacian-based contraction. In Proc. of IEEE Conf. on Shape Modeling and Applications, 187--197.
[7]
Chaouch, M., and Verroust-Blondet, A. 2009. Alignment of 3D models. Graphical Models 71, 2, 63--76.
[8]
Cignoni, P., Rocchini, C., and Scopigno, R. 1998. Metro: Measuring error on simplified surfaces. Comput. Graph. Forum 17, 2, 167--174.
[9]
Fang, R., Godil, A., Li, X., and Wagan, A. 2008. A new shape benchmark for 3D object retrieval. In ISVC (1), Springer, G. Bebis and et al., Eds., vol. 5358 of Lecture Notes in Computer Science, 381--392.
[10]
Golovinskiy, A., Podolak, J., and Funkhouser, T. A. 2009. Symmetry-aware mesh processing. In IMA Conference on the Mathematics of Surfaces, Springer, E. R. Hancock, R. R. Martin, and M. A. Sabin, Eds., vol. 5654 of Lecture Notes in Computer Science, 170--188.
[11]
Johan, H., Li, B., Wei, Y., and Iskandarsyah. 2011. 3D model alignment based on minimum projection area. The Visual Computer 27, 6-8, 565--574.
[12]
Jolliffe, I. 2002. Principal Component Analysis (2nd edition). Springer, Heidelberg.
[13]
Kazhdan, M. M., Funkhouser, T. A., and Rusinkiewicz, S. 2004. Symmetry descriptors and 3D shape matching. In Symp. on Geom. Process., Eurographics Association, J.-D. Boissonnat and P. Alliez, Eds., vol. 71 of ACM International Conference Proceeding Series, 115--123.
[14]
Kim, V. G., Lipman, Y., Chen, X., and Funkhouser, T. A. 2010. Möbius transformations for global intrinsic symmetry analysis. Comput. Graph. Forum 29, 5, 1689--1700.
[15]
Lipman, Y., and Funkhouser, T. A. 2009. Möbius voting for surface correspondence. ACM Trans. Graph. 28, 3.
[16]
Liu, J., and Liu, Y. 2010. Curved reflection symmetry detection with self-validation. In ACCV (4), Springer, R. Kimmel, R. Klette, and A. Sugimoto, Eds., vol. 6495 of Lecture Notes in Computer Science, 102--114.
[17]
Liu, Y., Hel-Or, H., Kaplan, C. S., and Gool, L. J. V. 2010. Computational symmetry in computer vision and computer graphics. Foundations and Trends in Computer Graphics and Vision 5, 1-2, 1--195.
[18]
Loop, C. 1987. Smooth Subdivision Surfaces Based on Triangles. Master's thesis, University of Utah.
[19]
Manohar, V., Soundararajan, P., Raju, H., Goldgof, D. B., Kasturi, R., and Garofolo, J. S. 2006. Performance evaluation of object detection and tracking in video. In ACCV (2), Springer, P. J. Narayanan, S. K. Nayar, and H.-Y. Shum, Eds., vol. 3852 of Lecture Notes in Computer Science, 151--161.
[20]
Martinet, A., Soler, C., Holzschuch, N., and Sillion, F. X. 2006. Accurate detection of symmetries in 3D shapes. ACM Trans. Graph. 25, 2, 439--464.
[21]
Meshlab, 2014. http://meshlab.sourceforge.net/.
[22]
Mitra, N. J., Guibas, L. J., and Pauly, M. 2006. Partial and approximate symmetry detection for 3D geometry. ACM Trans. Graph. 25, 3, 560--568.
[23]
Mitra, N. J., Pauly, M., Wand, M., and Ceylan, D. 2012. Symmetry in 3D geometry: Extraction and applications. In EUROGRAPHICS State-of-the-art Report.
[24]
Podolak, J., Shilane, P., Golovinskiy, A., Rusinkiewicz, S., and Funkhouser, T. A. 2006. A planar-reflective symmetry transform for 3D shapes. ACM Trans. Graph. 25, 3, 549--559.
[25]
Podolak, J., Golovinskiy, A., and Rusinkiewicz, S. 2007. Symmetry-enhanced remeshing of surfaces. In Symp. on Geom. Process., Eurographics Association, A. G. Belyaev and M. Garland, Eds., vol. 257 of ACM International Conference Proceeding Series, 235--242.
[26]
Raviv, D., Bronstein, A. M., Bronstein, M. M., and Kimmel, R. 2010. Full and partial symmetries of non-rigid shapes. International Journal of Computer Vision 89, 1, 18--39.
[27]
Sawada, T., and Pizlo, Z. 2008. Detecting mirror-symmetry of a volumetric shape from its single 2D image. In CVPR Workshops, CVPRW '08, 1--8.
[28]
Sawada, T. 2010. Visual detection of symmetry of 3D shapes. Journal of Vision 10, 6, 4:1--4:22.
[29]
Sfikas, K., Theoharis, T., and Pratikakis, I. 2011. Rosy+: 3D object pose normalization based on PCA and reflective object symmetry with application in 3D object retrieval. Int. J. Comput. Vis. 91, 3, 262--279.
[30]
Simari, P. D., Nowrouzezahrai, D., Kalogerakis, E., and Singh, K. 2009. Multi-objective shape segmentation and labeling. Comput. Graph. Forum 28, 5, 1415--1425.
[31]
Sun, J., Ovsjanikov, M., and Guibas, L. J. 2009. A concise and provably informative multi-scale signature based on heat diffusion. Comput. Graph. Forum 28, 5, 1383--1392.
[32]
Tagliasacchi, A., Zhang, H., and Cohen-Or, D. 2009. Curve skeleton extraction from incomplete point cloud. ACM Transactions on Graphics (Special Issue of SIGGRAPH) 28, 3, Article 71, 9 pages.
[33]
Takahashi, S., Fujishiro, I., Takeshima, Y., and Nishita, T. 2005. A feature-driven approach to locating optimal viewpoints for volume visualization. In IEEE Visualization, IEEE Computer Society, 495--502.
[34]
Tedjokusumo, J., and Leow, W. K. 2007. Normalization and alignment of 3D objects based on bilateral symmetry planes. In MMM (1), Springer, T.-J. Cham, J. Cai, C. Dorai, D. Rajan, T.- S. Chua, and L.-T. Chia, Eds., vol. 4351 of Lecture Notes in Computer Science, 74--85.
[35]
Tuzikov, A. V., Colliot, O., and Bloch, I. 2003. Evaluation of the symmetry plane in 3D MR brain images. Pattern Recogn. Lett. 24, 14, 2219--2233.
[36]
Vázquez, P.-P., Feixas, M., Sbert, M., and Heidrich, W. 2001. Viewpoint selection using viewpoint entropy. In VMV, Aka GmbH, T. Ertl, B. Girod, H. Niemann, and H.-P. Seidel, Eds., 273--280.
[37]
Vranic, D. 2004. 3D Model Retrieval. PhD thesis, University of Leipzig.
[38]
Wang, Y., Xu, K., Li, J., Zhang, H., Shamir, A., Liu, L., Cheng, Z.-Q., and Xiong, Y. 2011. Symmetry hierarchy of man-made objects. Comput. Graph. Forum 30, 2, 287--296.
[39]
Wang, H., Simari, P., Su, Z., and Zhang, H. 2014. Spectral global intrinsic symmetry invariant functions. Proc. of Graphics Interface.
[40]
Xu, K., Zhang, H., Tagliasacchi, A., Liu, L., Li, G., Meng, M., and Xiong, Y. 2009. Partial intrinsic reflectional symmetry of 3D shapes. ACM Trans. Graph. 28, 5.
[41]
Xu, K., Zhang, H., Jiang, W., Dyer, R., Cheng, Z., Liu, L., and Chen, B. 2012. Multi-scale partial intrinsic symmetry detection. ACM Transactions on Graphics (Special Issue of SIGGRAPH Asia) 31, 6, 181:1--181:10.
[42]
Zabrodsky, H., Peleg, S., and Avnir, D. 1995. Symmetry as a continuous feature. IEEE Trans. Pattern Anal. Mach. Intell. 17, 12, 1154--1166.
[43]
Zou, H. L., and Lee, Y. T. 2005. Skewed mirror symmetry detection from a 2D sketch of a 3D model. In GRAPHITE, ACM, S. N. Spencer, Ed., 69--76.
[44]
Zou, H. L., and Lee, Y. T. 2006. Skewed rotational symmetry detection from a 2D line drawing of a 3D polyhedral object. Computer-Aided Design 38, 12, 1224--1232.

Cited By

View all
  • (2020)SymmetryNetACM Transactions on Graphics10.1145/3414685.341777539:6(1-14)Online publication date: 27-Nov-2020
  • (2018)3D Model Compression over ASCII Encoded Using Rotational and Reflective Symmetry2018 10th International Conference on Knowledge and Smart Technology (KST)10.1109/KST.2018.8426067(53-58)Online publication date: Jan-2018
  • (2017)Analysis of Partial Axial Symmetry on 3D Surfaces and Its Application in the Restoration of Cultural Heritage Objects2017 IEEE International Conference on Computer Vision Workshops (ICCVW)10.1109/ICCVW.2017.345(2925-2933)Online publication date: Oct-2017
  • Show More Cited By

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image ACM Other conferences
SA '14: SIGGRAPH Asia 2014 Creative Shape Modeling and Design
November 2014
23 pages
ISBN:9781450331821
DOI:10.1145/2669043
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

In-Cooperation

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 24 November 2014

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. matching
  2. symmetry detection
  3. viewpoint entropy

Qualifiers

  • Research-article

Funding Sources

Conference

SA'14
SA'14: SIGGRAPH Asia 2014
December 3 - 6, 2014
Shenzhen, China

Acceptance Rates

Overall Acceptance Rate 178 of 869 submissions, 20%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)7
  • Downloads (Last 6 weeks)1
Reflects downloads up to 11 Jan 2025

Other Metrics

Citations

Cited By

View all
  • (2020)SymmetryNetACM Transactions on Graphics10.1145/3414685.341777539:6(1-14)Online publication date: 27-Nov-2020
  • (2018)3D Model Compression over ASCII Encoded Using Rotational and Reflective Symmetry2018 10th International Conference on Knowledge and Smart Technology (KST)10.1109/KST.2018.8426067(53-58)Online publication date: Jan-2018
  • (2017)Analysis of Partial Axial Symmetry on 3D Surfaces and Its Application in the Restoration of Cultural Heritage Objects2017 IEEE International Conference on Computer Vision Workshops (ICCVW)10.1109/ICCVW.2017.345(2925-2933)Online publication date: Oct-2017
  • (2016)Case studyProceedings of the Symposium on VR Culture and Heritage - Volume 210.1145/3014027.3014032(63-66)Online publication date: 3-Dec-2016

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media