[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
10.5555/2619648.2619683guideproceedingsArticle/Chapter ViewAbstractPublication PagesgiConference Proceedingsconference-collections
research-article
Free access

Spectral global intrinsic symmetry invariant functions

Published: 07 May 2014 Publication History

Abstract

We introduce spectral Global Intrinsic Symmetry Invariant Functions (GISIFs), a class of GISIFs obtained via eigendecomposition of the Laplace-Beltrami operator on compact Riemannian manifolds, and provide associated theoretical analysis. We also discretize the spectral GISIFs for 2D manifolds approximated either by triangle meshes or point clouds. In contrast to GISIFs obtained from geodesic distances, our spectral GISIFs are robust to topological changes. Additionally, for symmetry analysis, our spectral GISIFs represent a more expressive and versatile class of functions than the classical Heat Kernel Signatures (HKSs) and Wave Kernel Signatures (WKSs). Finally, using our defined GISIFs on 2D manifolds, we propose a class of symmetry-factored embeddings and distances and apply them to the computation of symmetry orbits and symmetry-aware segmentations.

References

[1]
M. Aubry, U. Schlickewei, and D. Cremers. The wave kernel signature: a quantum mechanical approach to shape analysis. In Computer Vision Workshops, pages 1626--1633, 2011.
[2]
M. Belkin, J. Sun, and Y. Wang. Constructing Laplace operator from point clouds in Rd. In Nineteenth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 1031--1040, 2009.
[3]
M. Chertok and Y. Keller. Spectral symmetry analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 32(7):1227--1238, 2010.
[4]
M. Desbrun, M. Meyer, P. Schröder, and A. H. Barr. Discrete differential-geometry operators for triangulated 2-manifolds. In Proceedings of Visualization and Mathematics, pages 35--57, 2002.
[5]
K. Gebal, J. A. Bærentzen, H. Aanæs, and R. Larsen. Shape analysis using the auto diffusion function. Computer Graphics Forum, 28(5):1405--1413, 2009.
[6]
V. G. Kim, Y. Lipman, and X. Chen. Möbius transformations for global intrinsic symmetry analysis. Computer Graphics Forum, 29(5):1689--1700, 2010.
[7]
B. Lévy. Laplace-Beltrami eigenfunctions: Towards an algorithm that understands geometry. In Shape Modeling and Applications, invited talk, 2006.
[8]
B. Lévy and H. Zhang. Spectral mesh processing. In ACM SIGGRAPH Asia Courses, 2009.
[9]
Y. Lipman, X. Chen, I. Daubechies, and T. A. Funkhouser. Symmetry factored embedding and distance. ACM Transactions on Graphics, 29(4):439--464, 2010.
[10]
C. Luo, I. Safa, and Y. Wang. Approximating gradients for meshes and point clouds via diffusion metric. Computer Graphics Forum, 28(5):1497--1508, 2009.
[11]
N. J. Mitra, L. J. Guibas, and M. Pauly. Partial and approximate symmetry detection for 3D geometry. ACM Transactions on Graphics, 25(3):560--568, 2006.
[12]
N. J. Mitra, M. Pauly, M. Wand, and D. Ceylan. Symmetry in 3D geometry: extraction and applications. Computer Graphics Forum, 32(6):1--23, 2013.
[13]
M. Ovsjanikov, Q. Mérigot, F. Mémoli, and L. J. Guibas. One point isometric matching with the heat kernel. Computer Graphics Forum, 29(5):1555--1564, 2010.
[14]
M. Ovsjanikov, Q. Mérigot, V. Pătrăucean, and L. Guibas. Shape matching via quotient spaces. Computer Graphics Forum, 32(5):1--11, 2013.
[15]
M. Ovsjanikov, J. Sun, and L. Guibas. Global intrinsic symmetries of shapes. Computer Graphics Forum, 27(5):1341--1348, 2008.
[16]
M. Ovsjanikovs. Spectral methods for isometric shape matching and symmetry detection. PhD thesis, Stanford University, Stanford, 2011.
[17]
U. Pinkall and K. Polthier. Computing discrete minimal surfaces and their conjugates. Experimental Mathematics, 2(1):15--36, 1993.
[18]
D. Raviv, A. M. Bronstein, M. M. Bronstein, and R. Kimmel. Symmetries of non-rigid shapes. In International Conference on Computer Vision, pages 1--7, 2007.
[19]
M. Reuter, F.-E. Wolter, and N. Peinecke. Laplace-Beltrami spectra as a shape-DNA of surfaces and solids. Computer-Aided Design, 38(4):342--366, 2006.
[20]
S. Rosenberg. The Laplacian on a Riemannian Manifold. Cambridge University Press, 1997.
[21]
R. M. Rustamov. Laplace-Beltrami eigenfunctions for deformation invariant shape representation. In Eurographics Symposium on Geometry Processing, pages 225--233, 2007.
[22]
J. Sun, M. Ovsjanikov, and L. J. Guibas. A concise and provably informative multi-scale signature sased on heat diffusion. Computer Graphics Forum, 28(5):1285--1295, 2009.
[23]
B. Vallet and B. Lévy. Spectral geometry processing with manifold harmonics. Computer Graphics Forum, 27(2):251--260, 2008.
[24]
M. Wardetzky, S. Mathur, F. Kälberer, and E. Grinspun. Discrete Laplace operators: No free lunch. In Eurographics Symposium on Geometry Processing, pages 33--37, 2007.
[25]
K. Xu, H. Zhang, W. Jiang, R. Dyer, Z. Cheng, L. Liu, and B. Chen. Multi-scale partial intrinsic symmetry detection. ACM Transactions on Graphics, 31(6), 2012.
[26]
X. G. Yang Liu, Balakrishnan Prabhakaran. Point-based manifold haronics. IEEE Transactions on Visualization and Computer Graphics, 18(10):1696--1703, 2012.

Cited By

View all
  • (2014)Efficient view-based 3d reflection symmetry detectionSIGGRAPH Asia 2014 Creative Shape Modeling and Design10.1145/2669043.2669045(1-8)Online publication date: 24-Nov-2014

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Guide Proceedings
GI '14: Proceedings of Graphics Interface 2014
May 2014
230 pages
ISBN:9781482260038

Sponsors

  • CHCCS: The Canadian Human-Computer Communications Society

Publisher

Canadian Information Processing Society

Canada

Publication History

Published: 07 May 2014

Qualifiers

  • Research-article

Acceptance Rates

Overall Acceptance Rate 206 of 508 submissions, 41%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)47
  • Downloads (Last 6 weeks)3
Reflects downloads up to 23 Dec 2024

Other Metrics

Citations

Cited By

View all
  • (2014)Efficient view-based 3d reflection symmetry detectionSIGGRAPH Asia 2014 Creative Shape Modeling and Design10.1145/2669043.2669045(1-8)Online publication date: 24-Nov-2014

View Options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Login options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media