[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
article

On a class of Newton-like methods for solving nonlinear equations

Published: 01 June 2009 Publication History

Abstract

We provide a semilocal convergence analysis for a certain class of Newton-like methods considered also in [I.K. Argyros, A unifying local-semilocal convergence analysis and applications for two-point Newton-like methods in Banach space, J. Math. Anal. Appl. 298 (2004) 374-397; I.K. Argyros, Computational theory of iterative methods, in: C.K. Chui, L. Wuytack (Eds.), Series: Studies in Computational Mathematics, vol. 15, Elsevier Publ. Co, New York, USA, 2007; J.E. Dennis, Toward a unified convergence theory for Newton-like methods, in: L.B. Rall (Ed.), Nonlinear Functional Analysis and Applications, Academic Press, New York, 1971], in order to approximate a locally unique solution of an equation in a Banach space. Using a combination of Lipschitz and center-Lipschitz conditions, instead of only Lipschitz conditions [F.A. Potra, Sharp error bounds for a class of Newton-like methods, Libertas Math. 5 (1985) 71-84], we provide an analysis with the following advantages over the work in [F.A. Potra, Sharp error bounds for a class of Newton-like methods, Libertas Math. 5 (1985) 71-84] which improved the works in [W.E. Bosarge, P.L. Falb, A multipoint method of third order, J. Optimiz. Theory Appl. 4 (1969) 156-166; W.E. Bosarge, P.L. Falb, Infinite dimensional multipoint methods and the solution of two point boundary value problems, Numer. Math. 14 (1970) 264-286; J.E. Dennis, On the Kantorovich hypothesis for Newton's method, SIAM J. Numer. Anal. 6 (3) (1969) 493-507; J.E. Dennis, Toward a unified convergence theory for Newton-like methods, in: L.B. Rall (Ed.), Nonlinear Functional Analysis and Applications, Academic Press, New York, 1971; H.J. Kornstaedt, Ein allgemeiner Konvergenzstaz fu r verscha rfte Newton-Verfahrem, in: ISNM, vol. 28, Birkhau ser Verlag, Basel and Stuttgart, 1975, pp. 53-69; P. Laasonen, Ein uberquadratisch konvergenter iterativer algorithmus, Ann. Acad. Sci. Fenn. Ser I 450 (1969) 1-10; F.A. Potra, On a modified secant method, L'analyse numerique et la theorie de l'approximation 8 (2) (1979) 203-214; F.A. Potra, An application of the induction method of V. Ptak to the study of Regula Falsi, Aplikace Matematiky 26 (1981) 111-120; F.A. Potra, On the convergence of a class of Newton-like methods, in: Iterative Solution of Nonlinear Systems of Equations, in: Lecture Notes in Mathematics, vol. 953, Springer-Verlag, New York, 1982; F.A. Potra, V. Ptak, Nondiscrete induction and double step secant method, Math. Scand. 46 (1980) 236-250; F.A. Potra, V. Ptak, On a class of modified Newton processes, Numer. Funct. Anal. Optim. 2 (1) (1980) 107-120; F.A. Potra, Sharp error bounds for a class of Newton-like methods, Libertas Math. 5 (1985) 71-84; J.W. Schmidt, Untere Fehlerschranken fur Regula-Falsi Verfahren, Period. Math. Hungar. 9 (3) (1978) 241-247; J.W. Schmidt, H. Schwetlick, Ableitungsfreie Verfhren mit hoherer Konvergenzgeschwindifkeit, Computing 3 (1968) 215-226; J.F. Traub, Iterative Methods for the Solution of Equations, Prentice Hall, Englewood Cliffs, New Jersey, 1964; M.A. Wolfe, Extended iterative methods for the solution of operator equations, Numer. Math. 31 (1978) 153-174]: larger convergence domain and weaker sufficient convergence conditions. Numerical examples further validating the results are also provided.

References

[1]
Argyros, I.K., The theory and application of abstract polynomial equations. In: St. Lucie/CRC/Lewis Publ. Mathematics Series, Boca Raton, Florida, USA.
[2]
Argyros, I.K., On the Newton-Kantorovich hypothesis for solving equations. J. Comput. Appl. Math. v169. 315-332.
[3]
Argyros, I.K., A unifying local-semilocal convergence analysis and applications for two-point Newton-like methods in Banach space. J. Math. Anal. Appl. v298. 374-397.
[4]
Argyros, I.K., Computational theory of iterative methods. In: Chui, C.K., Wuytack, L. (Eds.), Series: Studies in Computational Mathematics, vol. 15. Elsevier Publ. Co, New York, USA.
[5]
Bosarge, W.E. and Falb, P.L., A multipoint method of third order. J. Optimiz. Theory Appl. v4. 156-166.
[6]
Bosarge, W.E. and Falb, P.L., Infinite dimensional multipoint methods and the solution of two point boundary value problems. Numer. Math. v14. 264-286.
[7]
Chandrasekhar, S., Radiative Transfer. 1960. Dover Publ., New York.
[8]
Dennis, J.E., On the Kantorovich hypothesis for Newton's method. SIAM J. Numer. Anal. v6 i3. 493-507.
[9]
Dennis, J.E., Toward a unified convergence theory for Newton-like methods. In: Rall, L.B. (Ed.), Nonlinear Functional Analysis and Applications, Academic Press, New York.
[10]
Gutierrez, J.M., Hernandez, M.A. and Salanova, M.A., Accessibility of solutions by Newton's method. Int. J. Comput. Math. v57. 237-247.
[11]
Hernandez, M.A., Rubio, M.J. and Ezquerro, J.A., Secant-like methods for solving nonlinear integral equations of the Hammerstein type. J. Comput. Appl. Math. v115. 245-254.
[12]
Kornstaedt, H.J., . In: ISNM, vol. 28. Birkhaü ser Verlag, Basel and Stuttgart. pp. 53-69.
[13]
Laasonen, P., Ein überquadratisch konvergenter iterativer algorithmus. Ann. Acad. Sci. Fenn. Ser I. v450. 1-10.
[14]
Potra, F.A., On a modified secant method. L'analyse numérique et la theorie de l'approximation. v8 i2. 203-214.
[15]
Potra, F.A., An application of the induction method of V. Pták to the study of Regula Falsi. Aplikace Matematiky. v26. 111-120.
[16]
Potra, F.A., On the convergence of a class of Newton-like methods. In: Lecture Notes in Mathematics, vol. 953. Springer-Verlag, New York.
[17]
Potra, F.A. and Pták, V., Nondiscrete induction and double step secant method. Math. Scand. v46. 236-250.
[18]
Potra, F.A. and Pták, V., On a class of modified Newton processes. Numer. Funct. Anal. Optim. v2 i1. 107-120.
[19]
Potra, F.A., Sharp error bounds for a class of Newton-like methods. Libertas Math. v5. 71-84.
[20]
Schmidt, J.W., Untere Fehlerschranken für Regula-Falsi Verfahren. Period. Math. Hungar. v9 i3. 241-247.
[21]
Schmidt, J.W. and Schwetlick, H., Ableitungsfreie Verfhren mit höherer Konvergenzgeschwindifkeit. Computing. v3. 215-226.
[22]
Traub, J.F., Iterative Methods for the Solution of Equations. 1964. Prentice Hall, Englewood Cliffs, New Jersey.
[23]
Wolfe, M.A., Extended iterative methods for the solution of operator equations. Numer. Math. v31. 153-174.

Cited By

View all
  • (2022)Accelerated Dai-Liao projection method for solving systems of monotone nonlinear equations with application to image deblurringJournal of Global Optimization10.1007/s10898-022-01213-485:2(377-420)Online publication date: 21-Jul-2022
  • (2019)Continuous Variable Neighborhood Search (C-VNS) for Solving Systems of Nonlinear EquationsINFORMS Journal on Computing10.1287/ijoc.2018.087631:2(235-250)Online publication date: 1-Apr-2019
  • (2017)On the convergence of Newton-like methods using restricted domainsNumerical Algorithms10.5555/3123622.312363875:3(553-567)Online publication date: 1-Jul-2017
  • Show More Cited By
  1. On a class of Newton-like methods for solving nonlinear equations

      Recommendations

      Comments

      Please enable JavaScript to view thecomments powered by Disqus.

      Information & Contributors

      Information

      Published In

      cover image Journal of Computational and Applied Mathematics
      Journal of Computational and Applied Mathematics  Volume 228, Issue 1
      June, 2009
      502 pages

      Publisher

      Elsevier Science Publishers B. V.

      Netherlands

      Publication History

      Published: 01 June 2009

      Author Tags

      1. 47H04
      2. 47J20
      3. 49J53
      4. 49M15
      5. 65G99
      6. 65J99
      7. 65K10
      8. Banach space
      9. Convergence domain
      10. Divided difference
      11. Fréchet-derivative
      12. Newton's method
      13. Newton-like methods
      14. Nonlinear integral equation of the Chandrasekhar type
      15. Secant method

      Qualifiers

      • Article

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • Downloads (Last 12 months)0
      • Downloads (Last 6 weeks)0
      Reflects downloads up to 01 Jan 2025

      Other Metrics

      Citations

      Cited By

      View all
      • (2022)Accelerated Dai-Liao projection method for solving systems of monotone nonlinear equations with application to image deblurringJournal of Global Optimization10.1007/s10898-022-01213-485:2(377-420)Online publication date: 21-Jul-2022
      • (2019)Continuous Variable Neighborhood Search (C-VNS) for Solving Systems of Nonlinear EquationsINFORMS Journal on Computing10.1287/ijoc.2018.087631:2(235-250)Online publication date: 1-Apr-2019
      • (2017)On the convergence of Newton-like methods using restricted domainsNumerical Algorithms10.5555/3123622.312363875:3(553-567)Online publication date: 1-Jul-2017
      • (2016)The majorant method in the theory of Newton-Kantorovich approximations and generalized Lipschitz conditionsJournal of Computational and Applied Mathematics10.1016/j.cam.2014.12.013291:C(332-347)Online publication date: 1-Jan-2016
      • (2013)Estimating upper bounds on the limit points of majorizing sequences for Newton's methodNumerical Algorithms10.1007/s11075-012-9570-162:1(115-132)Online publication date: 1-Jan-2013
      • (2012)Weaker conditions for the convergence of Newton's methodJournal of Complexity10.1016/j.jco.2011.12.00328:3(364-387)Online publication date: 1-Jun-2012
      • (2012)Majorizing sequences for iterative methodsJournal of Computational and Applied Mathematics10.1016/j.cam.2011.11.003236:7(1947-1960)Online publication date: 1-Jan-2012
      • (2012)Semilocal convergence of a sixth-order method in Banach spacesNumerical Algorithms10.1007/s11075-012-9541-661:3(413-427)Online publication date: 1-Nov-2012
      • (2011)Extending the applicability of the Gauss---Newton method under average Lipschitz---type conditionsNumerical Algorithms10.1007/s11075-011-9446-958:1(23-52)Online publication date: 1-Sep-2011
      • (2011)On the solution of systems of equations with constant rank derivativesNumerical Algorithms10.1007/s11075-010-9426-557:2(235-253)Online publication date: 1-Jun-2011
      • Show More Cited By

      View Options

      View options

      Media

      Figures

      Other

      Tables

      Share

      Share

      Share this Publication link

      Share on social media